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Matrices



1. A Rectangular Array

2. Operations: Addition; Multiplication; Diagonalization; Transpose; Inverse;
Determinant

3. Row Operations; Linear Equations; Gaussian Elimination

4. Types: Identity; Symmetric; Diagonal; Upper/Lower Traingular;
Orthogonal; Orthonormal

5. Transformations - Eigenvalues and Eigenvectors
6. Rank; Column and Row Space; Null Space

7. Applications: Page Rank, Dimensionality Reduction, Recommender
Systems, ...



Utility Matrix M

A Matrix M where rows represent users, columns items, and entries in M
represents the ratings.

1 1 1 0 0

3 3 3 0 0

4 4 4 0 O
M=1]5 5 5 0 0=

0O 2 0 4 4

0O 0 0 5 5

o 1 0 2 2
13 —.02 .01
41 —.07 .03
.55 —.1 .04 12.5 0 0 .56 .59 .56 .09 .09
.68 —.11 .05 |: 0 9.5 0 :l |:.12 .02 —-.12 .69 .69
.15 .59 —.65 0 0 1.35 .40 =) .40 .09 .09
.07 .73 .67
.07 .29 —-.32

Questions: How to guess missing entries? How to guess ratings for a new
user? ...



Matrix Vector Product

 Matrix-vector product: Az =b

FIoN:

e Az = b as linear combination of columns:

bl = o=l




Matrix-Matrix Product

 Matrix-matrix product A = BC'"

2 4 |4 8
0 4| |6 16

« A = BC as sum of rank 1 matrices:

A

2 0
3 1

o~ o &
J
(]



Row Reduced Echelon Form

2 2 0
letA=12 4 8
10 16 24

1st Pivot: Replace r2 by ro — 1, and r3 by r3 — 5r1:

2 2 0
0 2 8
0 6 24

2nd Pivot: Replace r3 by r3 — 3ra:

S O N
S NN
S o O




RREF contd.

Divide the first row by 2, the second row by 2:

S O =
O = =
S = O

Replace 1 by r1 — 72!



2 2 0 1 0 —4
A=12 4 8| o 1 4|=R
10 16 24 00 0

Definitions:

* Rank = Number of non-zero pivots = 2
« Basis vectors of row space = rows corresponding to non-zero pivots in R
1
v = [ 0 } and vy = [(1)}
—4 4
* Basis vectors of column space = Columns of A corresponding to
non-zero pivots of R.
ulz[g}anduQ:[i]
10 16
+ A as sum of the product of rank 1 matrices

A = urol 4+ upvl = [130] [10 —4}—|—[421} [014]

16




Null space of A = All vectors z such that Az = 0.
This includes the 0 vector [%}

Is there a vector = = (x1, 2, 3) € R?, such that
2 2 0 0

A$:$1[2]+$2[4}+J}3[8i| = [0}
10 16

24 0

x = (1,—1,1/4), or any of its scalar multiples, satisfies Az =0

Dimension of Null Space of A= Number of columns (A) - rank(4)=3 -2 =1



Spaces for A

Let A be m x n matrix with real entries.
Let R be RREF of A consisting of » < min{m, n} non-zero pivots.

1.
2.

rank(A) = r
Column space is a subspace of R™ of dimension r, and its basis vectors
are the columns of A corresponding to the non-zero pivots in R.

. Row space is a subspace of R™ of dimension r, and its basis vectors are

the rows of R corresponding to the non-zero pivots.

. The null-space of A consists of all the vectors = € R" satisfying Az = 0.

They form a subspace of dimension n — r.



Eigenvalues and Eigenvectors



Eigenvalues and Eigenvectors

Given an n x n matrix A.
A non-zero vector v is an eigenvector of A, if Av = \v for some scalar .
A is the eigenvalue corresponding to vector v.

Example

Let A =

2 1
3 4

Observe that

2 1] 1 —5 1 and 2 1 1 1 1
3 4] (3 3 3 4| |-1 —1
Thus, A1 =5 and A2 = 1 are the eigenvalues of A.

Corresponding eigenvectors are v; = [1,3] and v2 = [1, —1], as Avi = A\jv;
and Avg = \ava.




Matrices with distinct eigenvalues

Propertry
Let A be an n x n real matrix with n distinct eigenvalues.
The corresponding eigenvectors are linearly independent.

Proof: Proof by contradiction. Let \1,..., A\, be the eigenvalues and
v1, ..., vy, the corresponding eigenvectors, that are linearly dependent.

Assume vy, ...,v,—1 are L.I. (otherwise work with a smaller set).

Dependence — aivi + ...+ @n—1Vn—1 + anv, = 0, where «,, # 0.

—an_1

X
Sy ..+ 2=y,

@ Qg

= v, =

MU|tIp|y by A Avy = MUy = =2\ + ...+ %;‘1)\”,1@”,1

Qan

Multiply by Az Apvn = =22\, 01 + ... + %ﬁ:l)\nvn_l

Qn

Subtract last two equations:
0= _(;:11 (An - )\l)vl I ooo T M(>\n - Anfl)v’nfl

(10)

Since, A\, — \; # 0, = the vectors v, ..., v,_1 arre linearly dependent.
A contradiction.



Matrices with distinct eigenvalues

Let A be an n x n real matrix with n distinct eigenvalues.

Let \1,..., A\, be the distinct eigenvalues and let z1, . .., z,, be the
corresponding eigenvectors, respectively. Let each x; = [zi1, Zi2, . . ., Tin].
11 21 000 Inl

Define an eigenvector matrix X =

Tin Ton 000 Tnn
A1 0 0 0
0 X O 0
Define a diagonal n x n matrix A .
0 0 0 A

Consider the matrix product AX,

AX =A a8l Tn| — )\1331 An,xn = XA



Matrices with distinct eigenvalues

Since eigenvectors are linearly independent, we know that X ! exists.

Multiply by X ~* on both the sides from left in AX = XA and we obtain
XTTAX = XT'XA=A (1)
and when we multiply on the right we obtain
AXX'=A=XAX"! ()

An Application of Diagonalization A = XAX !

Consider A? = (XAX 1)(XAX ') = XAX 'X)AX ' = XA2X !

— A2 has the same set of eigenvectors as A, but eigenvalues are
squared.

Similarly, A¥ = XAFX 1.

Eigenvectors of A* are same as that of A and its eigenvalues are raised to
the power of k.



Symmetric Matrices



Symmetric Matrices

Example

Consider symmetric matrix S = [$ 1].

Its eigenvalues are A1 = 4 and A\, = 2 and the corresponding eigenvectors
are q1 = (1/v2,1/v/2) and ¢2 = (1/v/2, —1//2), respectively.

Note that eigenvalues are real and the eigenvectors are orthonormal.

s |3 1| = 1/v/2 1/V/2 | |4 0] [1/v/2 1/V2
o3 |/v2 o —1Vv2Zl |0 2| [1/v2 —1/V2

Eigenvalues of Symmetric Matrices
All the eigenvalues of a real symmetric matrix S are real. Moreover, all
components of the eigenvectors of a real symmetric matrix S are real.



Symmetric Matrices (contd.)

Property
Any pair of eigenvectors of a real symmetric matrix S corresponding to two
different eigenvalues are orthogonal.

Proof: Let g1 and ¢2 be eigenvectors corresponding to A1 # A2, respectively.
We have Sq1 = A\iq1 and qu = A\2qo2.
Now (Sq1)T = ¢f 8™ = ¢S = \i¢f, as S is symmetric,
Multiply by ¢- on the right and we obtain A1¢f ¢2 = ¢F Sq2 = ¢F Maqo.
Since A1 # X2 and M\i¢f g2 = ¢ A2ge, this implies that ¢7 ¢2 = 0 and thus the
eigenvectors ¢; and ¢» are orthogonal.

O



Symmetric Matrices (contd.)

Symmetric matrices with distinct eigenvalues

Let S be a n x n symmetric matrix with n distinct eigenvalues and let
qi,---,qn be the corresponding orthonormal eigenvectors. Let @ be the
n X n matrix consiting of ¢1, . . ., ¢, as its columns. Then

S =QAQ™" = QAQ".

Furthermore, S = A1qig + Xoq2gd + - 4+ Angnql

An Example:
s 31 _ 1/v2 1/v2 | |4 o |1/vV2 1/V2
o3 (12 =12 |0 2| [1/v2 —1/V2
i vt s




Summary for Symmetric Matrices

Theorem
For a real symmetric n x n matrix S, we have
1. All eigenvalues of S are real.

2. S can be expressed as S = QAQ™, where Q consists of orthonormal
basis of R"™ formed by n eigenvectors of S, and A is a diagonal matrix
consisting of n eigenvalues of S.

3. S can be expressed as the sum of the product of rank 1 matrices:

S=Xqiqi + ...+ Mgnqp



Inverse of Symmetric Matrices

Claim
S =QAQT and S = %qlqlT + ...+ %ﬂqnqz

Proof Sketch: S = QAQ” = A1qigf + ... + Angngl

887 = (Mqgf + -+ M@)o gl + o+ o @ngn) =185 q1,. - 00
are orthonormal.
|

20



Positive Definite Matrices

Positive Definite Matrices
A symmetric matrix S is positive definite if all its eigenvalues > 0.
It is positive semi-definite if all the eigenvalues are > 0.

An Alternate Characterization
Let S be a n x n real symmetric matrix. For all non-zero vectors = € R", if
zT Sz > 0 holds, then all the eigenvalues of S are > 0.

Proof: Let \; be an eigenvalue of S.

Let the corresponding unit eigenvector is g;.
Note that ¢f ¢; = 1.

Since S is symmetric, we know that \; is real.
Now we have, \i = \iq! ¢ = ¢F \iqi = ¢F Sqi.
But ¢ S¢; > 0, hence \; > 0.

21
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Diagonalization Summary

Square Matrices:
A be an n x n matrix with distinct eigenvalues.
X, xn = Matrix of eigenvectors of A

AX = XA A=XAX"1, A=X"TAX

Symmetric Matrices:
S be an n x n symmetric matrix with distinct eigenvalues.
Qnxn= Matrix of n-orthonormal eigenvectors of S

S = QAQT

What if A is a rectangular matrix of dimensions m x n?

22



SVD of Rectangular Matrices

Let A be a m x n matrix of rank r with real entries.

We can find orthonormal vectors in R™ such that their product with A results
in a scaled copy of orthonormal vectors in R™.

Formally, we can find

. Orthonormal vectors vy, ...,v, € R"

. Orthonormal vectors u1, ..., u, € R™

1
2
3. Real numbers o1,...,0, € R
4. Fori=1,...,r: Av, = o;u;
5

AV =U%, e,

Alor v =lm o w] )

Or

23



An Example: AV =UX

1 5 58 .39
31 .
03 .60 —.8 s 50 78 0
1 4 = .48 .28
.8 .6 0 5.7
4 0 30 —.56
5 1 48 —.59

Alternatively, A = USVT

1 5 58 .39

0 3 31 .30

1 4| = |.48 .28 {7(')8 507} {'62 2]
4 0 30 —.56 '

5 1 48 —.59

Play around with the SVD command in Wolfram Alpha for some matrices.

24



Matrix AT A

Symmetric and Positive semi-definite

Let A be m x n matrix, where m > n. The matrix A” A is symmetric and
positive semi-definite

Proof:
Symmetric: (ATA)T = AT(AT)T = AT A

Positive semi-definite: Take any non-zero vector x € R™
2T (AT A)x = (2T AT (Azx) = (Az)T (Az) = ||Az|]* > 0

25



Matrix A7 A (contd.)

AT A'is a symmetric matrix of dimension n x n. Eigenvalues of AT A are
non-negative and the corresponding eigenvectors are orthonormal.

Let \; > ... > \, be eigenvalues of AT A and let vy, ..., v, be the
corresponding eigenvectors.

ATAUi = \iv; & U?ATA’UZ‘ =X
Define o; = ||A’U1|| — 01'2 = HA’UZH2 = ’U,L-TATA’U»L' = )\1

Hence, o; = ||Avi|| = VA
Consider two cases:
Full Rank: Rank of AT A is n.

Low Rank: Rank of AT A is r < n.

26



Matrix AT A is Full Rank

Assume, o1 > ... >0, >0
(= Aand AT A has rank n)

Define vectors u1,...,un, € R™ as u; = Av;/o;

Orthonormal

The set of vectors u; = Av; /oy, fori =1,...,n, are orthonormal.
Proof: HLLIH = ||AU1||/O'Z = 0'7;/0'2' =1

Consider the dot product of any two vectors u; and w;:
uuy = (Avi /o)) (Av;jo;) = ——v] AT Av; =

0;0;

1 Ty o o i
oi0; Vi Ajvj =

o0

vviTv,,- =1
J N

O

27



Matrix AT A is Low Rank

Suppose m > n, but rank(A) =r < n.

Eigenvalues of A" A
The n — r eigenvalues of A” A are equal to 0.

Proof: Consider a basis of the null space of A.
Letzi,...,z,_, be a basis of the null space of A.

This implies that Az; =0forj=1,...,n—r.

Now, AT Az; = 0 = Oz;.

Thus, 0 is an eigenvalue of A” A corresponding to each z;’s.
Thus n — r eigenvalues of A” A are equal to 0

28



Handling low rank (contd.)

Consider eigenvalues and eigenvectors of A7 A
Let\i>...> X . >0and N\, p1=...= X, =0

Let v1,..., v, be the orthonormal vectors corresponding to A1, ..., Ar

Fori=1,...,r, define o; = [|Av|| = V\i

Note thato; > ...0,. >0

Fori=1,...,r, define u; = L Av;

SVD for A

Vectors u, ..., u, are orthonormal and Av; = o;u;.

29



SVD of A

Summary
For a matrix A of dimension m x n, where m > n, we have

1. AT A is a symmetric positive semidefinite square matrix of dimension
n X n.

2. Rank of Aisn: A\ > ... >\, > 0 are eigenvalues of AT A and

v1,. .., U, the corresponding orthonormal eigenvectors. The vectors
u; = Av; /oy, fori =1,...,n, are orthonormal, where o; = V/\;.

3. Rankof Aisr <n: )\ >...> )\, > 0 are non-zero eigenvalues of A7 A
and vy, ..., v, the corresponding orthonormal eigenvectors. The vectors
u; = Av; /oy, fori =1,...,r, are orthonormal, where o; = v/A;.

4. AV =UYX, where V is n x r matrix consisting of orthonormal
eigenvectors of AT A corresponding to non-zero eigenvalues of AT A, U
is m x r matrix of orthonormal vectors given by u; = Av;/o; for non-zero
oi, and X is r x r diagonal matrix.

5. AVVT = A=UxzVT

30



Matrices AT A and AAT

We have A = UZV7T.
ATA = UzvDHT(UzvT) = (veuT)(uxvT) = vesuTo)xvT = ve2vT

Matrix A7 A
AT A is square symmetric matrix and it is expressed in the diagonalized
form ATA = V22V7T. Thus, o?’s are its eigenvalues and V is its

eigenvectors matrix.

Similarly, consider AA” and we obtain that
AAT = (UsvT)(UuxvhT = uxvTveuT = ux?uT.

Matrix AAT
AAT is square symmetric matrix and it is expressed in the diagonalized
form AAT = UX2UT. Thus U is the eigenvector matrix for the symmetric

matrix AAT with the same eigenvalues as AT A.

31



Singular Value Decomposition

- Let A be a m x n matrix of real numbers of rank r
- Amxn = Umxv*zv*xr r7;<na Where
U is a orthonormal m x r matrix

V' is a orthonormal n. x r matrix
> is an r x r diagonal matrix and its (¢,4)-th entry is o; fori = 1,...,r

- Note that oy > 02 > ...0, > 0 and o; = /\; Where \; are the eigenvalues
of AT A

- The set of orthonormal vectors v1, ..., v, and ui, ..., u, are eigenvectors of
AT A and AAT, respectively. The vectors v’s and u’s satisfy the equation
A'U¢ :aiui,fori: 1,...,T

- Alternatively, we can express A as the sum of the product of rank 1 matrices

r m 7y T
A=3%_j0uv; =0o1uivy + ...+ orurv,

32
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An Application

Let A, «n be the Utility Matrix, where m = 108 users and n = 10° items.
SVDof A =UxVT
Let r of o}s are > 0

Letoy >...>0,>0

s
A can be expressed as A = Y ouv] = orurv! + ...+ orupvt
=1

Total space required to store A is r(m + n + 1). If rank of A is small, it is
better to store u1,...,u,,v1,...,v,,01,...,0., rather than whole of A.

33



Low Rank Approximation

Energy of A is given by £ = zrj o?

i=1

J
Define & = 0.99&, and let j < r be the maximum index such that > o7 < &’
1=1

j
Approximate A by > ojuv]

i=1

How many cells we need to store in this representation?

1. First j columns of U,
2. j diagonal entries of X, and
3. jrowsof VT,

Total Space = ;2 + j(m + n) cells

34



Low Rank Approximation (contd.)

For our example, dimension of A, are m = 10% users and n = 10° items.

If 7 = 20, then we need to store
3% 4 j(m +n) = 20% 4+ 20 x (10® + 10°) ~ 5,005, 000 cells

This number is only .02% of 10**

35



Low Rank Approximations

Let SVD of A be
1@ 2/V30 —1/V5 | r /6o 2/\VE 1)V
A= (48] - i | D) (2]

In terms of Rank 1 Components:

2/V/30 T [-1/v8 51T
A=6 |1/v30 [2/@] [zﬁ] [71/ !’]
|:5/\/% /B /0 28

Energy of A: £(A) =6 +12=7
Possible 2-Energy approximation of A is given by

2/v/30 T
A=~ +6|1/v30 [f/g]
5/+/30 /

36



Interpreting U, >, and V'

Utility Matrix M as SVD M = UXV7T

1 1 1 0] 07
3 3 3 0 0
4 4 4 o0 o0
M=|5 5 5 0 0=
0 2 0 4 4
0o 0o 0o 5 5
o 1 o 2 2]
13 —.02 .01
41 —.07 .03
55 —.1 04 | [12.5 0 0 .56 .59 56 .09 .09
.68  —.11 .05 0 9.5 0 —.12 .02 —.12 .69 .69
.15 .59 —.65 0 0 1.35] | .40 —.8 .40 .09 .09
.07 .73 .67
.07 .29 —.32

1. 3 concepts (= rank)

2. U maps users to concepts

3. V maps items to concepts

4. 3 gives strength of each concept

37



Rank-2 Approximation

13 —.02]
41 —.07
b5 =11
125 0 b6 b9 .56 .09 .09
08 =11 |: 0 9.5:| |:.12 02 —12 .69 .69:|
A5 .59
.07 .73
.07 .29 |
% Loss in Energy = 12524:93% <1%

38



Mapping Users to Concept Space

Consider the utility matrix M and its SVD.

11 1 0 o0 13 —.02
3 3 3 0 0 41 —.07
444000 o5 = {12 5 0 ] { .56 59 .56 .09 .09
M=|5 5 5 0 o0|~]|.68 —.11
0 2 o 4 a e o 9.5/ |—.12 .02 —.12 .69 .69
o 0 0 5 5 .07 73
0 1 0 2 2 .07 29

MYV gives mapping of each user in concept space:

111 0 0 [1.71  —.22]
3 3 3 0 0| [56 —.12 513 —.66
4 4 4 0 0| |59 .02 6.84 —.88
5 5 5 0 0f[.56 —.12| = (855 —1.1
0 2 0 4 4| .09 .69 1.9 5.56
0 0 0 5 5|09 .69 9 6.9
0 1 0 2 2 | .96 2.78 |

39



Mapping Users to Iltems

Suppose we want to recommend items to a new user g with the following row
in the utility matrix [4 0 0 0 O]

1. Map ¢ to concept space:

56 —.12
59 .02

qV:[S 00 0 0] 56 —.12 :[1.68 —.36]
09 .69
09 .69

2. Map the vector ¢V to the Iltems space by multiplying by V7 as vector V/
captures the connection between items and concepts.

b6 .59 .56 .09 .09
1. —. =
{ 08 36] {—.12 .02 —.12 .69 .69]

{.98 98 98 —.1 7.1}

40



Mapping Users to ltems (Contd.)

Suppose we want to recommend items to user ¢’ with the following row in the
utility matrix [0 0 0 4 0]

56 —.12
59 .02

1.q’V:[0 00 4 o] 56 —.12 :[.36 2.76]
09 .69
09 .69

2. Map ¢'V to the Items space by multiplying by V7

56 59 56 .09 .09
[.36 2.76] =
12 02 —12 69 .69

[—.12 26 —.12 193 1.93}

41



Mapping Users to ltems (Contd.)

Suppose we want to recommend items to user ¢” with the following row in the
utility matrix [0 0 4 4 0]

56 —.12
59 .02

1.q”V:[0 0 4 4 0} 56 —.12 :[2.6 2.28]
09 .69
09 .69

2. Map ¢"V to the ltems space by multiplying by V7
56 .59 .56 .09 09|
—12 .02 —.12 .69 .69|

[1.18 157 1.18 1.8 1.8}

{2.6 2.28]
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Interpreting U, >, and V'

Utility Matrix M as SVD M = UXV7T

1 1 1 0] 0
& 3 3 0 0
4 4 4 0] 0
M = |5 5 5 0 o =
0 2 0 4 4
0] 0 0 5 5
0 1 0 2 2
13 —.02 01
41 —.07 03
.55 —.1 .04 12.5 0 0 .56 .59 .56 .09 .09
68 —.11 05 0 9.5 0 —.12 .02 —.12 .69 .69
15 .59 —.65 0 0 1.35 .40 —.8 .40 .09 .09
o7 .73 67
07 .29 —.32
Issues:

1. Utility matrix M is sparse, but U and V" are dense
2. Total size = r(n +m) + r?

3. Interpretation of entries of U and V' is unclear
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A Possiblity

Can we express M ~ CUR, where

1. C consists of some columns of M

2. 'R consists of some rows of M

3. U is not that big

4. Square of Frobenius Norm = >>(M;; — (CUR);;)? is small

ij

44



CUR Method

Let M be m x n and let A = > MTi, j]*

ij

1. For each column j, compute p; = + >~ M[i, j]*
=1

2. Pick a columns of M based on their probabilities (with replacement). Let
C be the multi-set of picked columns.
Mx,5]

3. For each element of selected columns j € C, scale its value to e
J

4. Repeat above steps for all the rows and let R be the multi-set of «
picked and scaled rows.

5. Let W be the a@ x a matrix whose entries are from M that are common
toCand R

6. Construct SVD of W = XXY 7. Construct ©*, where each non-zero
element z of X is replaced by 1/x

7. Compute U = Y (27)2X 7
8. Report CUR as approximation of M

45



An Example

4 1 1 0
4 0 0 1

M=1|0 0 5 5 S M2 =171
015 5 K
01 5 3

Column | ¢y Cy C3 Cy
> M 32 3 76 60

Row Ry R: Rs Rs Rs
ST M 18 17 50 51 35
j

For Rank 1 Approximation: Select C; and R4 and scale them to obtain:

03:\/761/7171[1 05 5 5]T:[1.5 0 76 7.6 7.6}T

R4:\/511/7171[0 1 5 5]:[0 1.85 9.3 9.3]

W =5 and SVD W = [1][5][1] and U = [1][1/25][1]

46



An Example (contd.)

We have M = CUR as

15 0 11 59 .59
0 0 0 0 0
M~ 76| [£][0 185 93 93]=|0 56 28 2828
7.6 0 .56 2.8 2.8238
7.6 0 .56 2.8 2828

Try Rank 2 approximation: Possibly select Columns Cs, Cx and Rows Rs, R4
and compute scaled columns, rows, matrices W, U and CUR

47



1. In case a row/column is picked 3 > 1 times, we take only one of its copy
in R /C and scale the corresponding entries by a factor of /3

2. = W may not be square, but we know how to compute SVDs for
rectangular matrices.

3. Columns in C and rows in R are from M
4. In CUR decomposition, U (of dimension at most o x «) may be dense.

5. Total Space = «a(n + m) + o? (likely to be much less due to the sparsity
of M)
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Performance Guarantee

Quality Estimate

Let M;, be the best rank k-approximation of M.

Choose a = £logk,

The resulting CUR decomposition satisfies the following:

Frobenius Norm of M and CUR is at most (2 + ¢) times the Frobenius
Norm of M and My, i.e. ||[M —CUR||r < (2+€)||M — M||r

Remarks:

1. There are recent works that show that o = k/e suffices
2. Approximation is by a factor of 1 + ¢

3. Running time is faster than that of computing SVDs

4. Randomized Linear Algebra - a new field in TCS
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