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Matrices

1. A Rectangular Array

2. Operations: Addition; Multiplication; Diagonalization; Transpose; Inverse;
Determinant

3. Row Operations; Linear Equations; Gaussian Elimination

4. Types: Identity; Symmetric; Diagonal; Upper/Lower Traingular;
Orthogonal; Orthonormal

5. Transformations - Eigenvalues and Eigenvectors

6. Rank; Column and Row Space; Null Space

7. Applications: Page Rank, Dimensionality Reduction, Recommender
Systems, . . .
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Utility Matrix M

A Matrix M where rows represent users, columns items, and entries in M
represents the ratings.

M =



1 1 1 0 0

3 3 3 0 0

4 4 4 0 0

5 5 5 0 0

0 2 0 4 4

0 0 0 5 5

0 1 0 2 2


=



.13 −.02 .01

.41 −.07 .03

.55 −.1 .04

.68 −.11 .05

.15 .59 −.65

.07 .73 .67

.07 .29 −.32


12.5 0 0

0 9.5 0

0 0 1.35

 .56 .59 .56 .09 .09

−.12 .02 −.12 .69 .69

.40 −.8 .40 .09 .09



Questions: How to guess missing entries? How to guess ratings for a new
user? . . .
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Matrix Vector Product

• Matrix-vector product: Ax = b[
2 1

3 4

] [
4

−2

]
=

[
6

4

]

• Ax = b as linear combination of columns:

[
2 1

3 4

][
4

−2

]
= 4

[
2

3

]
− 2

[
1

4

]

=

[
8

12

][
−2

−8

]

=

[
6

4

]
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Matrix-Matrix Product

• Matrix-matrix product A = BC:[
2 0

3 1

] [
2 4

0 4

]
=

[
4 8

6 16

]

• A = BC as sum of rank 1 matrices:

[
2 0

3 1

][
2 4

0 4

]
=

[
2

3

] [
2 4

]
+

[
0

1

] [
0 4

]
=

[
4 8

6 12

]
+

[
0 0

0 4

]

=

[
4 8

6 16

]
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Row Reduced Echelon Form

Let A =

 2 2 0

2 4 8

10 16 24


1st Pivot: Replace r2 by r2 − r1, and r3 by r3 − 5r1:2 2 0

0 2 8

0 6 24


2nd Pivot: Replace r3 by r3 − 3r2:2 2 0

0 2 8

0 0 0


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RREF contd.

Divide the first row by 2, the second row by 2:1 1 0

0 1 4

0 0 0


Replace r1 by r1 − r2:

R =

1 0 −4

0 1 4

0 0 0


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Rank

A =

 2 2 0

2 4 8

10 16 24

 RREF−−−→

1 0 −4

0 1 4

0 0 0

 = R

Definitions:

• Rank = Number of non-zero pivots = 2

• Basis vectors of row space = rows corresponding to non-zero pivots in R
v1 =

[
1
0
−4

]
and v2 =

[
0
1
4

]
• Basis vectors of column space = Columns of A corresponding to

non-zero pivots of R.

u1 =
[

2
2
10

]
and u2 =

[
2
4
16

]
• A as sum of the product of rank 1 matrices

A = u1v
T
1 + u2v

T
2 =

[
2
2
10

]
[ 1 0 −4 ] +

[
2
4
16

]
[ 0 1 4 ]
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Null Space

Null space of A = All vectors x such that Ax = 0.
This includes the 0 vector

[
0
0
0

]
Is there a vector x = (x1, x2, x3) ∈ R3, such that
Ax = x1

[
2
2
10

]
+ x2

[
2
4
16

]
+ x3

[
0
8
24

]
=
[

0
0
0

]
x = (1,−1, 1/4), or any of its scalar multiples, satisfies Ax = 0

Dimension of Null Space of A= Number of columns (A) - rank(A)= 3− 2 = 1
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Spaces for A

Let A be m× n matrix with real entries.
Let R be RREF of A consisting of r ≤ min{m,n} non-zero pivots.

1. rank(A) = r

2. Column space is a subspace of Rm of dimension r, and its basis vectors
are the columns of A corresponding to the non-zero pivots in R.

3. Row space is a subspace of Rn of dimension r, and its basis vectors are
the rows of R corresponding to the non-zero pivots.

4. The null-space of A consists of all the vectors x ∈ Rn satisfying Ax = 0.
They form a subspace of dimension n− r.
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Eigenvalues and Eigenvectors

Given an n× n matrix A.
A non-zero vector v is an eigenvector of A, if Av = λv for some scalar λ.
λ is the eigenvalue corresponding to vector v.

Example

Let A =

[
2 1

3 4

]

Observe that

[
2 1

3 4

][
1

3

]
= 5

[
1

3

]
and

[
2 1

3 4

][
1

−1

]
= 1

[
1

−1

]

Thus, λ1 = 5 and λ2 = 1 are the eigenvalues of A.
Corresponding eigenvectors are v1 = [1, 3] and v2 = [1,−1], as Av1 = λ1v1

and Av2 = λ2v2.
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Matrices with distinct eigenvalues

Propertry
Let A be an n× n real matrix with n distinct eigenvalues.
The corresponding eigenvectors are linearly independent.

Proof: Proof by contradiction. Let λ1, . . . , λn be the eigenvalues and
v1, . . . , vn the corresponding eigenvectors, that are linearly dependent.

Assume v1, . . . , vn−1 are L.I. (otherwise work with a smaller set).

Dependence =⇒ α1v1 + . . .+ αn−1vn−1 + αnvn = 0, where αn 6= 0.

=⇒ vn = −α1
αn

v1 + . . .+
−αn−1

αn
vn−1

Multiply by A: Avn = λnvn = −α1
αn

λ1v1 + . . .+
−αn−1

αn
λn−1vn−1

Multiply by λn: λnvn = −α1
αn

λnv1 + . . .+
−αn−1

αn
λnvn−1

Subtract last two equations:
0 = −α1

αn
(λn − λ1)v1 + . . .+

−αn−1

αn
(λn − λn−1)vn−1

Since, λn − λi 6= 0, =⇒ the vectors v1, . . . , vn−1 arre linearly dependent.
A contradiction.
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Matrices with distinct eigenvalues

Let A be an n× n real matrix with n distinct eigenvalues.
Let λ1, . . . , λn be the distinct eigenvalues and let x1, . . . , xn be the
corresponding eigenvectors, respectively. Let each xi = [xi1, xi2, . . . , xin].

Define an eigenvector matrix X =


x11 x21 . . . xn1

...
...

...
...

x1n x2n . . . xnn



Define a diagonal n× n matrix Λ


λ1 0 0 . . . 0

0 λ2 0 . . . 0
...

...
...

...
...

0 0 . . . 0 λn


Consider the matrix product AX,

AX = A

x1 . . . xn

 =

λ1x1 . . . λnxn

 = XΛ
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Matrices with distinct eigenvalues

Since eigenvectors are linearly independent, we know that X−1 exists.

Multiply by X−1 on both the sides from left in AX = XΛ and we obtain

X−1AX = X−1XΛ = Λ (1)

and when we multiply on the right we obtain

AXX−1 = A = XΛX−1 (2)

An Application of Diagonalization A = XΛX−1

Consider A2 = (XΛX−1)(XΛX−1) = XΛ(X−1X)ΛX−1 = XΛ2X−1

=⇒ A2 has the same set of eigenvectors as A, but eigenvalues are
squared.

Similarly, Ak = XΛkX−1.
Eigenvectors of Ak are same as that of A and its eigenvalues are raised to
the power of k.
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Symmetric Matrices

Example
Consider symmetric matrix S = [ 3 1

1 3 ].
Its eigenvalues are λ1 = 4 and λ2 = 2 and the corresponding eigenvectors
are q1 = (1/

√
2, 1/
√

2) and q2 = (1/
√

2,−1/
√

2), respectively.
Note that eigenvalues are real and the eigenvectors are orthonormal.

S =

[
3 1

1 3

]
=

[
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

][
4 0

0 2

][
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

]

Eigenvalues of Symmetric Matrices
All the eigenvalues of a real symmetric matrix S are real. Moreover, all
components of the eigenvectors of a real symmetric matrix S are real.
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Symmetric Matrices (contd.)

Property
Any pair of eigenvectors of a real symmetric matrix S corresponding to two
different eigenvalues are orthogonal.

Proof: Let q1 and q2 be eigenvectors corresponding to λ1 6= λ2, respectively.
We have Sq1 = λ1q1 and Sq2 = λ2q2.
Now (Sq1)T = qT1 S

T = qT1 S = λ1q
T
1 , as S is symmetric,

Multiply by q2 on the right and we obtain λ1q
T
1 q2 = qT1 Sq2 = qT1 λ2q2.

Since λ1 6= λ2 and λ1q
T
1 q2 = qT1 λ2q2, this implies that qT1 q2 = 0 and thus the

eigenvectors q1 and q2 are orthogonal.
2
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Symmetric Matrices (contd.)

Symmetric matrices with distinct eigenvalues
Let S be a n× n symmetric matrix with n distinct eigenvalues and let
q1, . . . , qn be the corresponding orthonormal eigenvectors. Let Q be the
n× n matrix consiting of q1, . . . , qn as its columns. Then
S = QΛQ−1 = QΛQT .
Furthermore, S = λ1q1q

T
1 + λ2q2q

T
2 + · · ·+ λnqnq

T
n

An Example:

S =

[
3 1

1 3

]
=

[
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

][
4 0

0 2

][
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

]

= 4

[
1/
√

2

1/
√

2

] [
1/
√

2 1/
√

2
]

+ 2

[
1/
√

2

−1/
√

2

] [
1/
√

2 −1/
√

2
]
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Summary for Symmetric Matrices

Theorem
For a real symmetric n× n matrix S, we have

1. All eigenvalues of S are real.

2. S can be expressed as S = QΛQT , where Q consists of orthonormal
basis of Rn formed by n eigenvectors of S, and Λ is a diagonal matrix
consisting of n eigenvalues of S.

3. S can be expressed as the sum of the product of rank 1 matrices:

S = λ1q1q
T
1 + . . .+ λnqnq

T
n
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Inverse of Symmetric Matrices

Claim

S = QΛQT and S−1 = 1
λ1
q1q

T
1 + . . .+ 1

λn
qnq

T
n

Proof Sketch: S = QΛQT = λ1q1q
T
1 + . . .+ λnqnq

T
n

SS−1 = (λ1q1q
T
1 + . . .+ λnqnq

T
n )( 1

λ1
q1q

T
1 + . . .+ 1

λn
qnq

T
n ) = I as q1, . . . , qn

are orthonormal.
2
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Positive Definite Matrices

Positive Definite Matrices
A symmetric matrix S is positive definite if all its eigenvalues > 0.
It is positive semi-definite if all the eigenvalues are ≥ 0.

An Alternate Characterization
Let S be a n× n real symmetric matrix. For all non-zero vectors x ∈ Rn, if
xTSx > 0 holds, then all the eigenvalues of S are > 0.

Proof: Let λi be an eigenvalue of S.
Let the corresponding unit eigenvector is qi.
Note that qTi qi = 1.
Since S is symmetric, we know that λi is real.
Now we have, λi = λiq

T
i qi = qTi λiqi = qTi Sqi.

But qTi Sqi > 0, hence λi > 0.
2

21



Singular Value Decomposition



Diagonalization Summary

Square Matrices:
A be an n× n matrix with distinct eigenvalues.
Xn×n = Matrix of eigenvectors of A

AX = XΛ, A = XΛX−1, Λ = X−1ΛX

Symmetric Matrices:
S be an n× n symmetric matrix with distinct eigenvalues.
Qn×n= Matrix of n-orthonormal eigenvectors of S

S = QΛQT

What if A is a rectangular matrix of dimensions m× n?
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SVD of Rectangular Matrices

Let A be a m× n matrix of rank r with real entries.

We can find orthonormal vectors in Rn such that their product with A results
in a scaled copy of orthonormal vectors in Rm.

Formally, we can find

1. Orthonormal vectors v1, . . . , vr ∈ Rn

2. Orthonormal vectors u1, . . . , ur ∈ Rm

3. Real numbers σ1, . . . , σr ∈ R

4. For i = 1, . . . , r: Avi = σiui

5. AV = UΣ, i.e.,

A
[
v1 . . . vr

]
=
[
u1 . . . ur

]
σ1

.

.

σr


6. A = UΣV T
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Example

An Example: AV = UΣ
1 5

0 3

1 4

4 0

5 1


[
.60 −.8
.8 .6

]
=


.58 .39

.31 .30

.48 .28

.30 −.56

.48 −.59


[

7.8 0

0 5.7

]

Alternatively, A = UΣV T
1 5

0 3

1 4

4 0

5 1

 =


.58 .39

.31 .30

.48 .28

.30 −.56

.48 −.59


[

7.8 0

0 5.7

][
.60 .8

−.8 .6

]

Play around with the SVD command in Wolfram Alpha for some matrices.
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Matrix ATA

Symmetric and Positive semi-definite

Let A be m× n matrix, where m ≥ n. The matrix ATA is symmetric and
positive semi-definite

Proof:
Symmetric: (ATA)T = AT (AT )T = ATA

Positive semi-definite: Take any non-zero vector x ∈ Rn

xT (ATA)x = (xTAT )(Ax) = (Ax)T (Ax) = ||Ax||2 ≥ 0

2
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Matrix ATA (contd.)

ATA is a symmetric matrix of dimension n× n. Eigenvalues of ATA are
non-negative and the corresponding eigenvectors are orthonormal.

Let λ1 ≥ . . . ≥ λn be eigenvalues of ATA and let v1, . . . , vn be the
corresponding eigenvectors.

ATAvi = λivi ⇔ vTi A
TAvi = λi

Define σi = ||Avi|| =⇒ σ2
i = ||Avi||2 = vTi A

TAvi = λi

Hence, σi = ||Avi|| =
√
λi

Consider two cases:

Full Rank: Rank of ATA is n.

Low Rank: Rank of ATA is r < n.
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Matrix ATA is Full Rank

Assume, σ1 ≥ . . . ≥ σn > 0

( =⇒ A and ATA has rank n)

Define vectors u1, . . . , un ∈ Rm as ui = Avi/σi

Orthonormal
The set of vectors ui = Avi/σi, for i = 1, . . . , n, are orthonormal.

Proof: ||ui|| = ||Avi||/σi = σi/σi = 1

Consider the dot product of any two vectors ui and uj :
uTi uj = (Avi/σi)

T (Avj/σj) = 1
σiσj

vTi A
TAvj = 1

σiσj
vTi λjvj =

λj

σiσj
vTi vj = 0

2

27



Matrix ATA is Low Rank

Suppose m ≥ n, but rank(A) = r < n.

Eigenvalues of ATA

The n− r eigenvalues of ATA are equal to 0.

Proof: Consider a basis of the null space of A.
Let x1, . . . , xn−r be a basis of the null space of A.
This implies that Axj = 0 for j = 1, . . . , n− r.
Now, ATAxj = 0 = 0xj .
Thus, 0 is an eigenvalue of ATA corresponding to each xi’s.
Thus n− r eigenvalues of ATA are equal to 0

2
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Handling low rank (contd.)

Consider eigenvalues and eigenvectors of ATA
Let λ1 ≥ . . . ≥ λr > 0 and λr+1 = . . . = λn = 0

Let v1, . . . , vr be the orthonormal vectors corresponding to λ1, . . . , λr

For i = 1, . . . , r, define σi = ||Avi|| =
√
λi

Note that σ1 ≥ . . . σr > 0

For i = 1, . . . , r, define ui = 1
σi
Avi

SVD for A
Vectors u1, . . . , ur are orthonormal and Avi = σiui.
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SVD of A

Summary
For a matrix A of dimension m× n, where m ≥ n, we have

1. ATA is a symmetric positive semidefinite square matrix of dimension
n× n.

2. Rank of A is n: λ1 ≥ . . . ≥ λn > 0 are eigenvalues of ATA and
v1, . . . , vn the corresponding orthonormal eigenvectors. The vectors
ui = Avi/σi, for i = 1, . . . , n, are orthonormal, where σi =

√
λi.

3. Rank of A is r < n: λ1 ≥ . . . ≥ λr > 0 are non-zero eigenvalues of ATA
and v1, . . . , vr the corresponding orthonormal eigenvectors. The vectors
ui = Avi/σi, for i = 1, . . . , r, are orthonormal, where σi =

√
λi.

4. AV = UΣ, where V is n× r matrix consisting of orthonormal
eigenvectors of ATA corresponding to non-zero eigenvalues of ATA, U
is m× r matrix of orthonormal vectors given by ui = Avi/σi for non-zero
σi, and Σ is r × r diagonal matrix.

5. AV V T = A = UΣV T
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Matrices ATA and AAT

We have A = UΣV T .

ATA = (UΣV T )T (UΣV T ) = (V ΣUT )(UΣV T ) = V Σ(UTU)ΣV T = V Σ2V T

Matrix ATA

ATA is square symmetric matrix and it is expressed in the diagonalized
form ATA = V Σ2V T . Thus, σ2

i ’s are its eigenvalues and V is its
eigenvectors matrix.

Similarly, consider AAT and we obtain that
AAT = (UΣV T )(UΣV T )T = UΣV TV ΣUT = UΣ2UT .

Matrix AAT

AAT is square symmetric matrix and it is expressed in the diagonalized
form AAT = UΣ2UT . Thus U is the eigenvector matrix for the symmetric
matrix AAT with the same eigenvalues as ATA.
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Singular Value Decomposition

- Let A be a m× n matrix of real numbers of rank r

- Am×n = Um×rΣr×rV
T
r×n, where

U is a orthonormal m× r matrix
V is a orthonormal n× r matrix
Σ is an r × r diagonal matrix and its (i, i)-th entry is σi for i = 1, . . . , r

- Note that σ1 ≥ σ2 ≥ . . . σr > 0 and σi =
√
λi where λi are the eigenvalues

of ATA

- The set of orthonormal vectors v1, . . . , vr and u1, . . . , ur are eigenvectors of
ATA and AAT , respectively. The vectors v’s and u’s satisfy the equation
Avi = σiui, for i = 1, . . . , r

- Alternatively, we can express A as the sum of the product of rank 1 matrices

A = Σri=1σiuiv
T
i = σ1u1v

T
1 + . . .+ σrurv

T
r
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An Application

Let Am×n be the Utility Matrix, where m = 108 users and n = 105 items.

SVD of A = UΣV T

Let r of σ′is are > 0

Let σ1 ≥ . . . ≥ σr > 0

A can be expressed as A =
r∑
i=1

σiuiv
T
i = σ1u1v

T
1 + . . .+ σrurv

T
r

Total space required to store A is r(m+ n+ 1). If rank of A is small, it is
better to store u1, . . . , ur, v1, . . . , vr, σ1, . . . , σr, rather than whole of A.
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Low Rank Approximation

Energy of A is given by E =
r∑
i=1

σ2
i

Define E ′ = 0.99E , and let j ≤ r be the maximum index such that
j∑

1=1

σ2
i ≤ E ′

Approximate A by
j∑
i=1

σiuiv
T
i

How many cells we need to store in this representation?

1. First j columns of U ,

2. j diagonal entries of Σ, and

3. j rows of V T .

Total Space = j2 + j(m+ n) cells
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Low Rank Approximation (contd.)

For our example, dimension of Am×n are m = 108 users and n = 105 items.

If j = 20, then we need to store
j2 + j(m+ n) = 202 + 20× (108 + 105) ≈ 5, 005, 000 cells

This number is only .02% of 1013
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Low Rank Approximations

Let SVD of A be

A =
[

1 0
0 1
2 1

]
=

[
2/
√

30 −1/
√

5

1/
√

30 2/
√

5

5/
√

30 0

] [√
6 0

0 1
0 0

] [
2/
√

5 1/
√

5

−1/
√

5 2/
√

5

]
In terms of Rank 1 Components:

A =
√

6

[
2/
√

30

1/
√

30

5/
√

30

] [
2/
√

5

1/
√

5

]T
+

[
−1/
√

5

2/
√

5
0

] [
−1/
√

5

2/
√

5

]T
Energy of A: E(A) =

√
6

2
+ 12 = 7

Possible 6
7
-Energy approximation of A is given by

A ≈
√

6

[
2/
√

30

1/
√

30

5/
√

30

] [
2/
√

5

1/
√

5

]T
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Interpreting U,Σ, and V

Utility Matrix M as SVD M = UΣV T

M=



1 1 1 0 0

3 3 3 0 0

4 4 4 0 0

5 5 5 0 0

0 2 0 4 4

0 0 0 5 5

0 1 0 2 2


=



.13 −.02 .01

.41 −.07 .03

.55 −.1 .04

.68 −.11 .05

.15 .59 −.65

.07 .73 .67

.07 .29 −.32



12.5 0 0

0 9.5 0

0 0 1.35


 .56 .59 .56 .09 .09

−.12 .02 −.12 .69 .69

.40 −.8 .40 .09 .09



1. 3 concepts (= rank)

2. U maps users to concepts

3. V maps items to concepts

4. Σ gives strength of each concept
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Rank-2 Approximation



.13 −.02

.41 −.07

.55 −.1

.68 −.11

.15 .59

.07 .73

.07 .29


[

12.5 0

0 9.5

][
.56 .59 .56 .09 .09

−.12 .02 −.12 .69 .69

]

% Loss in Energy = 1.352

12.52+9.52+1.352 < 1%
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Mapping Users to Concept Space

Consider the utility matrix M and its SVD.

M =



1 1 1 0 0

3 3 3 0 0

4 4 4 0 0

5 5 5 0 0

0 2 0 4 4

0 0 0 5 5

0 1 0 2 2


≈



.13 −.02

.41 −.07

.55 −.1

.68 −.11

.15 .59

.07 .73

.07 .29


[
12.5 0

0 9.5

] [
.56 .59 .56 .09 .09

−.12 .02 −.12 .69 .69

]

MV gives mapping of each user in concept space:

1 1 1 0 0

3 3 3 0 0

4 4 4 0 0

5 5 5 0 0

0 2 0 4 4

0 0 0 5 5

0 1 0 2 2




.56 −.12

.59 .02

.56 −.12

.09 .69

.09 .69

 =



1.71 −.22

5.13 −.66

6.84 −.88

8.55 −1.1

1.9 5.56

.9 6.9

.96 2.78


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Mapping Users to Items

Suppose we want to recommend items to a new user q with the following row
in the utility matrix

[
4 0 0 0 0

]
1. Map q to concept space:

qV =
[
3 0 0 0 0

]

.56 −.12

.59 .02

.56 −.12

.09 .69

.09 .69

 =
[
1.68 −.36

]

2. Map the vector qV to the Items space by multiplying by V T as vector V
captures the connection between items and concepts.[
1.68 −.36

] [ .56 .59 .56 .09 .09

−.12 .02 −.12 .69 .69

]
=[

.98 .98 .98 −.1 −.1
]
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Mapping Users to Items (Contd.)

Suppose we want to recommend items to user q′ with the following row in the
utility matrix

[
0 0 0 4 0

]

1. q′V =
[
0 0 0 4 0

]

.56 −.12

.59 .02

.56 −.12

.09 .69

.09 .69

 =
[
.36 2.76

]

2. Map q′V to the Items space by multiplying by V T[
.36 2.76

] [ .56 .59 .56 .09 .09

−.12 .02 −.12 .69 .69

]
=[

−.12 .26 −.12 1.93 1.93
]
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Mapping Users to Items (Contd.)

Suppose we want to recommend items to user q′′ with the following row in the
utility matrix

[
0 0 4 4 0

]

1. q′′V =
[
0 0 4 4 0

]

.56 −.12

.59 .02

.56 −.12

.09 .69

.09 .69

 =
[
2.6 2.28

]

2. Map q′′V to the Items space by multiplying by V T[
2.6 2.28

] [ .56 .59 .56 .09 .09

−.12 .02 −.12 .69 .69

]
=[

1.18 1.57 1.18 1.8 1.8
]
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Interpreting U,Σ, and V

Utility Matrix M as SVD M = UΣV T

M =



1 1 1 0 0

3 3 3 0 0

4 4 4 0 0

5 5 5 0 0

0 2 0 4 4

0 0 0 5 5

0 1 0 2 2


=



.13 −.02 .01

.41 −.07 .03

.55 −.1 .04

.68 −.11 .05

.15 .59 −.65

.07 .73 .67

.07 .29 −.32



12.5 0 0

0 9.5 0

0 0 1.35


 .56 .59 .56 .09 .09

−.12 .02 −.12 .69 .69

.40 −.8 .40 .09 .09



Issues:

1. Utility matrix M is sparse, but U and V are dense

2. Total size = r(n+m) + r2

3. Interpretation of entries of U and V is unclear

43



A Possiblity

Can we express M ≈ CUR, where

1. C consists of some columns of M

2. R consists of some rows of M

3. U is not that big

4. Square of Frobenius Norm =
∑
ij

(Mij − (CUR)ij)
2 is small
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CUR Method

Let M be m× n and let ∆ =
∑
ij

M [i, j]2

1. For each column j, compute pj = 1
∆

m∑
i=1

M [i, j]2

2. Pick α columns of M based on their probabilities (with replacement). Let
C be the multi-set of picked columns.

3. For each element of selected columns j ∈ C, scale its value to M [∗,j]
√
αpj

4. Repeat above steps for all the rows and let R be the multi-set of α
picked and scaled rows.

5. Let W be the α× α matrix whose entries are from M that are common
to C and R

6. Construct SVD of W = XΣY T . Construct Σ+, where each non-zero
element x of Σ is replaced by 1/x

7. Compute U = Y (Σ+)2XT

8. Report CUR as approximation of M
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An Example

M =


4 1 1 0

4 0 0 1

0 0 5 5

0 1 5 5

0 1 5 3


∑
ij

Mij
2 = 171

Column C1 C2 C3 C4∑
i

Mij 32 3 76 60

Row R1 R2 R3 R4 R5∑
j

Mij 18 17 50 51 35

For Rank 1 Approximation: Select C3 and R4 and scale them to obtain:

C3 = 1√
76/171

[
1 0 5 5 5

]T
=
[
1.5 0 7.6 7.6 7.6

]T
R4 = 1√

51/171

[
0 1 5 5

]
=
[
0 1.85 9.3 9.3

]
W = 5 and SVD W = [1][5][1] and U = [1][1/25][1]
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An Example (contd.)

We have M = CUR as

M ≈


1.5

0

7.6

7.6

7.6


[

1
25

] [
0 1.85 9.3 9.3

]
=


0 .11 .59 .59

0 0 0 0

0 .56 2.8 2.82.8

0 .56 2.8 2.82.8

0 .56 2.8 2.82.8


Try Rank 2 approximation: Possibly select Columns C3, C4 and Rows R3, R4

and compute scaled columns, rows, matrices W , U and CUR
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Remarks

1. In case a row/column is picked β > 1 times, we take only one of its copy
in R/C and scale the corresponding entries by a factor of

√
β

2. =⇒ W may not be square, but we know how to compute SVDs for
rectangular matrices.

3. Columns in C and rows in R are from M

4. In CUR decomposition, U (of dimension at most α× α) may be dense.

5. Total Space = α(n+m) + α2 (likely to be much less due to the sparsity
of M )
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Performance Guarantee

Quality Estimate
Let Mk be the best rank k-approximation of M .
Choose α = k log k

ε2
.

The resulting CUR decomposition satisfies the following:
Frobenius Norm of M and CUR is at most (2 + ε) times the Frobenius
Norm of M and Mk, i.e. ||M − CUR||F ≤ (2 + ε)||M −Mk||F

Remarks:

1. There are recent works that show that α = k/ε suffices

2. Approximation is by a factor of 1 + ε

3. Running time is faster than that of computing SVDs

4. Randomized Linear Algebra - a new field in TCS
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