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Polynomial Identity Testing



String Equality Testing

Alice-Bob String Testing Problem
Assume Alice has a binary string A = a1a2 . . . an and Bob has a binary
string B = b1b2 . . . bn. What is minimum amount of communication required
to test whether A = B?
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Randomized Algorithm

Define A(x) =
n∑

i=1

aix
i and B(x) =

n∑
i=1

bix
i, where x ∈ F .

F is a Field defined with modular arithmetic for a large prime number p.

Algorithm:

1. Pick a random element α ∈ F

2. Alice computes A(α) and sends (α,A(α)) to Bob

3. Bob computes B(α)

4. Bob communicates to Alice True if B(α) = A(α), else False
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Analysis of Randomized Algorithm

Case I: A = B: Algorithms reports TRUE as A(α) = B(α) no matter
what is the value α ∈ F

Case II: Assume A 6= B.
Can algorithm make an error?

Yes, if α is the root of the polynomial (A−B)x = 0.

Pr(a random element of F is root of (A−B)x) ≤ n/|F |

Question: How to increase the success probability?

Communication Complexity: O(log |F |) bits.
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Polynomials of degree d

Two polynomials P(x) and Q(x) of degree d.
Output: Is P(x) ≡ Q(x)?

Example: Is (2− x)(x− 5)(x2 − 12) = −x4 + 7x3 + 2x2 − 84x+ 120?

Answer: Expand and Check.
Alternatively, evaluate the polynomials at a random point in {1, . . . , 100d}.

For example
x = 20, both of them evaluate to −104760.
x = 29, both of them evaluate to −537192

=⇒ Check whether P(x)−Q(x) = 0?
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Polynomials of degree d

Suppose P(x) 6≡ Q(x).
For Example:
P(x) = 2x4 − 20x3 + 50x2 − 80x+ 21

Q(x) = x4 − 8x3 + x2 − 2x− 19

P(x)−Q(x) = (x− 1)(x− 2)(x− 4)(x− 5) 6= 0

What is the probability that a random element α ∈ {1, . . . , 100d} will satisfy
P(α)−Q(α) = 0?

If the random element α ∈ {1, 2, 4, 5} than P(α)−Q(α) = 0.

Probability of making an error ≤ d
100d

= 4
400

= 0.01

=⇒ Probability of determining that P(x) 6≡ Q(x) ≥ 1− 0.01 = 0.99

How can we improve the probability of success?

7



Decreasing Failure Probability

If P(x) 6≡ Q(x), probability of failure is ≤ d
100d

= 1
100

= 0.01

What if we repeat this experiment with multiple values of α ∈ {1, . . . , 100d}.

How to choose multiple values of α?

Choice 1: With replacement (same value may be chosen multiple times)

Choice 2: Without replacement (all chosen values are distinct)
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With or Without Replacement
Sampling



Decreasing Failure Probability - With Replacement

Consider repeating the experiment k > 0 times with replacement.
If in any of the trials we find that P(α) − Q(α) 6= 0, we report P(x) 6≡ Q(x),
otherwise we report P(x) ≡ Q(x).

Observe:
- If in any of the k trials, we find P(α)−Q(α) 6= 0, then for sure P(x) 6≡ Q(x),
and we answer correctly.

- Suppose, P(x) 6≡ Q(x), but in each of the trials we find that
P(α)−Q(α) = 0

Probability of making error ≤
(

d
100d

)k
=
(

1
100

)k.
For example with k = 2, the probability of error is ≤ 0.012 = 0.0001
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Decreasing Failure Probability - Without Replacement

Consider repeating the experiment k > 0 times without replacement.
If in any of the trials we find that P(α) − Q(α) 6= 0, we report P(x) 6≡ Q(x),
otherwise we report P(x) ≡ Q(x).

Observe:
- If in any of the k trials, we find P(α)−Q(α) 6= 0, then for sure P(x) 6≡ Q(x),
and we answer correctly.

- Suppose, P(x) 6≡ Q(x), but in each of the trials we find that
P(α)−Q(α) = 0

Let us call events E1, . . . , Ek be the k-events where event Ei states that the
random number chosen in the i-th trial is a root of the polynomial
P(x)−Q(x).

Probability of getting a wrong answer is Pr(E1 ∩ E2 ∩ . . . ∩ Ek)
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Decreasing Failure Probability - Without Replacement (contd.)

Recall that Pr(A ∩B) = Pr(A|B) · Pr(B), assuming Pr(B) 6= 0

Pr(E1 ∩ E2 ∩ . . . ∩ Ek)

= Pr(Ek|E1 ∩ E2 ∩ . . . ∩ Ek−1) · Pr(E1 ∩ E2 ∩ . . . ∩ Ek−1)

= Pr(Ek|E1 ∩ E2 ∩ . . . ∩ Ek−1) · Pr(Ek−1|E1 ∩ E2 ∩ . . . ∩ Ek−2) · Pr(E1 ∩
E2 ∩ . . . ∩ Ek−2)

. . .

= Pr(E1) · Pr(E1|E2) · Pr(E3|E1 ∩ E2) · · ·Pr(Ek|E1 ∩ E2 ∩ . . . ∩ Ek−1)

Question: How to bound Pr(Ej |E1 ∩ E2 ∩ . . . ∩ Ej−1)?

We have already chosen j − 1 roots for the events E1, . . . , Ej−1. Only
≤ d− (j − 1) roots are remaining.
Probability of choosing one of the remaining roots (defining the event Ej)
Pr(Ej |E1 ∩ E2 ∩ . . . ∩ Ej−1) ≤ d−(j−1)

100d−(j−1)
< d

100d
= 1

100

Thus, Pr(E1 ∩ E2 ∩ . . . ∩ Ek) ≤
k∏

j=1

d−(j−1)
100d−(j−1)

≤
(

1
100

)k
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Decreasing Failure Probability - Without Replacement (contd.)

For k ≥ 2, Pr(E1 ∩ E2 ∩ . . . ∩ Ek) ≤
k∏

j=1

d−(j−1)
100d−(j−1)

<
(

1
100

)k.

For example, for k = 2 and d = 4, the probability of error is
≤
(

4
400

) (
3

399

)
= 0.000075 < 0.012(= 0.0001)

Ideally we should use without replacement strategy, but
- Analysis is tedious.
- Bit complex to code

In practice, employ with replacement strategy
- Analysis is simpler
- Probability of making an error is still negligible
- Easier to code
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Matrix Product Verification



Verifying Matrix Product

Input: Three n× n real matrices A,B and C.
Output: Is C = AB?

1st Approach: Evaluate AB and compare with C.
- Requires computation of AB
- Time Complexity: O(n3), O(nlog2 7), . . .

2nd Approach: Find almost the right answer

Randomized algorithm for matrix product testing

Step 1: Compute a (uniformly at) random Boolean vector r of
dimension n.

Step 2: Compute A(Br) and Cr

Step3: If A(Br) 6= Cr, report AB 6= C,
Otherwise, report AB = C
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Analysis of Randomized Algorithm

Time Complexity:

Computation of the product of n× n matrix with a vector of size n takes
Θ(n2) time.

Thus,
- Computation of Br takes O(n2) time resulting in a vector of size n
- Computation of A(Br) takes O(n2) time
- Computation of Cr takes O(n2) time
- Testing Cr = A(Br) takes O(n) time.

Total Complexity = O(n2)

Correctness

- If ABr 6= Cr =⇒ AB 6= C.

- But if ABr = Cr, AB may or may not be equal to C.
(algorithm incurs one-sided error)
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Bounding Failure Probability

One-sided error
Let r be a (uniform) random n-dimensional Boolean vector and C 6= AB.
Pr(ABr = Cr) ≤ 1

2

Proof: Let D = C −AB. Since C 6= AB, D 6= 0.
Moreover, since ABr = Cr =⇒ (AB − C)r = 0 =⇒ Dr = 0.
Since D 6= 0, there is an entry, say dij 6= 0.

Since Dr = 0, we have that
n∑

k=1

dikrk = 0.

We can express rj = −

j−1∑
k=1

dikrk+
n∑

k=j+1
dikrk

dij

Since only a specific value of rj satisfies this equation, and we can choose rj
to be either 0 or 1 with equal probability, thus Pr(Dr = 0) ≤ 1

2
.

2

To increase the success probability, we can run the experiment k times.
Error probability ≤

(
1
2

)k
Running Time = O(kn2)
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Schwartz-Zippel Lemma



Multivariate Polynomials

Determine if the multivariate polynomial Q(x1, x2, . . . , xn) ≡ 0?

Example I:

Q(x1, x2, x3, x4) = (x3
1 − x2

2)(−x2
1 − x4

3)(x3
4 − 2x1x2) ≡ 0

Example II:

Det

x1 − x2
2 x3 − x1 x2

4 x4 − x1

−x4
2 x2 − x4 2x3 − 7x1 x2

2 − x2
3

x3
1 x2 − x1 x4 − x3 x3

2

x3
2 x4 − 2x2 x1 − x2

3 x3
1 − x3

2

≡ 0
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Schwartz–Zippel Lemma

Schwartz–Zippel Lemma
Let Q(x1, x2, . . . , xn) 6≡ 0 be a multivariate polynomial of total degree d,
where each xi takes value from a finite field F . Fix any finite set S ⊆ F and
let r1, . . . , rn be chosen uniformly at random from S. Then
Pr(Q(r1, . . . , rn) = 0) ≤ d

|S|

Proof: Technique: Induction on number of variables n.
Base Case: n = 1. Degree d polynomial in a single variable x1 has at most d
distinct roots. Thus Pr(Q(x1 = r1) = 0) ≤ d

|S| , as this polynomial is zero only
if r1 is a root of Q, where r1 is a random element from S.

Assume the induction hypothesis holds for all polynomials of fewer than
n-variables.

Observe that Q(x1, x2, . . . , xn) =
k∑

i=0

xi1Qi(x2, . . . , xn), where k ≤ d is the

highest degree of x1 in Q(x1, x2, . . . , xn). Note that Qk(x2, . . . , xn) 6= 0 and
moreover its degree is d− k < d.
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Schwartz–Zippel Lemma (Proof contd.)

Thus, by setting x2 = r2, . . . , xn = rn, and using I.H on n− 1 variables, we
have Pr(Qk(r2, . . . , rn) = 0) ≤ d−k

|S|

Assume that Qk(r2, . . . , rn) 6= 0 and consider the single variable polynomial
of degree k, Q(x1, r2, . . . , rn). By I.H. Pr(Q(x1 = r1, r2, . . . , rn) = 0) ≤ k

|S| .

Hence,
Pr(Q(r1, r2, . . . , rn) = 0) = Pr(Q(r1, r2, . . . , rn) = 0|Pr(Qk(r2, . . . , rn) =

0)× Pr(Qk(r2, . . . , rn) = 0) + Pr(Q(r1, r2, . . . , rn) = 0|Pr(Qk(r2, . . . , rn) 6=
0)× Pr(Qk(r2, . . . , rn) 6= 0)

Pr(Q(r1, r2, . . . , rn) = 0) ≤ 1× d−k
|S| + k

|S| × 1 = d
|S|

2
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Testing Determinants

Is Det

x1 − x2
2 x3 − x1 x2

4 x4 − x1

−x4
2 x2 − x4 2x3 − 7x1 x2

2 − x2
3

x3
1 x2 − x1 x4 − x3 x3

2

x3
2 x4 − 2x2 x1 − x2

3 x3
1 − x3

2

≡ 0?

Choose a large enough prime number p, and choose random values for
x1, x2, x3, x4 from {0, . . . , p− 1}.

Evaluate the determinant.

Probability of one sided error ≤ d
p

,
where d is the degree of the polynomial.
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Bipartite Matching



Bipartite Matching

Let G = (U ∪ V,E) be a bipartite graph, where |U | = |V | = n.

M ⊆ E is a perfect matching if

1. |M | = n

2. Edges in M are independent, i.e. vertex disjoint.

20



Adjacency Matrix

Define n× n matrix A where,

Aij =

xij , if uivj ∈ E
0, otherwise

x11 x12 0

x21 x22 0

x31 x32 x33

x11 x12 x13

0 x22 0

0 x32 0
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Edmonds Theorem

Edmonds
A bipartite graph G has a perfect matching if and only if det(A) 6= 0.
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Decision Problem

Input: Given a bipartite graph G = (U ∪ V,E), where |U | = |V |

Output: TRUE if G has perfect matching, otherwise FALSE

Randomized Algorithm:

1. Choose a large enough prime number p.

2. For each edge uivj , set xij to be a random value in {0, . . . , p− 1}
uniformly at random.

3. Compute det(A)

4. Return TRUE iff det(A) 6= 0.

23



Analysis

1. Choose a large enough prime number.

2. For each edge uivj , set xij to be a random value in {0, . . . , p− 1}
uniformly at random.

3. Compute det(A)

4. Return TRUE iff det(A) 6= 0.

Case 1: If G has no perfect matching =⇒ det(A) = 0

Case 2: If G has perfect matching =⇒ det(A) 6= 0 (Edmonds)

Degree of determinant polynomial is ≤ n = |U |

Pr(det(A)=0 given that G has a perfect matching) ≤ n/p (Schwartz-Zippel)

Choose p ≈ 1000n,
Probability of success ≥ 1− 1/1000
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Finding a Perfect Matching



How to find a perfect matching

Isolation Lemma (MVV87)
Assume we have set system S on a ground set of n elements. Assign
weights to each element uniformly and at random from {1, 2, . . . , 2n}. The
probability that there is a unique minimum weight set in S is ≥ 1

2

This result is counterintuitive:

- There are ≈ 2n possible subsets on n-elements.

- The weight of any non-empty set X ∈ S is in the range 1 ≤ wt(X) ≤ 2n2.

- We expect almost 2n

2n2 sets for each weight

- Why with probability ≥ 1
2
, minimum weight set is unique?
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Proof of Isolation Lemma

This proof is credited to Joel Spencer - see wikipedia on Isolation Lemma.

For an element v, let Fv be sets in S that contains v and let Fv̄ be sets in S
that do not contain v.

Let α(v) = min
A∈Fv̄

w(A)− min
B∈Fv

w(B − {v}).

Observation: α(v) depends only on weights of all other elements except the
weight of v.

=⇒ Pr(α(v) = w(v)) = 1
2n

Thus, for some element v of ground set Pr(α(v) = w(v)) ≤ 1
2

(by Union
Bound)
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Proof of Isolation Lemma (contd.)

Assume that there are two distinct sets X and Y that have minimum weight in
F . Consider an element v ∈ X \ Y .

Now observe that

α(v) = min
A∈Fv̄

w(A)− min
B∈Fv

w(B − {v})

= w(Y )− w(X − {v})

= w(v)

But this happens with probability at most 1
2
.

Thus with probability ≥ 1
2
, the minimum weight set is unique.

2
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Finding a Perfect Matching

- Let G = (U ∪ V,E) and |E| = m.
- Assume G has a perfect matching.
- For each edge e ∈ E, assign a weight in {1, . . . , 2m} uniformly at random.
- LetM= Set system consisting of all perfect matchings
- Isolation Lemma: ∃M ∈M of unique minimum weight with probability
≥ 1/2.

New Problem
Find (unique) minimum weight perfect matching M in G
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Unique MWPM

Let unique MWPM has a total weight W ≤ 2m2.
For each edge e = (uivj) ∈ E with weight w(e),
set xij = 2w(e) in det(A).

Consider the non-zero terms in the expansion of det(A).

Observation: Only one term is 2W and all other terms are ≥ 2W+1 = 2 ∗ 2W .
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Unique MWPM (contd.)

Note:

det(A)

2k
=


odd, if k = W

even, if k < W

fractional, if k > W

Algorithm:

1. Find k: Guess k and check parity of det(A)

2k

2. For each edge e = (uv), it is in unique MWPM if and only if MWPM in
G \ {u, v} has weight W − w(e).

Note: Computation of det(A), Guess & Check k, and Testing ∀e ∈ E is part of
unique MWPM are parallelizable.
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Matching in General Graphs

Let G = (V,E) be a general graph.

Define

Aij =


+xij , if vivj ∈ E and i<j

−xij , if vivj ∈ E and i>j

0, otherwise

Tutte
G has a perfect matching if and only if det(A) 6= 0.
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