Polynomial Identity Testing

1

Anil Maheshwari

anil@scs.carleton.ca School of Computer Science Carleton University Canada

Outline

Polynomial Identity Testing

With or Without Replacement Sampling

Matrix Product Verification

Schwartz-Zippel Lemma

Bipartite Matching

Finding a Perfect Matching

References

Polynomial Identity Testing

Alice-Bob String Testing Problem

Assume Alice has a binary string $A = a_1 a_2 \dots a_n$ and Bob has a binary string $B = b_1 b_2 \dots b_n$. What is minimum amount of communication required to test whether A = B?

Randomized Algorithm

Define $A(x) = \sum_{i=1}^{n} a_i x^i$ and $B(x) = \sum_{i=1}^{n} b_i x^i$, where $x \in F$. F is a Field defined with modular arithmetic for a large prime number p.

Algorithm:

- 1. Pick a random element $\alpha \in F$
- 2. Alice computes $A(\alpha)$ and sends $(\alpha, A(\alpha))$ to Bob
- 3. Bob computes $B(\alpha)$
- 4. Bob communicates to Alice True if $B(\alpha) = A(\alpha)$, else False

Analysis of Randomized Algorithm

Case I: A = B: Algorithms reports TRUE as $A(\alpha) = B(\alpha)$ no matter what is the value $\alpha \in F$

Case II: Assume $A \neq B$.

Can algorithm make an error?

Yes, if α is the root of the polynomial (A - B)x = 0.

Pr(a random element of F is root of $(A - B)x) \le n/|F|$

Question: How to increase the success probability?

Communication Complexity: $O(\log |F|)$ bits.

Two polynomials $\mathcal{P}(x)$ and $\mathcal{Q}(x)$ of degree d. **Output:** ls $\mathcal{P}(x) \equiv \mathcal{Q}(x)$?

Example: Is $(2-x)(x-5)(x^2-12) = -x^4 + 7x^3 + 2x^2 - 84x + 120$?

Answer: Expand and Check.

Alternatively, evaluate the polynomials at a random point in $\{1, \ldots, 100d\}$.

For example

- x = 20, both of them evaluate to -104760.
- x = 29, both of them evaluate to -537192
- \implies Check whether $\mathcal{P}(x) \mathcal{Q}(x) = 0$?

Suppose $\mathcal{P}(x) \neq \mathcal{Q}(x)$. For Example: $\mathcal{P}(x) = 2x^4 - 20x^3 + 50x^2 - 80x + 21$ $\mathcal{Q}(x) = x^4 - 8x^3 + x^2 - 2x - 19$ $\mathcal{P}(x) - \mathcal{Q}(x) = (x - 1)(x - 2)(x - 4)(x - 5) \neq 0$

What is the probability that a random element $\alpha \in \{1, ..., 100d\}$ will satisfy $\mathcal{P}(\alpha) - \mathcal{Q}(\alpha) = 0$?

If the random element $\alpha \in \{1, 2, 4, 5\}$ than $\mathcal{P}(\alpha) - \mathcal{Q}(\alpha) = 0$.

Probability of making an error $\leq \frac{d}{100d} = \frac{4}{400} = 0.01$

 \implies Probability of determining that $\mathcal{P}(x) \neq \mathcal{Q}(x) \geq 1 - 0.01 = 0.99$

How can we improve the probability of success?

If $\mathcal{P}(x) \not\equiv \mathcal{Q}(x)$, probability of failure is $\leq \frac{d}{100d} = \frac{1}{100} = 0.01$

What if we repeat this experiment with multiple values of $\alpha \in \{1, \dots, 100d\}$. How to choose multiple values of α ?

Choice 1: With replacement (same value may be chosen multiple times)

Choice 2: Without replacement (all chosen values are distinct)

With or Without Replacement Sampling

Consider repeating the experiment k > 0 times with replacement. If in any of the trials we find that $\mathcal{P}(\alpha) - \mathcal{Q}(\alpha) \neq 0$, we report $\mathcal{P}(x) \not\equiv \mathcal{Q}(x)$, otherwise we report $\mathcal{P}(x) \equiv \mathcal{Q}(x)$.

Observe:

- If in any of the k trials, we find $\mathcal{P}(\alpha) - \mathcal{Q}(\alpha) \neq 0$, then for sure $\mathcal{P}(x) \not\equiv \mathcal{Q}(x)$, and we answer correctly.

- Suppose, $\mathcal{P}(x) \neq \mathcal{Q}(x)$, but in each of the trials we find that $\mathcal{P}(\alpha) - \mathcal{Q}(\alpha) = 0$ Probability of making error $\leq \left(\frac{d}{100d}\right)^k = \left(\frac{1}{100}\right)^k$. For example with k = 2, the probability of error is $\leq 0.01^2 = 0.0001$ Consider repeating the experiment k > 0 times **without** replacement. If in any of the trials we find that $\mathcal{P}(\alpha) - \mathcal{Q}(\alpha) \neq 0$, we report $\mathcal{P}(x) \not\equiv \mathcal{Q}(x)$, otherwise we report $\mathcal{P}(x) \equiv \mathcal{Q}(x)$.

Observe:

- If in any of the k trials, we find $\mathcal{P}(\alpha) - \mathcal{Q}(\alpha) \neq 0$, then for sure $\mathcal{P}(x) \not\equiv \mathcal{Q}(x)$, and we answer correctly.

- Suppose, $\mathcal{P}(x) \not\equiv \mathcal{Q}(x)$, but in each of the trials we find that $\mathcal{P}(\alpha) - \mathcal{Q}(\alpha) = 0$

Let us call events E_1, \ldots, E_k be the *k*-events where event E_i states that the random number chosen in the *i*-th trial is a root of the polynomial $\mathcal{P}(x) - \mathcal{Q}(x)$.

Probability of getting a wrong answer is $Pr(E_1 \cap E_2 \cap \ldots \cap E_k)$

Decreasing Failure Probability - Without Replacement (contd.)

Recall that $Pr(A \cap B) = Pr(A|B) \cdot Pr(B)$, assuming $Pr(B) \neq 0$

 $Pr(E_1 \cap E_2 \cap \ldots \cap E_k) = Pr(E_k | E_1 \cap E_2 \cap \ldots \cap E_{k-1}) \cdot Pr(E_1 \cap E_2 \cap \ldots \cap E_{k-1}) = Pr(E_k | E_1 \cap E_2 \cap \ldots \cap E_{k-1}) \cdot Pr(E_{k-1} | E_1 \cap E_2 \cap \ldots \cap E_{k-2}) \cdot Pr(E_1 \cap E_2 \cap \ldots \cap E_{k-2})$

 $\cdots = Pr(E_1) \cdot Pr(E_1|E_2) \cdot Pr(E_3|E_1 \cap E_2) \cdots Pr(E_k|E_1 \cap E_2 \cap \ldots \cap E_{k-1})$

Question: How to bound $Pr(E_j|E_1 \cap E_2 \cap \ldots \cap E_{j-1})$?

We have already chosen j - 1 roots for the events E_1, \ldots, E_{j-1} . Only $\leq d - (j - 1)$ roots are remaining.

Probability of choosing one of the remaining roots (defining the event E_j) $Pr(E_j|E_1 \cap E_2 \cap \ldots \cap E_{j-1}) \leq \frac{d-(j-1)}{100d-(j-1)} < \frac{d}{100d} = \frac{1}{100}$

Thus, $Pr(E_1 \cap E_2 \cap \ldots \cap E_k) \leq \prod_{j=1}^k \frac{d-(j-1)}{100d-(j-1)} \leq \left(\frac{1}{100}\right)^k$

For
$$k \ge 2$$
, $Pr(E_1 \cap E_2 \cap \ldots \cap E_k) \le \prod_{j=1}^k \frac{d-(j-1)}{100d-(j-1)} < \left(\frac{1}{100}\right)^k$.

For example, for k = 2 and d = 4, the probability of error is $\leq \left(\frac{4}{400}\right)\left(\frac{3}{399}\right) = 0.000075 < 0.01^2 (= 0.0001)$

Ideally we should use without replacement strategy, but

- Analysis is tedious.
- Bit complex to code

In practice, employ with replacement strategy

- Analysis is simpler
- Probability of making an error is still negligible
- Easier to code

Matrix Product Verification

Input: Three $n \times n$ real matrices A, B and C. **Output:** Is C = AB?

1st Approach: Evaluate AB and compare with C.

- Requires computation of AB
- Time Complexity: $O(n^3), O(n^{\log_2 7}), \ldots$

2nd Approach: Find almost the right answer

Randomized algorithm for matrix product testing			
Step 1:	Compute a (uniformly at) random Boolean vector r of dimension n .		
Step 2:	Compute $A(Br)$ and Cr		
Step3:	If $A(Br) \neq Cr$, report $AB \neq C$, Otherwise, report $AB = C$		

Time Complexity:

Computation of the product of $n\times n$ matrix with a vector of size n takes $\Theta(n^2)$ time.

Thus,

- Computation of Br takes $O(n^2)$ time resulting in a vector of size n
- Computation of A(Br) takes $O(n^2)$ time
- Computation of Cr takes $O(n^2)$ time
- Testing Cr = A(Br) takes O(n) time.

Total Complexity = $O(n^2)$

Correctness

- If $ABr \neq Cr \implies AB \neq C$.
- But if ABr = Cr, AB may or may not be equal to C.

(algorithm incurs one-sided error)

One-sided error

Let r be a (uniform) random n -dimensional Boolean vector and $C\neq AB.$ $Pr(ABr=Cr)\leq \frac{1}{2}$

Proof: Let D = C - AB. Since $C \neq AB$, $D \neq 0$. Moreover, since $ABr = Cr \implies (AB - C)r = 0 \implies Dr = 0$. Since $D \neq 0$, there is an entry, say $d_{ij} \neq 0$. Since Dr = 0, we have that $\sum_{k=1}^{n} d_{ik}r_k = 0$. We can express $r_j = -\frac{\sum_{k=1}^{j-1} d_{ik}r_k + \sum_{k=j+1}^{n} d_{ik}r_k}{d_{ij}}$ Since only a specific value of r_j satisfies this equation, and we can choose r_j to be either 0 or 1 with equal probability, thus $Pr(Dr = 0) \leq \frac{1}{2}$.

To increase the success probability, we can run the experiment k times. Error probability $\leq \left(\frac{1}{2}\right)^k$ Running Time = $O(kn^2)$

Schwartz-Zippel Lemma

Determine if the multivariate polynomial $Q(x_1, x_2, \ldots, x_n) \equiv 0$?

Example I:

 $Q(x_1, x_2, x_3, x_4) = (x_1^3 - x_2^2)(-x_1^2 - x_3^4)(x_4^3 - 2x_1x_2) \equiv 0$

Example II:

$$\mathsf{Det} \begin{vmatrix} x_1 - x_2^2 & x_3 - x_1 & x_4^2 & x_4 - x_1 \\ -x_2^4 & x_2 - x_4 & 2x_3 - 7x_1 & x_2^2 - x_3^2 \\ x_1^3 & x_2 - x_1 & x_4 - x_3 & x_2^3 \\ x_2^3 & x_4 - 2x_2 & x_1 - x_3^2 & x_1^3 - x_2^3 \end{vmatrix} \equiv 0$$

Schwartz–Zippel Lemma

Let $Q(x_1, x_2, \ldots, x_n) \neq 0$ be a multivariate polynomial of total degree d, where each x_i takes value from a finite field \mathcal{F} . Fix any finite set $S \subseteq \mathcal{F}$ and let r_1, \ldots, r_n be chosen uniformly at random from S. Then $Pr(Q(r_1, \ldots, r_n) = 0) \leq \frac{d}{|S|}$

Proof: Technique: Induction on number of variables *n*.

Base Case: n = 1. Degree d polynomial in a single variable x_1 has at most d distinct roots. Thus $Pr(\mathcal{Q}(x_1 = r_1) = 0) \leq \frac{d}{|S|}$, as this polynomial is zero only if r_1 is a root of \mathcal{Q} , where r_1 is a random element from S.

Assume the induction hypothesis holds for all polynomials of fewer than *n*-variables.

Observe that $Q(x_1, x_2, \ldots, x_n) = \sum_{i=0}^k x_1^i Q_i(x_2, \ldots, x_n)$, where $k \le d$ is the highest degree of x_1 in $Q(x_1, x_2, \ldots, x_n)$. Note that $Q_k(x_2, \ldots, x_n) \ne 0$ and moreover its degree is d - k < d.

Thus, by setting $x_2 = r_2, \ldots, x_n = r_n$, and using I.H on n-1 variables, we have $Pr(\mathcal{Q}_k(r_2, \ldots, r_n) = 0) \leq \frac{d-k}{|S|}$

Assume that $\mathcal{Q}_k(r_2, \ldots, r_n) \neq 0$ and consider the single variable polynomial of degree k, $\mathcal{Q}(x_1, r_2, \ldots, r_n)$. By I.H. $Pr(\mathcal{Q}(x_1 = r_1, r_2, \ldots, r_n) = 0) \leq \frac{k}{|S|}$.

Hence,

 $Pr(\mathcal{Q}(r_1, r_2, \dots, r_n) = 0) = Pr(\mathcal{Q}(r_1, r_2, \dots, r_n) = 0 | Pr(\mathcal{Q}_k(r_2, \dots, r_n) = 0) \times Pr(\mathcal{Q}_k(r_2, \dots, r_n) = 0) + Pr(\mathcal{Q}(r_1, r_2, \dots, r_n) = 0 | Pr(\mathcal{Q}_k(r_2, \dots, r_n) \neq 0) \times Pr(\mathcal{Q}_k(r_2, \dots, r_n) \neq 0)$

 $Pr(\mathcal{Q}(r_1, r_2, \dots, r_n) = 0) \le 1 \times \frac{d-k}{|S|} + \frac{k}{|S|} \times 1 = \frac{d}{|S|}$

Testing Determinants

Is Det
$$\begin{vmatrix} x_1 - x_2^2 & x_3 - x_1 & x_4^2 & x_4 - x_1 \\ -x_2^4 & x_2 - x_4 & 2x_3 - 7x_1 & x_2^2 - x_3^2 \\ x_1^3 & x_2 - x_1 & x_4 - x_3 & x_2^3 \\ x_2^3 & x_4 - 2x_2 & x_1 - x_3^2 & x_1^3 - x_2^3 \end{vmatrix} \equiv 0?$$

Choose a large enough prime number p, and choose random values for x_1, x_2, x_3, x_4 from $\{0, \ldots, p-1\}$.

Evaluate the determinant.

Probability of one sided error $\leq \frac{d}{p}$, where *d* is the degree of the polynomial.

Bipartite Matching

Let $G = (U \cup V, E)$ be a bipartite graph, where |U| = |V| = n.

- $M\subseteq E$ is a perfect matching if
 - 1. |M| = n
 - 2. Edges in M are independent, i.e. vertex disjoint.

Define $n \times n$ matrix A where,

$$A_{ij} = \begin{cases} x_{ij}, \text{ if } u_i v_j \in E \\ 0, \text{ otherwise} \end{cases}$$

x_{11}	x_{12}	0
x_{21}	x_{22}	0
x_{31}	x_{32}	x_{33}

x_{11}	x_{12}	x_{13}
0	x_{22}	0
0	x_{32}	0

Edmonds

A bipartite graph G has a perfect matching if and only if $det(A) \neq 0$.

Input: Given a bipartite graph $G = (U \cup V, E)$, where |U| = |V|

Output: TRUE if G has perfect matching, otherwise FALSE

Randomized Algorithm:

- 1. Choose a large enough prime number p.
- 2. For each edge $u_i v_j$, set x_{ij} to be a random value in $\{0, \ldots, p-1\}$ uniformly at random.
- 3. Compute det(A)
- 4. Return TRUE iff $det(A) \neq 0$.

Analysis

- 1. Choose a large enough prime number.
- 2. For each edge $u_i v_j$, set x_{ij} to be a random value in $\{0, \ldots, p-1\}$ uniformly at random.
- 3. Compute det(A)
- 4. Return TRUE iff $det(A) \neq 0$.

Case 1: If G has no perfect matching $\implies det(A) = 0$

Case 2: If G has perfect matching $\implies det(A) \neq 0$ (Edmonds)

Degree of determinant polynomial is $\leq n = |U|$

Pr(det(A)=0 given that G has a perfect matching) $\leq n/p$ (Schwartz-Zippel)

Choose $p \approx 1000n$, Probability of success $\geq 1 - 1/1000$

Finding a Perfect Matching

Isolation Lemma (MVV87)

Assume we have set system S on a ground set of n elements. Assign weights to each element uniformly and at random from $\{1, 2, \ldots, 2n\}$. The probability that there is a unique minimum weight set in S is $\geq \frac{1}{2}$

This result is counterintuitive:

- There are $\approx 2^n$ possible subsets on *n*-elements.
- The weight of any non-empty set $X \in S$ is in the range $1 \le wt(X) \le 2n^2$.
- We expect almost $\frac{2^n}{2n^2}$ sets for each weight
- Why with probability $\geq \frac{1}{2}$, minimum weight set is unique?

This proof is credited to Joel Spencer - see wikipedia on Isolation Lemma.

For an element v, let \mathcal{F}_v be sets in \mathcal{S} that contains v and let $\mathcal{F}_{\bar{v}}$ be sets in \mathcal{S} that do not contain v.

Let
$$\alpha(v) = \min_{A \in \mathcal{F}_{\bar{v}}} w(A) - \min_{B \in \mathcal{F}_{v}} w(B - \{v\}).$$

Observation: $\alpha(v)$ depends only on weights of all other elements except the weight of v.

$$\implies Pr(\alpha(v) = w(v)) = \frac{1}{2n}$$

Thus, for some element v of ground set $\Pr(\alpha(v)=w(v))\leq \frac{1}{2}$ (by Union Bound)

Proof of Isolation Lemma (contd.)

Assume that there are two distinct sets *X* and *Y* that have minimum weight in \mathcal{F} . Consider an element $v \in X \setminus Y$.

Now observe that

$$\alpha(v) = \min_{A \in \mathcal{F}_{\bar{v}}} w(A) - \min_{B \in \mathcal{F}_{v}} w(B - \{v\})$$
$$= w(Y) - w(X - \{v\})$$
$$= w(v)$$

But this happens with probability at most $\frac{1}{2}$. Thus with probability $\geq \frac{1}{2}$, the minimum weight set is unique.

- Let $G = (U \cup V, E)$ and |E| = m.
- Assume G has a perfect matching.
- For each edge $e \in E$, assign a weight in $\{1, \ldots, 2m\}$ uniformly at random.
- Let $\mathcal{M}\text{=}$ Set system consisting of all perfect matchings
- Isolation Lemma: $\exists M \in \mathcal{M}$ of unique minimum weight with probability $\geq 1/2$.

New Problem

Find (unique) minimum weight perfect matching M in G

Unique MWPM

Let unique MWPM has a total weight $W \leq 2m^2$. For each edge $e = (u_i v_j) \in E$ with weight w(e), set $x_{ij} = 2^{w(e)}$ in det(A).

Consider the non-zero terms in the expansion of det(A).

Observation: Only one term is 2^W and all other terms are $\geq 2^{W+1} = 2 * 2^W$.

Unique MWPM (contd.)

Note:

$$\frac{det(A)}{2^k} = \begin{cases} \mathsf{odd}, \text{ if } k = W\\ \mathsf{even}, \text{ if } k < W\\ \mathsf{fractional}, \text{ if } k > W \end{cases}$$

Algorithm:

- 1. Find k: Guess k and check parity of $\frac{det(A)}{2^k}$
- 2. For each edge e = (uv), it is in unique MWPM if and only if MWPM in $G \setminus \{u, v\}$ has weight W w(e).

Note: Computation of det(*A*), Guess & Check *k*, and Testing $\forall e \in E$ is part of unique MWPM are parallelizable.

Let G = (V, E) be a general graph.

Define

$$A_{ij} = \begin{cases} +x_{ij}, \text{ if } v_i v_j \in E \text{ and } i < j \\ -x_{ij}, \text{ if } v_i v_j \in E \text{ and } i > j \\ 0, \text{ otherwise} \end{cases}$$

Tutte

G has a perfect matching if and only if $det(A) \neq 0$.

References

References

- 1. Mitzenmacher and Upfal, Probability and Computing, Cambridge.
- 2. Motwani and Raghavan, Randomized Algorithm, Cambridge.
- 3. Mulmuley, Vazirani and Vazirani, Matching is as easy as matrix inversion, Combinatorica 7(1):105-113, 1987.
- 4. DeMillo and Lipton, A probabilistic remark on algebraic program testing, Information Processing Letters 7(4):193-195, 1978.