Lecture Notes

Discrete Structures IT (COMP 2805)

Anil Maheshwari Michiel Smid

School of Computer Science
Carleton University

E-mail: {anil,michiel}@scs.carleton.ca

November 16, 2005

il

Contents

Preface

1

2

Introduction

Finite Automata and Regular Languages
Context-Free Languages

Turing Machines and the Church-Turing Thesis
Decidable and Undecidable Languages
Complexity Theory

Summary

il

iii

23

77

117

135

157

199

v

CONTENTS

Preface

This is a collection of notes for the course Discrete Structures II (COMP
2805), taught at Carleton University.
Please let us know if you find errors, typos, simpler proofs, comments,
omissions, or if you think that some parts of the notes “need improvement”.
Besides reading these notes, we recommend that you also take a look at
one or more of the following reference books:

e Introduction to the Theory of Computation, by Michael Sipser, PWS
Publishing Company, Boston, 1997.

e Elements of the Theory of Computation (second edition), by Harry
Lewis and Christos Papadimitriou, Prentice-Hall, 1998.

e Introduction to Languages and the Theory of Computation (third edi-
tion), by John Martin, McGraw-Hill, 2003.

e Introduction to Automata Theory, Languages, and Computation (sec-
ond edition), by John Hopcroft, Rajeev Motwani, Jeffrey Ullman, Ad-
dison Wesley, 2001.

vi

CONTENTS

Chapter 1

Introduction

1.1 Purpose and motivation

This course is on the Theory of Computation, which tries to answers the
following questions:

e What are the mathematical properties of computer hardware and soft-
ware?

e What is a computation, and what is an algorithm? Can we give rigorous
mathematical definitions of these notions?

e What are the limitations of computers? Can “everything” be com-
puted? (As we will see, the answer to this question is “no”.)

Central Question in the Theory of Computation: What are
the fundamental capabilities and limitations of computers?

This question was asked by mathematicians in the 1930’s, when they were
trying to understand the meaning of a “computation”. The question showed
up, because they wanted to know whether all mathematical problems can be
solved in a systematic way. The research that started in those days led to
computers as we know them today.

Nowadays, the Theory of Computation can be divided into the follow-
ing three areas: Complexity Theory, Computability Theory, and Automata
Theory.

2 CHAPTER 1. INTRODUCTION

1.1.1 Complexity theory

The main question asked in this area is “What makes some problems com-
putationally hard and other problems easy?”

Informally, a problem is called “easy”, if it is efficiently solvable. Exam-
ples of “easy” problems are (i) sorting a sequence of, say, 1,000,000 numbers,
(ii) searching for a name in a telephone directory, and (iii) computing the
fastest way to drive from Ottawa to Miami. On the other hand, a problem is
called “hard”, if it cannot be solved efficiently, or if we don’t know whether
it can be solved efficiently. Examples of “hard” problems are (i) time table
scheduling for all courses at Carleton, (ii) factoring a 300-digit integer into
its prime factors, and (iii) computing a layout for chips in VLSIL

Central Question in Complexity Theory: Classify problems ac-
cording to their degree of “difficulty”. Give a rigorous proof that
problems that seem to be “hard” are really “hard”.

The major breakthrough in this area came in 1969 when Stefan Cook was
able to separate the problems that can be efficiently solved by computers from
those that computers will take enormous time to solve except for very small
instances of them. He formally defined the notion of intractability and posed
the notorious P vs NP problem, one of the seven Millennium problems (see
http://www.claymath.org/millennium/).

1.1.2 Computability theory

In the 1930’s, Godel, Turing, and Church discovered that some of the funda-
mental mathematical problems cannot be solved by “computer”. (This may
sound strange, because computers were invented only in the 1940’s). An ex-
ample of such a problem is “Is an arbitrary mathematical statement true or

false?” To attack such a problem, we need formal definitions of the notions
of

e computer,
e algorithm, and

e computation.

The theoretical models that were proposed in order to understand solvable
and unsolvable problems led to the development of real computers.

1.1. PURPOSE AND MOTIVATION 3

Central Question in Computability Theory: Classify problems
as being solvable or unsolvable.

1.1.3 Automata theory

Automata Theory is the study of abstract computing devices. It deals with
definitions and properties of different types of “computation models”. Ex-
amples of such models are:

e Finite Automata. These are used in text processing, compilers, and
hardware design.

e Context Free Grammars. These are used to define programming lan-
guages and in Artificial Intelligence.

[

e Turing Machines. These form a simple abstract model of a “real”

computer, such as your PC at home.

Central Question in Automata Theory: Do these models have
the same power, or can one model solve more problems than the
other?

In 1930’s Turing studied the computing device, called Turing Machine,
with the aim of mathematically defining the distinction between what that
machine can do and what it cannot do (capabilities and limitations). It turns
out that that theory is also applicable to present day computers! In the next
two decades simpler machines than Turing Machines were proposed with the
aim of modeling the brain. But these machines turned out to be very useful
for many other purposes. These machines include Finite Automata, Context
Free Grammars and Pushdown Automata.

1.1.4 This course

In this course, we will study these three topics in reverse order: We will start
with Automata Theory, followed by Computability Theory, and finally, we
will consider Complexity Theory.

Actually, before we start, we will review some mathematical proof tech-
niques. As you may guess, this is a fairly theoretical course, with lots of

4 CHAPTER 1. INTRODUCTION

definitions, theorems, and proofs. You may guess this course is fun stuff for
Math lovers, but boring and irrelevant for others. You guessed it wrong, and
here are the reasons:

1. This course is about the fundamental capabilities and limitations of
computers. These topics form the core of computer science.

2. It is about Mathematical properties of computer hardware and soft-
ware.

3. This theory is very much relevant to practice, for example, in the design
of new programming languages, compilers, string searching, pattern
matching, computer security, artificial intelligence, etc., etc.

4. This course helps you to learn problem solving skills. Theory teaches
you how to think, prove, argue, solve problems, express, and abstract.

5. This theory simplifies the complex computers to an abstract and simple
mathematical model, and helps you to understand them better.

6. This course is about rigorously analyzing capabilities and limitations
of systems.

Where does this course fit in the Computer Science Curriculum at Car-
leton University? It is a theory course that is the second part in the series
COMP 1805, COMP 2805, COMP 3804, and COMP 4804. This course also
widens your understanding of computers and will influence other courses
including Compilers, Design of Programming Languages, and Artificial In-
telligence.

1.2 Mathematical preliminaries

Throughout this course, we will assume that you know the following mathe-
matical concepts:

1. A set is a collection of well-defined objects. Examples are (i) the set of
all Dutch Olympic Gold Medallists, (ii) the set of all parks in Ottawa,
and (iii) the set of all even natural numbers.

2. The set of natural numbers is N = {1,2,3,...}.

1.2. MATHEMATICAL PRELIMINARIES)

3. The set of integers isZ={...,-3,-2,-1,0,1,2,3,...}.
4. The set of rational numbers is Q = {m/n:m € Z,n € Z,n # 0}.
5. The set of real numbers is denoted by R.

6. If A and B are sets, then A is a subset of B, written as A C B, if every
element of A is also an element of B. For example, the set of even
natural numbers is a subset of the set of all natural numbers. Every
set A is a subset of itself, i.e., A C A. The empty set is a subset of
every set A, i.e.,) C A.

7. If A and B are two sets, then

(a) their union is defined as

AUB={z:x € Aorz € B},

(b) their intersection is defined as

ANB={z:z € Aand x € B},

(c) the Cartesian product of A and B is defined as
Ax B={(z,y) :x € Aand y € B},

(d) the complement of A is defined as
A={z:2 ¢ A}

8. A binary relation on two sets A and B is a subset of A x B.

9. A function f from A to B, denoted by f : A — B, is a binary relation
R, having the property that for each element a € A, there is exactly
one ordered pair in R, whose first component is a. We will also say
that f(a) = b, or f maps a to b, or the image of a under f is b. The
set A is called the domain of f, and the set

{b € B: thereis an a € A with f(a) = b}

is called the range of f.

10.

11.

12.

CHAPTER 1. INTRODUCTION

A function f : A — B is one-to-one (or injective), if for any two distinct
elements a and @' in A, we have f(a) # f(a'). The function f is onto
(or surjective), if for each element b € B, there exists an element a € A,
such that f(a) = b; in other words, the range of f is equal to the set
B. A function f is a bijection, if f is both injective and surjective.

A binary relation R C A x A is an equivalence relation, if it satisfies
the following three conditions:

(a) R is reflexive: For every element in a € A, we have (a,a) € R.

(b) R is symmetric: For all ¢ and b in A, if (a,b) € R, then also
(b,a) € R.

(¢) Ris transitive: For all a, b, and cin A, if (a,b) € R and (b, ¢c) € R,
then also (a,c) € R.

A graph G = (V, E) is a pair consisting of a set V', whose elements are
called vertices, and a set E/, where each element of F is a pair of distinct
vertices. The elements of E are called edges. The figure below shows
some well-known graphs: Kj (the complete graph on five vertices), Kj 3
(the complete bipartite graph on 2 x 3 = 6 vertices), and the Peterson
graph.

Ks3

K
Peterson graph

The degree of a vertex v, denoted by deg(v), is defined to be the number
of edges that are incident on v.

A path in a graph is a sequence of vertices that are connected by edges.
A path is a cycle, if it starts and ends at the same vertex. A simple
path is a path without any repeated vertices. A graph is connected, if
there is a path between every pair of vertices.

1.2.

13.

14.

MATHEMATICAL PRELIMINARIES 7
If each edge in the graph is oriented than the graph is called as a
directed graph.

The Boolean values are 1 and 0, that represent true and false, respec-
tively. The basic Boolean operations include

(a) negation (or NOT), represented by —,
(b) conjunction (or AND), represented by A,

(
d

(e) equivalence, represented by <> or <,

¢) disjunction (or OR), represented by V,

exclusive-or (or XOR), represented by &,

)
)
)
)
)
)

(f) implication, represented by — or =-.

The following table explains the meanings of these operations.

NOT

AND

OR

XOR

equivalence

implication

-0=1

0AN0=0

oOv0o=20

060=0

0+<0=1

0—-0=1

-1=0

0AN1=0

ovli=1

0pl=1

0+<1=0

0—-1=1

1AN0=0

1vo=1

1¢0=1

10=0

1—-0=0

1In1=1

1vli=1

1®#1=0

l<+1=1

1—-1=1

15.

16.

17.

18.

In the context of strings, an alphabet is a finite set, whose elements
are called symbols. Examples of alphabets are ¥ = {0,1} and ¥ =
{a,b,c,...,z}.

A string over an alphabet X is a finite sequence of symbols, where each
symbol is an element of ¥. The length of a string w, denoted by |w|, is
the number of symbols contained in w. The empty string, denoted by
€, is the string having length zero. For example, if the alphabet X is
equal to {0, 1}, then 10, 1000, 0, 101, and € are strings over ¥, having
lengths 2, 4, 1, 3, and 0, respectively. The strings over the binary
alphabet {0,1} are called binary strings.

The concatenation of two strings x and y is the string zy, that is
the string x followed by the string y. The reversal of a string x =
1Ty - - - T, denoted by 2%, is the string 2f = 2,2, - - 2om1. f = ¢
then zf = .

A language is a set of strings.

8 CHAPTER 1. INTRODUCTION

1.3 Proof techniques

In mathematics, a theorem is a statement that is true. A proof is a sequence
of mathematical statements that form an argument to show that a theorem is
true. The statements in the proof of a theorem include axioms (assumptions
about the underlying mathematical structures), hypotheses of the theorem
to be proved, and previously proved theorems. The main question is “How
do we go about proving theorems?” This question is similar to the question
of how to solve a given problem. Of course, the answer is that finding proofs,
or solving problems, is not easy; otherwise life would be dull! There is no
specified way of coming up with a proof, but there are some generic strategies
that could be of help. In this section, we review some of these strategies,
that will be sufficient for this course. The best way to get a feeling of how
to come up with a proof is by solving a large number of problems. Here are
some useful tips. (You may take a look at the book How to Solve It, by G.
Pélya).

1. Read and completely understand the statement of the theorem to be
proved. Most often this is the hardest part.

2. Sometimes, theorems contain theorems inside them. For example,
“Property A if and only if property B”, requires showing two state-
ments:

(a) If property A is true, then property B is true (4 = B).
(b) If property B is true, then property A is true (B = A).

Another example is the theorem “Set A equals set B.” To prove this,
we need to prove that A C B and B C A. That is, we need to show
that each element of set A is in set B, and that each element of set B
is in set A.

3. Try to work out a few simple cases of the theorem just to get the grip
on it (i.e., crack a few simple cases first).

4. Try to write down the proof once you have it. This is to ensure the
correctness of your proof. Often, mistakes are found at the time of
writing.

1.3. PROOF TECHNIQUES 9

5. Finding proofs take time, we do not come prewired to produce proofs.
Be patient, think, express and write clearly and try to be precise as
much as possible.

In the next sections, we will go through some of the proof strategies.

1.3.1 Direct proofs

As the name suggests, in a direct proof of a theorem, we just approach the
theorem directly.

Theorem 1.3.1 Ifn is an odd positive integer, then n? is odd as well.

Proof. An odd positive integer n can be written as n = 2k + 1, for some
integer k£ > 0. Then

n*=(2k+1)> =4k* + 4k + 1 = 2(2k* + 2k) + 1.

Since 2(2k? + 2k) is even, and one more than even is odd, we can conclude
that n? is odd. |

Theorem 1.3.2 Let G = (V, E) be a graph. Then the sum of the degrees of
all vertices is an even integer, i.e.,

>~ deg(v)

1S even.

Proof. If you don’t see the meaning of this statement, then first try it out
for a few graphs. The reason why the statement holds is very simple: each
edge contributes 2 to the summation (because an edge is incident on exactly
two distinct vertices). [

Actually, the proof above proves the following theorem.

Theorem 1.3.3 Let G = (V, E) be a graph. Then the sum of the degrees of
all vertices is equal to twice the number of edges, i.e.,

Z deg(v) = 2|E]|.

veV

10 CHAPTER 1. INTRODUCTION

1.3.2 Constructive proofs

This technique not only shows the existence of a certain object, it actually
gives a method of creating it. Here is how a constructive proof looks like:

Theorem 1.3.4 There exists an object with property P.

Proof. Here is the object: |...]
And here is the proof that the object satisfies property P: [...] |

Here is an example of constructive proof. A graph is called 3-regular, if
each vertex has degree three.

Theorem 1.3.5 For every even integer n > 4, there exists a 3-reqular graph
with n vertices.

Proof. Define
V={0,1,2...,n—1},

and
E={{i,i+1}:0<i<n—-2}U{{n—1,0}}u{{i,i+n/2} : 0 < i< n/2—1}.

Then the graph G = (V, E) is 3-regular.
Convince yourself that this graph is indeed 3-regular. It may help to draw
the graph for, say n = 8. |

1.3.3 Proofs by contradiction

This is how a proof by contradiction looks like:
Theorem 1.3.6 Statement s is true.

Proof. Assume that statement s is false. Then, derive a contradiction (such
as 1+1=23).

In other words, show that —s = false. This is sufficient, because the
contrapositive of s = false is true = s. The latter logical formula is
equivalent to s, and that is what we wanted to show. [|

Below, we give two examples of proofs by contradiction.

1.3. PROOF TECHNIQUES 11

Theorem 1.3.7 Let n be a positive integer. If n? is even, then n is even.

Proof. We will prove the theorem by contradiction. So we assume that n?
is even, but n is odd. Since n is odd, we know from Theorem 1.3.1 that n?
is odd. This is a contradiction, because we assumed that n? is even. |

Theorem 1.3.8 /2 is irrational, i.e., \/2 cannot be written as a fraction of
two integers m and n.

Proof. We will prove the theorem by contradiction. So we assume that /2
is rational. Then v/2 can be written as a fraction of two integers, v/2 = m/n,
where m > 1 and n > 1. We may assume that m and n are not both
even, because otherwise we can get rid of the common factors. By squaring
V2 = m/n, we get 2n> = m?. This implies that m? is even. Then, by
Theorem 1.3.7, m is even, which means that we can write m as m = 2k, for
some positive integer k. It follows that 2n? = m? = 4k?, which implies that
n? = 2k%. Hence, n? is even. Again by theorem 1.3.7, it follows that n is
even.

We have shown that m and n are both even. But we know that m and
n are not both even. Hence, we have a contradiction. Our assumption that
/2 is rational is wrong. Thus, we can conclude that V/2 is irrational. [|

There is a nice discussion of this proof in the book My Brain is Open:
The Mathematical Journeys of Paul Erdds by B. Schechter.

1.3.4 Countable sets and Cantor’s Diagonalization

Let A and B be two sets, and let f : A — B be a function. Recall that f is
called a bijection, if

e f is one-to-one (or injective), i.e., for any two distinct elements a and
a'in A, we have f(a) # f(a'), and

e f is onto (or surjective), i.e., for each element b € B, there exists an
element a € A, such that f(a) = b.

The set of natural numbers is denoted by N. That is, N={1,2,3,...}.

Definition 1.3.9 Let A and B be two sets. We say that A and B have the
same size, if there exists a bijection f : A — B.

12 CHAPTER 1. INTRODUCTION

Definition 1.3.10 Let A be a set. We say that A is countable, if A is finite,
or A and N have the same size.

In other words, if A is an infinite and countable set, then there exists a
bijection f: N — A, and we can write A as

A={£(1), £(2), F3), F(4),.. }.

Since f is a bijection, every element of A occurs exactly once in the set on
the right-hand side. This means that we can number the elements of A using
the positive integers: Every element of A receives a unique number.

Theorem 1.3.11 The following sets are countable:
1. The set Z of integers:
Z={...,-3-2-1,0123,...)}.

2. The Cartesian product N x N:
NxN={(m,n): m € N,n € N}.

3. The set Q of rational numbers:

Q={m/n:meZ,ne€Z,n+#0}.

Proof. To prove that the set Z is countable, we have to give each element of
Z a unique number in N. We obtain this numbering, by listing the elements
of Z in the following order:

0,1,—-1,2,-2,3,-3,4, -4, ...

)

In this (infinite) list, every element of Z occurs exactly once. The number of
an element of Z is given by its position in this list.
Formally, define the function f : N — Z by

[n/2 if n is even,
fln) = { —(n—1)/2 if nis odd.
This function f is a bijection and, therefore, the sets N and Z have the same
size. Hence, the set Z is countable.
For the proofs of the other two claims, we refer to the course COMP 1805.
[|

1.3. PROOF TECHNIQUES 13

Theorem 1.3.12 The set R of real numbers is not countable.

Proof. Define
A={zeR:0<z <1}

We will prove that the set A is not countable. This will imply that the set
R is not countable, because A C R.

The proof that A is not countable is by contradiction. So we assume that
A is countable. Then there exists a bijection f : N — A. Hence, we can
write

A={f(1),f(2),f3),-- -}, (1.1)

where every element of A occurs exactly once in the set on the right-hand
side. Hence, for each n € N, f(n) is a real number between zero and one.

Consider the real number f(1). We can write this number in decimal
notation as

f(l) - 0.d11d12d13 ey

where each dy; is a digit in the set {0,1,2,...,9}. In general, for every n € N,
we can write the real number f(n) as

f(n) = 0.dn1dnadys - - -,

where, again, each d,; is a digit in {0,1,2,...,9}.
We define the real number

r = 0.d1d2d3 ceey
where, for each n > 1,

g4 i A4,
"5 if doy = 4.

Observe that z is a real number between zero and one, i.e., x € A. Therefore,
by (5.1), there is an element n € N, such that f(n) = . We compare the
n-th digits of f(n) and z:

e The n-th digit of f(n) is equal to d,.

e The n-th digit of x is equal to d,,.

14 CHAPTER 1. INTRODUCTION

Since f(n) and x are equal, their n-th digits must be equal, i.e., d,, = d,.
But, by the definition of d,,, we have d,, # d,. This is a contradiction and,
therefore, the set A is not countable. |

The above theorem is due to Georg Cantor (1879) and this proof method
is called as the Cantor’s diagonalization method. This is used extensively in
Mathematical Logic as well as in the later part of this course.

1.3.5 The pigeon hole principle

This is a simple principle with surprising consequences. It states that if
n 4+ 1 or more objects are placed into n boxes, then there is at least one box
containing two or more objects. In other words, if A and B are two sets such
that |A| > | B|, then there is no one-to-one function from A to B.

Theorem 1.3.13 Let n be a positive integer. Every sequence of n?> + 1 dis-
tinct real numbers contains a subsequence of length n + 1 that is either in-
creasing or decreasing.

Proof. For example consider the sequence (20,10,9,7,11,2,21,1,20,31) of
10 = 3% + 1 numbers. This sequence contains an increasing subsequence of
length 4 = 3 + 1, namely (10, 11,21, 31).

The proof of this theorem is by contradiction, and uses the pigeon hole
principle.

Let (a1, as,...,a,2,1) be an arbitrary sequence of n® + 1 distinct real
numbers. For each i with 1 < ¢ < n? + 1, let inc; denote the length of
the longest increasing subsequence that starts at a;, and let dec; denote the
length of the longest decreasing subsequence that starts at a;.

Using this notation, the claim in the theorem can be formulated as follows:
There is an index 7 such that inc; > n + 1 or dec; > n + 1.

We will prove the claim by contradiction. So we assume that inc; < n
and dec; < n for all i with 1 <7 <n?+1.

Consider the set

B={(be):1<b<n,1<c<n},

and think of the elements of B as being boxes. For each i with 1 <7 < n?+1,
the pair (inc;, dec;) is an element of B. So we have n?+1 elements (inc;, dec;),
which are placed in the n? boxes of B. By the pigeon hole principle, there

1.3. PROOF TECHNIQUES 15

must be a box that contains two (or more) elements. In other words, there
exist two integers ¢ and j such that 7 < j and

(inc;, dec;) = (incj, dec;).

Recall that the elements in the sequence are distinct. Hence, a; # a;. We
consider two cases.

First assume that a; < a;. Then the length of the longest increasing
subsequence starting at a; must be at least 1+4nc;, because we can append a;
to the longest increasing subsequence starting at a;. Therefore, inc; # inc;,
which is a contradiction.

The second case is when a; > a;. Then the length of the longest decreasing
subsequence starting at a; must be at least 1+ dec;, because we can append a;
to the longest decreasing subsequence starting at a;. Therefore, dec; # dec;,
which is again a contradiction. |

1.3.6 Proofs by induction

This is a very powerful and important technique for proving theorems (espe-
cially in computer science).

For each positive integer n, let P(n) be a mathematical statement that
depends on n. Assume we wish to prove that P(n) is true for all positive
integers n. A proof by induction of such a statement is carried out as follows:

Basis: Prove that P(1) is true.

Induction step: Prove that for all n > 1, the following holds: If P(n) is
true, then P(n + 1) is also true.

In the induction step, we choose an arbitrary integer n» > 1, and assume
that P(n) is true; this is called the induction hypothesis. Then we prove that
P(n+1) is also true.

Theorem 1.3.14 For all positive integers n, we have

n(n+1).

1+2+3+...+n= 5

16 CHAPTER 1. INTRODUCTION

Proof. We start with the basis of the induction. If n = 1, then the left-hand
side is equal to 1, and so is the right-hand side. So the theorem is true for
n=1.

For the induction step, let n > 1, and assume that the theorem is true
for n, i.e., assume that

n(n—i—l)'

1+24+3+...+n= 2

We have to prove that the theorem is true for n + 1, i.e., we have to prove

that
(n+1)(n+2)

1+243+...+(n+1)= 5 .

Here is the proof:

1+243+...+(n+1) = 14+2+34+...+n+(n+1)
:n?i+1)

@—i—(n—l—l)

(n+1)(n+2)

2

By the way, here is an alternative proof of the theorem above: Let S =
1+2+3+...+n. Then,

s = 1 + 2 + 3 + ... 4+ (-2 4+ (n-1) + n

s = n + (-1 + -2 + ... + 3 + 2 + 1

2S = (n+1) + (n+1) + (n+1) S + (n+1) - (n+1) + (n+1)
Since there are n terms on the right-hand side, we have 25 = n(n + 1).

but this means that S = n(n +1)/2.

Theorem 1.3.15 For every positive integer n, a — b is a factor of a™ — b".

Proof. A direct proof can be given by providing a factorization of a™ — b™:
a"—b"=(a—b)(a""+a" P+ d" D+ ... +ab" P+).

We now prove the theorem by induction. For the basis, let n = 1. The claim
in the theorem is “a — b is a factor of a — b”, which is obviously true.

1.3. PROOF TECHNIQUES 17

Let n > 1, and assume that a — b is a factor of a™ — 0". We have to prove
that a — b is a factor of a”*! — b"+1. We have

a™tt — bt = g™ g"h + b — b = a™(a — b) + (a" — b™)b.

The first term on the right-hand side is divisible by (e —b). By the induction
hypothesis, the second term on the right-hand side is divisible by (a — b) as
well. Therefore, the entire right-hand side is divisible by (a — b). since the

right-hand side is equal to ™™ — b"*! it follows that a — b is a factor of
g™t — pntl []

We now give an alternative proof of Theorem 1.3.3:

Theorem 1.3.16 Let G = (V, E) be a graph with m edges. Then the sum
of the degrees of all vertices is equal to twice the number of edges, i.e.,

Z deg(v) = 2m.

Proof. The proof is by induction on the number m of edges. For the basis of
the induction, assume that m = 0. Then the graph G' does not contain any
edges and, therefore, " ., deg(v) = 0. Thus, the theorem is true if m = 0.

Let m > 0, and assume that the theorem is true for every graph with m
edges. Let G be an arbitrary graph with m + 1 edges. We have to prove that
S ey deg(v) = 2(m + 1).

Let {a,b} be an arbitrary edge in GG, and let G’ be the graph obtained
from G by removing the edge {a,b}. Since G’ has m edges, we know from
the induction hypothesis that the sum of the degrees of all vertices in G’ is
equal to 2m. Using this, we obtain

Z deg(v) = Z deg(v) +2=2m+2=2(m+1).

veEG veG’

1.3.7 More examples of proofs

Recall Theorem 1.3.5, which states that for every even integer n > 4, there
exists a 3-regular graph with n vertices. The following theorem explains why
we stated this theorem for even values of n.

18 CHAPTER 1. INTRODUCTION

Theorem 1.3.17 Let n > 5 be an odd integer. There is no 3-reqular graph
with n vertices.

Proof. The proof is by contradiction. So we assume that there exists a
graph G = (V, E) with n vertices that is 3-regular. Let m be the number of
edges in G. Since deg(v) = 3 for every vertex, we have

Z deg(v) = 3n.
On the other hand, by Theorem 1.3.3, we have

Z deg(v) = 2m.

It follows that 3n = 2m, which can be rewritten as m = 3n/2. Since m is an
integer, and since ged(2,3) = 1, n/2 must be an integer. Hence, n is even,
which is a contradiction. |

Let K, be the complete graph on n vertices. This graph has a vertex set
of size n, and every pair of distinct vertices is joined by an edge.

If G = (V,E) is a graph with n vertices, then the complement G of G is
the graph with vertex set V' that consists of those edges of K, that are not
present in G.

Theorem 1.3.18 Letn > 2, and let G be a graph on n vertices. Then G is
connected or G is connected.

Proof. We prove the theorem by induction on the number n of vertices. For
the basis, assume that n = 2. There are two possibilities for the graph G:

1. G contains one edge. In this case, G is connected.

2. G does not contain an edge. In this case, the complement G contains
one edge and, therefore, GG is connected.

So for n = 2, the theorem is true.

Let n > 2, and assume that the theorem is true for every graph with n
vertices. Let G be graph with n + 1 vertices. We have to prove that G is
connected or G is connected. We consider three cases.

1.3. PROOF TECHNIQUES 19

Case 1: There is a vertex v whose degree in G is equal to n.
Since G has n + 1 vertices, this means that v is connected by an edge to
every other vertex of G. Therefore, GG is connected.

Case 2: There is a vertex v whose degree in G is equal to 0.

In this case, the degree of v in the graph G is equal to n. Since G has
n+1 vertices, this means that v is connected by an edge to every other vertex
of G. Therefore, G is connected.

Case 3: For every vertex v, the degree of v in G isin {1,2,...,n — 1}.

Let v be an arbitrary vertex of G. Let G’ be the graph obtained by
deleting from G the vertex v, together with all edges that are incident on v.
Since G’ has n vertices, we know from the induction hypothesis that G’ is
connected or G is connected.

Let us first assume that G’ is connected. Then the graph G is connected
as well, because there is at least one edge in G' between v and some vertex
of G'.

If G’ is not connected, then G’ must be connected. Since we are in Case 3,
we know that the degree of v in G is in the set {1,2,...,n — 1}. It follows
that the degree of v in the graph G is in this set as well. Hence, there is at
least one edge in G between v and some vertex in G’. This implies that G is
connected. |

A graph is said to be planar, if it can be drawn (a better term is “embed-
ded”) in the plane in such a way that no two edges intersect, except possibly
at their endpoints. An embedding of a planar graph consists of vertices,
edges, and faces. In the example below, there are 11 vertices, 18 edges, and
9 faces (including the unbounded face).

20 CHAPTER 1. INTRODUCTION

The following theorem is known as Fuler’s theorem for planar graphs.
Apparently, this theorem was discovered by Euler around 1750. Legendre
gave the first proof in 1794, see

http://www.ics.uci.edu/"eppstein/junkyard/euler/

Theorem 1.3.19 (Euler) Consider an embedding of a planar graph G. Let
v, e, and f be the number of vertices, edges, and faces (including the single
unbounded face) of this embedding, respectively. Moreover, let ¢ be the number
of connected components of G. Then

v—e+ f=c+1l

Proof. The proof is by induction on the number of edges of G. To be more
precise, we start with graph having no edges, and prove that the theorem
holds for this case. Then, we add the edges one by one, and show that the
relation v — e + f = ¢+ 1 is maintained.

So we first assume that G has no edges, i.e., e = 0. Then the embedding
consists of a collection of v points. In this case, we have f =1 and ¢ = v.
Hence, the relation v — e + f = ¢+ 1 holds.

Let e > 0 and assume that Euler’s formula holds for a subgraph of G
having e — 1 edges. Let {u,v} be an edge of G that is not in the subgraph,
and add this edge to the subgraph. There are two cases depending on whether
this new edge joins two connected components or joins two vertices in the
same connected component.

Case 1: The new edge {u,v} joins two connected components.

In this case, the number of vertices and the number of faces do not change,
the number of connected components goes down by 1, and the number of
edges increases by 1. It follows that the relation in the theorem is still valid.

Case 2: The new edge {u, v} joins two vertices in the same connected com-
ponent.

In this case, the number of vertices and the number of connected com-
ponents do not change, the number of edges increases by 1, and the number
of faces increases by 1 (because the new edge splits one face into two faces).
Therefore, the relation in the theorem is still valid. [|

Euler’s theorem is usually stated as follows:

1.4. EXERCISES 21

Theorem 1.3.20 (Euler) Consider an embedding of a connected planar
graph G. Let v, e, and f be the number of vertices, edges, and faces (in-
cluding the single unbounded face) of this embedding, respectively. Then

v—e+ f=2.

If you like surprising proofs of various mathematical results, you should
read the book Proofs from THE BOOK by Aigner and Ziegler.

1.4 Exercises

1.1 Use induction to prove that every positive integer can be written as a
product of prime numbers.

1.2 For every prime number p, prove that |/p is irrational.

1.3 Let n be a positive integer that is not a perfect square. Prove that \/n
is irrational.

1.4 Prove by induction that n* — 4n? is divisible by 3, for all integers n > 1.

1.5 Prove that

n

2%2<2—1/n,

i=1

for every integer n > 2.
1.6 Prove that 9 divides n® + (n +1)® + (n + 2)3, for every integer n > 0.

1.7 In any set of n 4+ 1 numbers from {1,2,...,2n}, there are always two
numbers that are consecutive.

1.8 In any set of n + 1 numbers from {1,2,...,2n}, there are always two
numbers such that one divides the other.

1.9 Show that 22" — 1 is divisible by 3 for any positive integer n.

1.10 Show that for strings = and y, the reversal of the concatenation of z

and y is the concatenation of the reversal of y and the reversal of z, i.e.
() ="

22 CHAPTER 1. INTRODUCTION

1.11 Show that union of two countable sets is countable.
1.12 Show that union of a countable number of countable sets is countable.
1.13 Show that the set of all bit strings is countable.

1.14 Show that the set of all computer programs written in Java is countable.
A program is a string of symbols from a finite set of alphabets.

1.15 Show that the set of functions from positive integers to the set {0,1,2,3,4,5,6,7,8,9}
is uncountable.

1.16 A function is said to be computable, if there is a computer program
that can compute the function. Show that there are functions that are not
computable.

1.17 Let n > 2, and consider the complete graph K, on n vertices. Color
each edge of this graph as either red or blue. Let R be the graph consisting
of all the red edges, and let B be the graph consisting of all the blue edges.
Show that R is connected or B is connected.

Chapter 2

Finite Automata and Regular
Languages

In this chapter, we introduce and analyze the class of languages that are
known as regular languages. Informally, these languages can be “processed”
by computers having a very small amount of memory.

2.1 An example: designing a toll gate

Before we give a formal definition of a finite automaton, we consider an
example in which such an automaton shows up in a natural way. We consider
the problem of designing a “computer” that controls a toll gate.

When a car driver arrives at the toll gate, the gate is closed. The gate
opens as soon as the driver has payed 25 cents. We assume that we have
only three coin denominations: 5, 10, and 25 cents. We also assume that no
excess change is refunded.

After having arrived at the toll gate, the driver inserts a sequence of coins
into the machine. At any moment, the machine has to decide whether or not
to open the gate, i.e., whether or not the driver has paid 25 cents (or more).
In order to decide this, the machine is in one of the following six states, at
any moment during the process:

e The machine is in state qp, if it has not collected any money yet.
e The machine is in state ¢y, if it has collected exactly 5 cents.

e The machine is in state ¢, if it has collected exactly 10 cents.

23

24 CHAPTER 2. FINITE AUTOMATA AND REGULAR LANGUAGES

e The machine is in state gs, if it has collected exactly 15 cents.
e The machine is in state qq, if it has collected exactly 20 cents.
e The machine is in state gs, if it has collected 25 cents or more.

Initially (when a driver arrives at the toll gate), the machine is in state
go- Assume, for example, that the driver presents the sequence (10,5,5,10) of
coins.

o After receiving the first 10 cents coin, the machine switches from state
go to state ¢s.

o After receiving the first 5 cents coin, the machine switches from state
g» to state gs.

o After receiving the second 5 cents coin, the machine switches from state
gs to state g4.

o After receiving the second 10 cents coin, the machine switches from
state g4 to state ¢s. At this moment, the gate opens. (Remember that
no change is given.)

The figure below represents the behavior of the machine, for all possible
sequences of coins.

Observe that the machine (or computer) only has to remember which
state it is in at any given time. Thus, it needs only a very small amount
of memory: It has to be able to distinguish between any one of six possible
cases and, therefore, it needs a memory of only [log6] = 3 bits.

2.2. DETERMINISTIC FINITE AUTOMATA 25

2.2 Deterministic finite automata

Let us look at another example. Consider the following state diagram:

We say that ¢; is the start state, and g, is an accept state. Consider the
input string 1101. This string is processed in the following way:

e Initially, the machine is in the start state g;.

e After having read the first 1, the machine switches from state ¢; to
state go.

e After having read the second 1, the machine switches from state gs to
state go. (So actually, it does not switch.)

e After having read the first 0, the machine switches from state gs to
state gs.

o After having read the third 1, the machine switches from state ¢z to
state qo.

After the entire string 1101 has been processed, the machine is in state g¢o,
which is an accept state. We say that the string 1101 is accepted by the
machine.

When the machine gets the string 0101010 as input, it ends up in state g3
(after having read the entire string, and starting in the start state ¢;). Since
g3 is not an accept state, we say that the machine rejects the string 0101010.

We hope you are able to see that this machine accepts every binary string
that ends with a 1. In fact, the machine accepts more strings:

e Every binary string having the property that there are an even number
of 0s following the rightmost 1, is accepted by this machine.

Every other binary string is rejected by the machine.

Definition 2.2.1 A finite automaton is a 5-tuple M = (Q, %, §, ¢, F') where

26 CHAPTER 2. FINITE AUTOMATA AND REGULAR LANGUAGES

1. @ is a finite set, whose elements are called states,

2. Y is a finite set, called the alphabet; the elements of 3 are called symbols,
3. 0:Q XX — Q is a function, called the transition function,

4. q is an element of (); it is called the start state,

5. Fis a subset of (Q; the elements of F' are called accept states.

You can think of the transition function § as being the “program” of the
finite automaton M = (Q, %, , ¢, F'). This function tells us what M can do
in “one step”:

e Let r be a state of @), and let a be a symbol of the alphabet X. If the
finite automaton M is in state r, and if it reads the symbol a, then it
switches from state r to state 6(r, a).

The “computer” that we designed in the toll gate example is a finite au-
tomaton. For this example, we have @ = {qo, ¢1, 92,43, 94,95}, = = {5, 10, 25},
the start state is gy, F' = {g5}, and ¢ is given by the following table:

o 10 25

9 |91 9 G5
91 192 43 Gs
92 |93 44 G5
431494 Q45 G5
44 |1 95 45 G5
95 |95 45 Qs

The example given in the beginning of this section is also a finite automa-
ton. For this example, we have Q = {¢1,¢2,¢3}, £ = {0, 1}, the start state
is ¢1, F = {¢2}, and § is given by the following table:

2.2. DETERMINISTIC FINITE AUTOMATA 27

Let us denote this finite automaton by M. The language of M, denoted
by L(M), is the set of all strings that are accepted by M. Then, for this
example, we have

L(M) = {w: w contains at least one 1 and ends with an even number of 0s}.
We now give a formal definition of the language of a finite automaton:

Definition 2.2.2 Let M = (Q,%,d,q,F) be a finite automaton, and let
w = wyws...w, be a string over X. Define the sequence rg,7,...,r, of
states, in the following way:

e g =g, and

® i1 =06(ri,witq), fori=0,1,...,n— 1.
1. If r, € F, then we say that M accepts w.
2. If r, & F, then we say that M rejects w.

Definition 2.2.3 Let M = (Q,X%,d,q, F) be a finite automaton. The lan-
guage L(M) accepted by M is defined to be the set of all strings that are
accepted by M:

L(M) ={w: wis a string over ¥ and M accepts w }.

Definition 2.2.4 A language A is called regular, if there exists a finite au-
tomaton M such that A = L(M).

We finish this section, by presenting an equivalent way of defining the
language accepted by a finite automaton. Let M = (Q, 3, d, ¢, F) be a finite
automaton. The transition function 6 : @ x X — @ tells us that, when M
is in state r €) and reads symbol a € ¥, it switches from state r to state
d(r,a). Let X* denote the set of all strings over the alphabet ¥. (3* includes
the empty string, which is denoted by e.) We extend the function ¢ to a
function

5:QxY = Q,

that is defined as follows. For any state r € () and for any string w over the
alphabet 3,

S(T,w):{r ifw=¢,

§(8(r,v),a) if w = va, where v is a string and a € 2.

28 CHAPTER 2. FINITE AUTOMATA AND REGULAR LANGUAGES

What is the meaning of this function 6? Let r be a state of @, and let w be
a string over the alphabet . Then

e 5(r,w) is the state that M reaches, when it starts in state r, reads the
string w, and uses ¢ to switch from state to state.

Using this notation, we have

L(M) ={w: wis a string over ¥ and &(¢q,w) € F}.

2.2.1 An example of a finite automaton

Let
A ={w: w is a binary string containing an odd number of 1’s}.

We claim that this language A is regular. In order to prove this, we have to
construct a finite automaton M such that A = L(M).

How to construct M? Here is a first idea: The finite automaton reads the
input string w from left to right, and keeps track of the number of 1s it has
seen. After having read the entire string w, it checks whether the number of
1s is odd (in which case w is accepted) or even (in which case w is rejected).
Using this approach, the finite automaton needs a state for every integer
i > 0, indicating that the number of 1s read (up to that point) is equal to
i. Hence, to design a finite automaton that follows this approach, we need
an infinite number of states. But, the definition of finite automaton requires
that the number of states is finite.

A better, and the correct approach, is to keep track of whether the number
of 1s read is even or odd. This leads to the following finite automaton:

e The set of states is Q = {¢e, ¢o}. If the finite automaton is in state g,
then it has read an even number of 1s; if it is in state ¢,, then it has
read an odd number of 1s.

e The alphabet is ¥ = {0, 1}.

e The start state is ¢., because at the start, the number of 1s read by the
automaton is equal to 0, and 0 is even.

e The set F' of accept states is F' = {g,}.

2.2. DETERMINISTIC FINITE AUTOMATA 29

e The transition function § is given by the following table:

Ge | e Yo
4o | 9o Qe

This finite automaton M = (Q, %, 6, g., F') can also be described by its state
diagram, which is given in the figure below. The arrow that comes “out of
the blue” and enters the state ¢., indicates that ¢, is the start state. The
state depicted with double circles indicates the accept state.

We have constructed a finite automaton M that accepts the language A.
Therefore, A is a regular language.

2.2.2 Another example of a finite automaton

Define the language A as
A ={w: w is a binary string containing 101 as a substring}.

Again, we claim that M is a regular language. In other words, we claim that
there exists a finite automaton M that accepts A, i.e., A = L(M).

The finite automaton M will do the following, when reading an input
string from left to right:

e It skips over all Os, and stays in the start state.

e At the first 1, it switches to the state “maybe the next two symbols are
01”.

— If the next symbol is 1, then it stays in the state “maybe the next
two symbols are 01”.

30 CHAPTER 2. FINITE AUTOMATA AND REGULAR LANGUAGES

— On the other hand, if the next symbol is 0, then it switches to the
state “maybe the next symbol is 1”.

x If the next symbol is indeed 1, then it switches to the accept
state (but keeps on reading until the end of the string).

x On the other hand, if the next symbol is 0, then it switches
to the start state, and skips 0s until it reads 1 again.

By defining the following four states, this process will become clear:

e ¢i: M is in this state if the last symbol read was 1, but the substring
101 has not been read.

e (0: M is in this state if the last two symbols read were 10.

® ¢i01: M is in this state if the substring 101 has been read in the input
string.

e ¢: In all other cases, M is in this state.

Here is the formal description of the finite automaton that accepts the
language A:

° ()= {q,lh,(ho;(hm},
e ¥ ={0,1},

the start state is ¢,

the set F' of accept states is equal to F' = {q101}, and

the transition function § is given by the following table:

0 1

q q q1

q1 q10 g1
q10 q q101
qio1 | 9101 G101

The figure below gives the state diagram of the finite automaton M =
(Q? 27 57 Qea F)'

2.3. REGULAR OPERATIONS 31

2.3 Regular operations

In this section, we define three operations on languages. Later, we will answer
the question whether the set of all regular languages is closed under these
operations. Let X and Y be two languages over the same alphabet.

1. The union of X and Y is defined as

XUY={w: weXorweY}.

2. The concatenation of X and Y is defined as
XY ={ww': we X and v’ € Y}.

In words, XY is the set of all strings obtained by taking an arbitrary
string w in X and an arbitrary string w’ in Y, and gluing them together
(such that w is to the left of w’).

3. The star of X is defined as
X*={uwug...up: k>0and u; € X foralli=1,2,...,k}.

In words, X* is obtained by taking any finite number of strings in
X, and gluing them together. Observe that £ = 0 is allowed; this
corresponds to the empty string e. Thus, € € X*.

To give an example, let X = {A,C} and Y = {7, G}. Then

XUY ={ACT,GY},

32 CHAPTER 2. FINITE AUTOMATA AND REGULAR LANGUAGES

XY = {AT, AG,CT,CG},

and
X*={e,A,C,AA,CC,AC,CA, AAA, AAC, ACA,CAA,ACC,. . }.

As another example, if ¥ = {0,1}, then X* is the set of all binary strings
(including the empty string). Observe that a string always has a finite length.

Theorem 2.3.1 The set of reqular languages is closed under the union op-
eration, i.e., if X and Y are reqular languages over the same alphabet, then
X UY s also a reqular language.

Proof. Since X and Y are regular languages, there are finite automata
M, = (@Q1,%,61,q1, F1) and My = (Q2,%, 9, q2, Fy) that accept X and Y,
respectively. In order to prove that X UY is regular, we have to construct a
finite automaton M that accepts X U Y. In other words, M must have the
property that for every string w € ¥,

M accepts w < M, accepts w or My accepts w.

As a first idea, we may think that M could do the following:
e Starting in the start state ¢;, M “runs” M; on w.

e If, after having read w, M; is in a state of Fj, then w € X, thus
w € X UY and, therefore, M accepts w.

e On the other hand, if, after having read w, M; is in a state that is not
in Fi, then w € X and M “runs” M, on w, starting in the start state
go of My. If, after having read w, M> is in a state of Fy, then we know
that w € Y, thus w € X UY and, therefore, M accepts w. Otherwise,
we know that w ¢ X UY, and M rejects w.

This idea does not work, because the finite automaton M can read the
wput string w only once.

The correct approach is to run M; and M, simultaneously. We define
the set) of states of M to be the cross product @)1 x Q2. If M is in state
(r1,72), then this means that

e if M, would have read the input string up to this point, then it would
be in state r1, and

2.3. REGULAR OPERATIONS 33
e if M, would have read the input string up to this point, then it would
be in state r;.
This leads to the finite automaton M = (Q, %, 6, g, F'), where

e Q = Q1 XQy = {(r1,m2) : 71 € Qrand ry € Q}. Observe that
Q| = |@Q1] X |Q2|, which is finite.

¥ is the alphabet of X and Y (recall that we assume that X and Y are
languages over the same alphabet).

The start state ¢ of M is equal to ¢ = (q1, ¢2)-

The set F' of accept states of M is given by

F:{(’I‘l,Tg) i1y € Fyorry EFQ}: (Fl X QQ)U(Ql X FQ)

The transition function ¢ : Q) X ¥ — @ is given by

5((7‘1,7"2), U,) - (51(7’1,@),52(7"2, G,)),
for all r; € Q1, ry € @9, and a € 3.

To finish the proof, we have to show that this finite automaton M indeed
accepts the language X UY. Intuitively, this should be clear from the discus-
sion above. The easiest way to give a formal proof is by using the extended
transition functions 6, and ds. (The extended transition function has been
defined after Definition 2.2.4.) Here we go: Recall that we have to prove that

M accepts w < M, accepts w or My accepts w,
i.e, B B
M accepts w < 01(q1, w) € Fy or d3(ge, w) € Fy.

In terms of the extended transition function & of the transition function & of
M, this becomes

0((q1,q2),w) € F & 6,(q1,w) € Fy or d3(qe, w) € F. (2.1)

By applying the definition of the extended transition function, as given after
Definition 2.2.4, to ¢, it can be seen that

6((q1, 32), w) = (61(q1, w), 02(g2, w)).

34 CHAPTER 2. FINITE AUTOMATA AND REGULAR LANGUAGES

The latter equality implies that (2.1) is true and, therefore, M indeed accepts
the language X UY. |

What about the closure of the regular languages under the concatenation
and star operations? It turns out that the regular languages are closed under
these operations. But how do we prove this?

Let X and Y be two regular languages, and let M; and M, be finite
automata that accept X and Y, respectively. How do we construct a finite
automaton M that accepts the concatenation XY? Given an input string
u, M has to decide whether or not u can be broken into two strings w and
w' (i.e., write u as u = ww'), such that w € X and w' € Y. In words, M
has to decide whether or not u can be broken into two substrings, such that
the first substring is accepted by M; and the second substring is accepted by
M,. The difficulty is caused by the fact that M has to make this decision by
scanning the string u only once. If v € XY, then M has to decide, during
this single scan, where to break u into two substrings. Similarly, if u ¢ XY,
then M has to decide, during this single scan, that u cannot be broken into
two substrings such that the first substring is in X and the second substring
isin Y.

It seems to be even more difficult to prove that X* is a regular language,
if X itself is regular. In order to prove this, we need a finite automaton
that, when given an arbitrary input string u, decides whether or not v can
be broken into substrings such that each substring is in X. The problem
is that, if v € X*, the finite automaton has to determine into how many
substrings, and where, the string u has to be broken; it has to do this during
one single scan of the string u.

As we mentioned already, if X and Y are regular languages, then both
XY and X* are also regular. In order to prove these claims, we will introduce
a more general type of finite automaton.

The finite automata that we have seen until now are deterministic. This
means the following:

e If the finite automaton M is in state r and if it reads the symbol a,
then M switches from state r to the uniquely defined state (r, a).

From now on, we will call such a finite automaton a deterministic finite
automaton (DFA). In the next section, we will define the notion of a nonde-
terministic finite automaton (NFA). For such an automaton, there are zero
or more possible states to switch to. At first sight, nondeterministic finite

2.4. NONDETERMINISTIC FINITE AUTOMATA 35

automata seem to be more powerful than their deterministic counterparts.
We will prove, however, that DFAs have the same power as NFAs. As we will
see, using this fact, it will be easy to prove that the class of regular languages
is closed under the concatenation and star operations.

2.4 Nondeterministic finite automata

We start by giving three examples of nondeterministic finite automata. These
examples will show the difference between this type of automata and the
deterministic versions that we have considered in the previous sections. After
these examples, we will give a formal definition of a nondeterministic finite
automaton.

2.4.1 A first example

Consider the following state diagram:

You will notice three differences with the finite automata that we have
seen until now. First, if the automaton is in state ¢; and reads the symbol 1,
then it has two options: Either it stays in state ¢, or it switches to state ¢».
Second, if the automaton is in state ¢o, then it can switch to state g3 without
reading a symbol; this is indicated by the edge having the empty string € as
label. Third, if the automaton is in state ¢3 and reads the symbol 0, then it
cannot continue.

Let us see what this automaton can do when it gets the string 010110 as
input. Initially, the automaton is in the start state g;.

e Since the first symbol in the input string is 0, the automaton stays in
state ¢ after having read this symbol.

e The second symbol is 1, and the automaton can either stay in state ¢;
or switch to state gy.

36 CHAPTER 2. FINITE AUTOMATA AND REGULAR LANGUAGES

— If the automaton stays in state ¢;, then it is still in this state after
having read the third symbol.

— If the automaton switches to state go, then it again has two op-
tions:

* Either read the third symbol in the input string, which is 0,
and switch to state g3,
* or switch to state g3, but do not read the third symbol.

If we continue in this way, then we see that, for the input string 010110,
there are seven possible computations. All these computations are given in
the figure below.

e e
a1 0
1 I\‘QQ L
o
0
@ @ g3 —hang
\
g2 —hang

1 €

1 0
g3 ——» Q4 —>»q4

@1 —q1
q3 #»lh — » 4 —— » Q4
1
0
q2 T»% —— > hang

Consider the lowest path in the figure above:
e When reading the first symbol, the automaton stays in state g;.
e When reading the second symbol, the automaton switches to state g¢s.

e The automaton does not read the third symbol (equivalently, it “reads”
the empty string €), and switches to state g3. At this moment, the

2.4. NONDETERMINISTIC FINITE AUTOMATA 37

automaton cannot continue: The third symbol is 0, but there is no
edge leaving ¢ that is labeled 0, and there is no edge leaving q3 that
is labeled €. Therefore, the computation hangs at this point.

From the figure, you can see that, out of the seven possible computations,
exactly two end in the accept state g4 (after the entire input string 010110
has been read). We say that the automaton accepts the string 010110.

Now consider the input string 010. In this case, there are three possible
computations:

0 1 0
Lg—qgq—qg—aq
0 1 0
2.1 = q1 — ¢ — q3
0 1 €
3. ¢1 > ¢ = ¢2 — g3 — hang

None of these computations end in the accept state (after the entire input
string 010 has been read). Therefore, we say that the automaton rejects the
input string 010.

The state diagram given above is an example of a nondeterministic finite
automaton (NFA). Informally, an NFA accepts a string, if there exists at least
one path in the state diagram that (i) starts in the start state, (ii) does not
hang before the entire string has been read, and (iii) ends in an accept state.
A string for which (i), (ii), and (iii) does not hold is rejected by the NFA.

The NFA given above accepts all strings that contain 101 or 11 as a
substring. All other strings are rejected.

2.4.2 A second example

Let A be the language
A={w € {0,1}*: w has a1 in the third position from the right}.

The following state diagram defines an NFA that accepts all strings in A,
and rejects all strings that are not in A.

38 CHAPTER 2. FINITE AUTOMATA AND REGULAR LANGUAGES

This NFA does the following. If it is in the start state ¢; and reads the
symbol 1, then it either stays in state g; or it “guesses” that this symbol
is the third symbol from the right in the input string. In the latter case,
the NFA switches to state ¢o, and then it “verifies” that there are indeed
exactly two remaining symbols in the input string. If there are more than
two remaining symbols, then the NFA hangs (in state g4) after having read
the next two symbols.

Observe how this guessing mechanism is used: The automaton can only
read the input string once, from left to right. Hence, it does not know when
it reaches the third symbol from the right. When the NFA reads a 1, it can
guess that this is the third symbol from the right; after having made this
guess, it verifies whether or not the guess was correct.

At first sight, it seems difficult (or even impossible?) to construct a
deterministic finite automaton (DFA) that accepts the language A: How
does the DFA “know” that it has reached the third symbol from the right?
It is, however, possible to construct such a DFA. This DFA uses eight states
4ijk, where 4, j, and k range over all elements of {0,1}. If the DFA is in state
Qijk, then

e the three most recently read symbols were ijk, or
e it has read only two symbols, which were jk, or

e it has read only one symbol, which was k.

The start state is gogo, and the set of accept states is equal to {qi00, ¢110, ¢101, G111 }-
The transition function of the DFA is given by the following state diagram.

2.4. NONDETERMINISTIC FINITE AUTOMATA 39

2.4.3 A third example

Consider the following state diagram, which depicts an NFA whose alphabet

is {0}.

This NFA accepts the language
A=1{0":k=0mod 2 or k=0 mod 3}
Observe that A is the union of the two languages
Ay = {0* : k = 0 mod 2}

and
Ay = {0* : k = 0 mod 3}.

The NFA basically consists of two DFAs: one of these accepts A;, whereas the
other accepts Ay. Given an input string w, the NFA has to decide whether or
not w € A, which is equivalent to deciding whether or not w € A; or w € As.
The NFA makes this decision in the following way: At the start, it “guesses”
whether to check whether or not w € A; (i.e., the length of w is even), or to
check whether or not w € Ay (i.e., the length of w is a multiple of 3). After
having made the guess, it verifies whether or not the guess was correct. If
w € A, then there is a way of making the correct guess and verifying that w
is indeed an element of A (by ending in an accept state). If w ¢ A, then no
matter which guess is made, the NFA will never end in an accept state.

40 CHAPTER 2. FINITE AUTOMATA AND REGULAR LANGUAGES

2.4.4 Definition of nondeterministic finite automaton

The previous examples give you an idea what nondeterministic finite au-
tomata are, and how they work. In this section, we give a formal definition
of these automata.

For any alphabet X, we define X, to be the set

Y. =X U{e}.

Recall the notion of a power set: For any set (), the power set of (), denoted
by P(Q), is the set of all subsets of @, i.e.,

P@) ={5:5cQ}.

Definition 2.4.1 A nondeterministic finite automaton (NFA) is a 5-tuple
M =(Q,%,6,q, F) where

1. @ is a finite set, whose elements are called states,

2. Y is a finite set, called the alphabet; the elements of ¥ are called symbols,
3. 0:Q x X, — P(Q) is a function, called the transition function,

4. ¢ is an element of (); it is called the start state,

5. F'is a subset of (); the elements of F' are called accept states.

As for DFAs, the transition function ¢ can be thought of as the “program”
of the finite automaton M = (Q, %, 4, q, F):

e Let r €), and let a € 3. Then 6(r,a) is a (possibly empty) subset of
Q. If the NFA M is in state r, and if it reads a (where a may be the
empty string €), then M can switch from state r to any state in §(r, a).
If §(r,a) = 0, then M cannot continue and the computation hangs.

The example given in Section 2.4.1 is an NFA, where Q = {q¢1, g2, ¢3, ¢4},
¥ =40, 1}, the start state is g;, the set of accept states is F' = {q4}, and the
transition function ¢ is given by the following table:

0 1 €
q1 {Q1} {(ha (]2} 0
q

g2 {Q3} 0 { 3}
g3 0 {Q4} 0
qa {Q4} {Q4} 0

2.5. EQUIVALENCE OF DFAS AND NFAS 41

Definition 2.4.2 Let M = (Q,%,0,q, F) be an NFA, and let w € ¥*. We
say that M accepts w, if w can be written as w = y1ys . . . Ymm, Where y; € 3,
for all 7 with 1 < ¢ < m, and if there exists a sequence rg, r1,...,r,, of states
in @), such that

® 7'y =4g,
o ri+1E5(7“Z-,yi+1),fori:(],l,...,m—1, and
e 1, €F.

Otherwise, we say that M rejects the string w.

The NFA in the example in Section 2.4.1 accepts the string 01100. This
can be seen by taking

e w = 01100, and
® T)g=q1,T1=q1, T2 = (2, T3 =3, T4 = 4, T5 = ¢4, and 75 = q4.

Definition 2.4.3 Let M = (Q,%,9,q, F) be an NFA. The language L(M)
accepted by M is defined as

L(M) ={w e X*: M accepts w }.

2.5 Equivalence of DFAs and NFAs

You may have the impression that nondeterministic finite automata are more
powerful than deterministic finite automata. In this section, we will show
that this is not the case. That is, we will prove that a language can be
accepted by a DFA if and only if it can be accepted by an NFA. In order
to prove this, we will show how to convert an arbitrary NFA to a DFA that
accepts the same language.

What about converting a DFA to an NFA? Well, there is (almost) nothing
to do, because a DFA is also an NFA. This is not quite true, because

e the transition function of a DFA maps a state and a symbol to a state,
whereas

e the transition function of an NFA maps a state and a symbol to a set
of zero or more states.

42 CHAPTER 2. FINITE AUTOMATA AND REGULAR LANGUAGES

The formal conversion of a DFA to an NFA is done as follows: Let M =
(Q,%,6,q, F) be a DFA. Recall that § is a function § : Q@ x ¥ — Q. We
define the function ¢’ : @ x 3¢ — P(Q) as follows. For any r € @ and for

any a € X,
Sy = { GO o7

Then N = (Q,%,0',q, F) is an NFA, whose behavior is exactly the same as
that of the DFA M; the easiest way to see this is by observing that the state
diagrams of M and N are equal. Therefore, we have L(M) = L(N).

In the rest of this section, we will show how to convert an NFA to a DFA:

Theorem 2.5.1 Let N = (Q, %, 6, q, F') be a nondeterministic finite automa-
ton. There erxists a deterministic finite automaton M, such that L(M) =
L(N).

Proof. Recall that the NFA N can (in general) perform more than one
computation on a given input string. The idea of the proof is to construct a
DFA M that runs all these different computations simultaneously. (We have
seen this idea already in the proof of Theorem 2.3.1.) To be more precise,
the DFA M will have the following property:

e the state that M is in after having read an initial part of the input
string corresponds exactly to the set of all states that N can reach
after having read the same part of the input string.

We start by presenting the conversion for the case when N does not
contain e-transitions. In other words, the state diagram of NV does not contain

any edge that has € as a label. (Later, we will extend the conversion to the
general case.) Let the DFA M be defined as M = (@', %, ¢, ¢, F'), where

e the set Q' of states is equal to Q' = P(Q); observe that |Q'| = 2/,

e the start state ¢’ is equal to ¢’ = {¢}; so M has the “same” start state
as N,

e the set I’ of accept states is equal to the set of all elements R of @)’
having the property that R contains at least one accept state of N, i.e.,

F'={Re@Q :RNF#0},

2.5. EQUIVALENCE OF DFAS AND NFAS 43

e the transition function ¢’ : Q' X ¥ — @’ is defined as follows: For each
R € @' and for each a € X,

§'(R,a) = | Jd(r,a).

r€ER

Let us see what the transition function §' of M does. First observe that,
since N is an NFA, 6(r,a) is a subset of Q). This implies that ¢'(R, a) is the
union of subsets of @) and, therefore, is also a subset of). Hence, ¢'(R, a) is
an element of)'.

The set §(r, a) is equal to the set of all states of the NFA N that can be
reached from state r, by reading the symbol a. For each r € R, we take the
union of these sets §(r, a) to obtain the new set §'(R, a). This new set is the
state that the DFA M reaches from state R, by reading the symbol a.

In this way, we obtain the correspondence that was given in the beginning
of this proof.

After this warming-up, we can consider the general case. In other words,
we allow that there are e-transitions in the NFA N. The DFA M is defined
as above, except that the transition function ¢’ has to be modified.

We need the notion of e-closure. For any state r of the NFA N, the e-
closure of r, denoted by C¢(r), is defined to be the set of all states in N that
can be reached from r, by making zero or more e-transitions. For any state
R of the DFA M (hence, R C @), we define

C(R) = | Cc(r).

r€ER

How do we define the transition function ¢’ of the DFA M? Assume that
M is in state R, and reads the symbol a. At this moment, the NFA N would
have been in any state r of R. By reading the symbol a, N can switch to
any state in d(r,a), and then make zero or more e-transitions. Hence, the
NFA can switch to any state in the set C¢(d(r, a)). Based on this, we define
d'(R,a) to be

§'(R,a) = U Ce((r, a)).
reR

To summarize, the NFA N = (Q,%,6,q, F) is converted to the DFA

M=(Q'%,0,q,F'"), where

* @' =P@),

44 CHAPTER 2. FINITE AUTOMATA AND REGULAR LANGUAGES

e ¢ =Cc{q}),
e F'={ReQ :RNF #0},

e 0 :Q x¥ — @ is defined as follows: For each R € Q' and for each
a € X,

§(R,a) = U Ce(0(r, a)).

reR

The results proved until now can be summarized in the following theorem.

Theorem 2.5.2 Let A be a language. Then A is reqular if and only if there
exrists a nondeterministic finite automaton that accepts A.

2.5.1 An example

Consider the NFA N = (Q, 3,0, q, F), where Q = {1,2,3}, ¥ = {a, b}, ¢ =1,
F = {2}, and ¢ is given by the following table:

‘ a b €
1|43} 0 {2}
2 {1} 0 0
31{2} {2,3} 0

The state diagram of IV is as follows:

2.5. EQUIVALENCE OF DFAS AND NFAS 45

We will show how to convert this NFA N to a DFA M that accepts the
same language. Following the proof of Theorem 2.5.1, the DFA M is specified
by M = (Q',%,0',¢', F'), where each of the components is defined below.

e ' =7P(Q). Hence,
Q = {0, {1}, {2}, {3}, {1, 2}, {1, 3}, {2,3}, {1,2,3}}.

e ¢ = Cc({q}). Hence, the start state ¢’ of M is the set of all states of
N that can be reached from N’s start state ¢ = 1, by making zero or
more e-transitions. We obtain

ql = Ce({q}) = Ce({l}) = {17 2}'

e F={Re @ :RNF #0}. Hence, the accept states of M are those
states that contain the accept state 2 of N. We obtain

F' ={{2},{1,2},{2,3},{1,2,3}}.

e 0 :Q xX — @ is defined as follows: For each R €) and for each
a €,

§'(R,a) = | C((r,a)).

r€ER

In this example ¢’ is given by

§(0,a) =10 §'(0,b) =0
o'({1},a) = {3} &'({1},6) =0
d'({2},a) = {1,2} o'({2},0) =0
o'({3},a) ={2} &'({3}b) ={2,3}
§'({1,2},a) = {1,2,3} &'({1,2},b) =0
§'({1,3},a) = {2,3} &({1,3},b) = {2,3}
0'({2,3},0) ={1,2} ¢'({2,3},0) = {2,3}
§({1,2,3},0) = {1,2,3} 6'({1,2,3},b) = {2,3}

The state diagram of the DFA M is as follows:

46 CHAPTER 2. FINITE AUTOMATA AND REGULAR LANGUAGES

We make the following observations:

e The states {1} and {1, 3} do not have incoming edges. Therefore, these
two states cannot be reached from the start state {1, 2}.

e The state {3} has only one incoming edge; it comes from the state
{1}. Since {1} cannot be reached from the start state, {3} cannot be
reached from the start state.

e The state {2} has only one incoming edge; it comes from the state
{3}. Since {3} cannot be reached from the start state, {2} cannot be
reached from the start state.

Hence, we can remove the four states {1}, {2}, {3}, and {1,3}. The
resulting DFA accepts the same language as the DFA above. This leads
to the following state diagram, which depicts a DFA that accepts the same
language as the NFA N:

2.6. CLOSURE UNDER THE REGULAR OPERATIONS 47

2.6 Closure under the regular operations

In Section 2.3, we have defined the regular operations union, concatenation,
and star. We proved in Theorem 2.3.1 that the union of two regular lan-
guages is a regular language. We also explained why it is not clear that the
concatenation of two regular languages is regular, and that the star of a reg-
ular language is regular. In this section, we will see that the concept of NFA,
together with Theorem 2.5.2, can be used to give a simple proof of the fact
that the regular languages are indeed closed under the regular operations.
We start by giving an alternative proof of Theorem 2.3.1:

Theorem 2.6.1 The set of reqular languages is closed under the union op-
eration, i.e., if A1 and Ag are reqular languages over the same alphabet, then
Ay U A, is also a regular language.

48 CHAPTER 2. FINITE AUTOMATA AND REGULAR LANGUAGES

Figure 2.1: The NFA that accepts L(M;) U L(Ms).

Proof. Since A; is regular, there is, by Theorem 2.5.2, an NFA M; =
(Q1,%,61,q1, F1), such that A; = L(M;). Similarly, there is an NFA M, =
(Q2,%, 09, G, F3), such that Ay = L(M,). We may assume that Q; N Qy = 0.
From these two NFAs, we will construct an NFA M = (Q, %, 0, g0, F'), such
that L(M) = A; U Ay. The construction is illustrated in Figure 2.1. The

NFA M is defined as follows:
1. @ ={q}UQ1UQ>, where qq is a new state.

2.6. CLOSURE UNDER THE REGULAR OPERATIONS 49

2. qo is the start state of M.
3. F - F1 U FQ.

4. 5 :Q x 3. — P(Q) is defined as follows: For any r € @ and for any
a € X,

O1(r,a) ifr € Qy,

da(r,a) if r € Qo,

{q1,q2} ifr =qo and a =€,

0 if r =¢qp and a # e.

d(r,a) =

Theorem 2.6.2 The set of reqular languages is closed under the concate-
nation operation, t.e., if A1 and Ay are reqular languages over the same
alphabet, then A1As is also a reqular language.

Proof. Let My = (Q1,%,01,¢1, F1) be an NFA, such that A; = L(M).
Similarly, let My = (Q2, X, 02, g2, F3) be an NFA| such that Ay = L(M,). We
may assume that Q1NQ, = (). We will construct an NFA M = (Q, %, 6, qo, F),
such that L(M) = A;As. The construction is illustrated in Figure 2.2. The
NFA M is defined as follows:

L Q=Q1UQy.
2. 90 =q.
3. F:F2
4. §:Q x X — P(Q) is defined as follows: For any r € @ and for any
a € X,
d1(r, a) ifr€ @ and r & Fy,
5(r,a) = d1(r, a) if r € F} and a # e,
na d1(r,a) U{gy} ifr € Fy and a =€,
da(r, a) if r € Qs.

50 CHAPTER 2. FINITE AUTOMATA AND REGULAR LANGUAGES

T

O
O

@
© O
O,

® oT—» O
O o1, 0°4
el © O

Figure 2.2: The NFA that accepts L(M;)L(Ms).

Theorem 2.6.3 The set of reqular languages is closed under the star oper-
ation, i.e., if A is a reqular language, then A* is also a regular language.

Proof. Let N = (Q1,%,01,¢1, F1) be an NFA, such that A = L(N). We
will construct an NFA M = (Q,%,0,qo, F), such that L(M) = A*. The
construction is illustrated in Figure 2.3. The NFA M is defined as follows:

1. @ ={qo} UQ1, where g is a new state.

2. qo is the start state of M.

2.6. CLOSURE UNDER THE REGULAR OPERATIONS 51

e

O
O

©
©
O,

Figure 2.3: The NFA that accepts (L(N))*.

3. F={q}UF,. (Since € € A*, qo has to be an accept state.)
4. §:Q x 3 — P(Q) is defined as follows: For any r € @ and for any

a € Eea
d1(r, a) ifr €@ and r & F,
d1(r, a) if r € Fy and a # ¢,
d(r,a) =< di(r,a) U{q:} ifr € Fy and a =,
{1} if r=gqoand a =,
0 ifr=gqyand a #e.

In the final theorem of this section, we mention (without proof) two more
closure properties of the regular languages:

Theorem 2.6.4 The set of reqular languages is closed under the intersection
and the complement operations:
1. If A is a regular language over the alphabet X, then the complement

A={wes :wgA}

1s also a regular language.

52 CHAPTER 2. FINITE AUTOMATA AND REGULAR LANGUAGES

2. If Ay and A, are regular languages over the same alphabet, then the
intersection

AiNAy={weX" :we A andw € Ay}

1s also a regular language.

2.7 Regular expressions

In this section, we present regular expressions, which are a means to describe
languages. As we will see, the class of languages that can be described by
regular expressions coincides with the class of regular languages.

Before formally defining the notion of a regular expression, we give some
examples. Consider the expression

(ou1)01™.
The language described by this expression is the set of all binary strings
1. that start with either 0 or 1 (this is indicated by (0U 1)),
2. for which the second symbol is 0 (this is indicated by 0), and
3. that end with zero or more 1s (this is indicated by 1*).

That is, the language described by this expression is
{00, 001,0011,00111,...,10,101,1011,10111, .. .}.

Here are some more examples (where the alphabet is {0,1}):

The language {w : w contains exactly two 0s} is described by the expres-
sion

1*01*01™.

The language {w : w contains at least two 0Os} is described by the expres-

sion
(oun*o(ouU1)*0(OUL) .

The language {w : 1011 is a substring of w} is described by the expres-

sion
(0U1)*1011(0U 1)*.

2.7. REGULAR EXPRESSIONS 53

The language {w : the length of w is even} is described by the expression
(ou1)(OUL))*.
The language {w : the length of w is odd} is described by the expression
(oul)((bul)(OU1)) .
The language {1011, 0} is described by the expression
1011 U 0.

The language {w : the first and last symbols of w are equal} is described
by the expression
oounoUl(OUL)TUOUL.

After these examples, we give a formal (and inductive) definition of regular
ETPTESSIONS:

Definition 2.7.1 Let ¥ be a non-empty alphabet.
1. € is a regular expression.
2.) is a regular expression.
3. For each a € X, a is a regular expression.

4. If R; and Ry are regular expressions, then R; U Ry is a regular expres-
sion.

5. If Ry and R, are regular expressions, then R, R is a regular expression.

6. If R is a regular expression, then R* is a regular expression.

You can regard 1., 2., and 3. as being the “building blocks” of regular
expressions. Items 4., 5., and 6. give rules that can be used to combine
regular expressions into a new (and “larger”) regular expression. To give an
example, we claim that

(ou1n*101(0U1)*

is a regular expression. In order to prove this, we have to show that this
expression can be “built” using the “rules” given in Definition 2.7.1. Here
we go:

54 CHAPTER 2. FINITE AUTOMATA AND REGULAR LANGUAGES

e By 3., 0 is a regular expression.
e By 3., 1 is a regular expression.
e Since 0 and 1 are regular expressions, by 4., 0U1 is a regular expression.
e Since 0U1 is a regular expression, by 6., (0U1)* is a regular expression.
e Since 1 and 0 are regular expressions, by 5., 10 is a regular expression.
e Since 10 and 1 are regular expressions, by 5., 101 is a regular expression.

e Since (0 U 1)* and 101 are regular expressions, by 5., (0 U 1)*101 is a
regular expression.

e Since (0 U 1)*101 and (0 U 1)* are regular expressions, by 5., (0 U
1)*101(0 U 1)* is a regular expression.

Next we define the language that is described by a regular expression:

Definition 2.7.2 Let ¥ be a non-empty alphabet.

—_

. The regular expression e describes the language {€}.
2. The regular expression () describes the language (.
3. For each a € X, the regular expression a describes the language {a}.

4. Let Ry and Ry be regular expressions, and let L; and L, be the lan-
guages described by them, respectively. The regular expression R; U Ry
describes the language Ly U L.

5. Let R; and Ry be regular expressions, and let L; and L, be the lan-
guages described by them, respectively. The regular expression R; R,
describes the language L Ls.

6. Let R be a regular expression, and let L be the language described by
it. The regular expression R* describes the language L*.

We consider some examples:

e The regular expression (0Ue¢)(1Ue¢) describes the language {01,0, 1, €}.

2.8. EQUIVALENCE OF REGULAR EXPRESSIONS AND REGULAR LANGUAGESb5

e The regular expression 0 U e describes the language {0, ¢}, whereas the
regular expression 1* describes the language {¢,1,11,111,...}. There-
fore,the regular expression (0 U €)1* describes the language

{0,01,011,0111,...,¢ 1,11,111,...}.

Observe that this language is also described by the regular expression
01* U 1*.

e The regular expression 1*() describes the language 0.

e The regular expression (* describes the language {e}.

Definition 2.7.3 Let R, and R, be regular expressions, and let L; and Lo
be the languages described by them, respectively. If Ly = Ly (i.e., Ry and
R, describe the same language), then we will write R; = Ry.

Hence, even though (0Ue€)1* and 01* U1* are different regular expressions,

we write
(OUe1* =01"U 1",

because they describe the same language.

2.8 Equivalence of regular expressions and reg-
ular languages

In the beginning of Section 2.7, we mentioned the following result:

Theorem 2.8.1 Let L be a language. Then L s reqular if and only if there
exrists a reqular expression that describes L.

The proof of this theorem consists of two parts:

e In Section 2.8.1, we will prove that every regular expression describes
a regular language.

e In Section 2.8.2, we will prove that every DFA M can be converted to
a regular expression that describes the language L(M).

These two results will prove Theorem 2.8.1.

56 CHAPTER 2. FINITE AUTOMATA AND REGULAR LANGUAGES

2.8.1 Every regular expression describes a regular lan-
guage

Let R be an arbitrary regular expression over the alphabet . We will prove
that the language described by R is a regular language. The proof is by
induction on the structure of R (i.e., by induction on the way R is “built”
using the “rules” given in Definition 2.7.1).

The first base case: Assume that R = €. Then R describes the lan-
guage {e}. In order to prove that this language is regular, it suffices, by
Theorem 2.5.2; to construct an NFA M = (Q,X,d,q, F') that accepts this
language. This NFA is obtained by defining @ = {q}, ¢ is the start state,
F = {q}, and 6(q,a) = 0 for all a € .. The figure below gives the state

diagram of M:
—@

The second base case: Assume that R = (). Then R describes the language
(). In order to prove that this language is regular, it suffices, by Theorem 2.5.2,
to construct an NFA M = (Q, %, 6,q, F') that accepts this language. This
NFA is obtained by defining @ = {q}, ¢ is the start state, FF = (), and
d(q,a) = 0 for all a € .. The figure below gives the state diagram of M:

=0

The third base case: Let a € ¥, and assume that R = a. Then R describes
the language {a}. In order to prove that this language is regular, it suffices,
by Theorem 2.5.2, to construct an NFA M = (@, X%, 4, ¢, F) that accepts
this language. This NFA is obtained by defining @ = {q¢1, ¢2}, ¢1 is the start
state, F' = {g»}, and

6(qi,a) = {ao}
§ forallbe X, \ {a}
d(ge,b) = O forallbe X,

(=)
—
=]
=

=
~—

I

The figure below gives the state diagram of M:

2.8. EQUIVALENCE OF REGULAR EXPRESSIONS AND REGULAR LANGUAGES57

The first case of the induction step: Assume that R = R; U Ry, where
R, and R, are regular expressions. Let L; and Ly be the languages described
by R; and R,, respectively, and assume that L; and L, are regular. Then R
describes the language L U Ly, which, by Theorem 2.6.1, is regular.

The second case of the induction step: Assume that R = R; R, where
Ry and R, are regular expressions. Let L; and Ly be the languages described
by R, and R, respectively, and assume that L, and L. are regular. Then R
describes the language Ly Ly, which, by Theorem 2.6.2, is regular.

The third case of the induction step: Assume that R = (R;)*, where
R, is a regular expression. Let L; be the language described by R;, and
assume that L; is regular. Then R describes the language (L;)*, which, by
Theorem 2.6.3, is regular.

This concludes the proof of the claim that every regular expression de-
scribes a regular language.
To give an example, consider the regular expression

(abU a)*,

where the alphabet is {a,b}. We will prove that this regular expression de-
scribes a regular language, by constructing an NFA that accepts the language

described by this regular expression. Observe how the regular expression is
“built”:

e Take the regular expressions a and b, and combine them into the regular
expression ab.

e Take the regular expressions ab and a, and combine them into the
regular expression ab U a.

e Take the regular expressions ab U a, and transform it into the regular
expression (abU a)*.

First, we construct an NFA M; that accepts the language described by
the regular expression a:

58 CHAPTER 2. FINITE AUTOMATA AND REGULAR LANGUAGES
v w

Next, we construct an NFA M, that accepts the language described by
the regular expression b:

. —0=—~0)

Next, we apply the construction given in the proof of Theorem 2.6.2 to
M, and M. This gives an NFA Mj3 that accepts the language described by
the regular expression ab:

a —~ € ,—~ b
My OOO

Next, we apply the construction given in the proof of Theorem 2.6.1 to
M3 and M;. This gives an NFA M, that accepts the language described by
the regular expression ab U a:

My

Finally, we apply the construction given in the proof of Theorem 2.6.3
to M,. This gives an NFA Mj5 that accepts the language described by the
regular expression (abU a)*:

2.8. EQUIVALENCE OF REGULAR EXPRESSIONS AND REGULAR LANGUAGES59

2.8.2 Converting a DFA to a regular expression

In this section, we will prove that every DFA M can be converted to a regular
expression that describes the language L(M). In order to prove this result,
we need to solve recurrence relations involving languages.

Solving recurrence relations

Let X be an alphabet, and let B, C; and L be languages in >* such that
€ ¢ B, and
L=BLUC.

Can we “solve” this equation for L? That is, can we express L in terms of
B and C?

Let u be an arbitrary string in L, and let us determine how u looks like.
Since v € L and L = BLUC, we know that u is a string in BL U C. Hence,
there are two possibilities for .

1. u is an element of C.

2. u is an element of BL. In this case, there are strings b € B and v € L
such that v = bv. Since v is a string in L, it is also a string in BLUC.
Hence, there are two possibilities for v.

(a) v is an element of C. In this case,

u = bv, where b € B and v € C.

60 CHAPTER 2. FINITE AUTOMATA AND REGULAR LANGUAGES

(b) v is an element of BL. In this case, there are strings b’ € B and
w € L such that v = b'w. Since w is a string in L, it is also a
string in BL U C'. Hence, there are two possibilities for w.

i. w is an element of C'. In this case,
u = bb'w, where b’ € B and w € C.

ii. w is an element of BL. In this case, there are strings b” € B
and x € L such that w = 0"z. Since z is a string in L, it is
also a string in BL U C'. Hence, there are two possibilities for
x.

A. z is an element of C. In this case,
uw=0bb'b"x, where b,0',b" € B and z € C.
B. z is an element of BL. Etc., etc.

This process hopefully convinces you that any string v in L can be written
as the concatenation of zero or more strings in B, followed by one string in
C. In fact, L consists of exactly those strings having this property:

Lemma 2.8.2 Let ¥ be an alphabet, and let B, C, and L be languages in
¥* such that ¢ € B and
L=BLUC.

Then
L = B*C.

Proof. First, we show that B*C' C L. Let u be an arbitrary string in B*C'.
Then u is the concatenation of £ strings of B, for some k£ > 0, followed by
one string of C. We proceed by induction on £.

The base case is when k£ = 0. In this case, u is a string in C. (Why?
Since u € B*C, and we are choosing & = 0 strings from B.) Hence, u is a
string in BL U C'. Since BLU C = L, it follows that u is a string in L.

Now let £ > 1. Then we can write u = vwec, where v is a string in B,
w is the concatenation of £ — 1 strings of B, and c is a string of C'. Define
y = we. Observe that y is the concatenation of £ — 1 strings of B followed
by one string of C. Therefore, by induction, the string y is an element of L.
Hence, u = vy, where v is a string in B and y is a string in L. This shows

2.8. EQUIVALENCE OF REGULAR EXPRESSIONS AND REGULAR LANGUAGES61

that u is a string in BL. Hence, u is a string in BLUC'. Since BLUC =L,
it follows that u is a string in L. This completes the proof that B*C' C L.

It remains to show that L C B*C. Let u be an arbitrary string in L,
and let ¢ be its length (i.e., £ is the number of symbols in u). We prove by
induction on ¢ that w is a string in B*C.

The base case is when £ = 0. Then u = €. Since u € L and L = BLU C,
u is a string in BL U C. Since € ¢ B, u cannot be a string in BL. Hence, u
must be a string in C'. Since C C B*C), it follows that u is a string in B*C.

Let £ > 1. If uis a string in C, then w is a string in B*C and we are done.
So assume that u is not a string in C'. Since v € L and L = BLUC, u is a
string in BL. Hence, there are strings b € B and v € L such that u = bv.
Since € ¢ B, the length of b is at least one; hence, the length of v is less than
the length of u. By induction, v is a string in B*C. Hence, u = bv, where
b € B and v € B*C. This shows that v € B(B*C). Since B(B*C) C B*C,
it follows that v € B*C. |

The conversion

We will now use Lemma 2.8.2 to prove that every DFA can be converted to
a regular expression.

Let M = (Q,%,0,q,F) be an arbitrary deterministic finite automaton.
We will show that there exists a regular expression that describes the lan-
guage L(M).

For each state r €), we define

L, ={w € X*: the path in the state diagram of M that starts
in state r and that corresponds to w ends in a
state of F' }.

We will show that each such language L, can be described by a regular
expression. Since L(M) = L, this will prove that L(A) can be described by
a regular expression.

The basic idea is to set up equations for the languages L,., which we then
solve using Lemma 2.8.2. We claim that

Ly=|Ja Lypa ifr¢F. (2.2)

a€Y

Why is this true? Let w be a string in L,. Then the path P in the state

62 CHAPTER 2. FINITE AUTOMATA AND REGULAR LANGUAGES

diagram of M that starts in state r and that corresponds to w ends in a
state of F. Since r ¢ F, this path contains at least one edge. Let 7' be the
state that follows the first state (i.e., r) of P. Then r' = §(r,b) for some
symbol b € Y. Hence, b is the first symbol of w. Write w = bv, where v is
the remaining part of w. Then the path P’ = P\ {r} in the state diagram
of M that starts in state 7’ and that corresponds to v ends in a state of F.
Therefore, v € L,» = Ls(-). Hence,

w € b- Lepp) C U a - Ls(r.q)-

a€EX

Conversely, let w be a string in (J,c5, @ Ls(r,a)- Then there is a symbol b € ¥
and a string v € Ly p) such that w = bv. Let P’ be the path in the state
diagram of M that starts in state d(r,b) and that corresponds to v. Since
v € Ls(p), this path ends in a state of F. Let P be the path in the state
diagram of M that starts in r, follows the edge to d(r,b) and then follows
P'. This path P ends in a state of F. Therefore w € L,. This proves the
correctness of (2.2).

Similarly, we can prove that

L.=¢U (U a- L(j(,,-,a)> ifre F. (2.3)

a€EX

So we now have a set of equations in the “unknowns” L,, for r € (). The
number of equations is equal to the size of). The regular expression for
L(M) = L, is obtained by solving these equations using Lemma 2.8.2.

An example

Consider the deterministic finite automaton M = (Q, %, 6, qo, F'), where Q) =
{90, 91,92}, ¥ = {a, b}, qo is the start state, F' = {g2}, and 0 is given in the
state diagram below. We show how to obtain the regular expression that
describes the language accepted by M.

2.8. EQUIVALENCE OF REGULAR EXPRESSIONS AND REGULAR LANGUAGES63

For this case, (2.2) and (2.3) give the following equations.

Ly = a-LyuUb- Ly,
Ly = a-LiuyUb-Ly,
Ly = e€eUa- Ly Ub- Ly,

In the third equation, L, is expressed in terms of L,y and L4, . Hence, if
we substitute the third equation into the first equation, then we get

Ly = a-LyuUb-(eUa-Ly, Ub- Ly,)
(@Ubb) - Ly Uba - Ly, Ub.

We obtain the following set of equations.
Ly = (aUbb)-LyUba- L, Ub
L, = b-L,yUa- Ly,

Let L=L,,B=b,and C =a-Lg. Then e ¢ B and L = BLUC. Hence,
by Lemma 2.8.2,
Ly =L=BC=b%-Lg.

If we substitute L, into the first equation, then we get

64 CHAPTER 2. FINITE AUTOMATA AND REGULAR LANGUAGES

Ly = (aUbb)- Ly Ubab*a- Ly, Ub
(aUbbUbab*a)L,, U b.

Again applying Lemma 2.8.2, this time with L = L), B = aUbbUbab*a and
C = b, gives
Ly, = (aUbbU bab*a)™ b.

Hence, the regular expression that describes the language accepted by M is

(a U bbU bab*a)™ b.

2.9 The pumping lemma and nonregular lan-
guages

In the previous sections, we have seen that that the class of regular languages
is closed under various operations, and that these languages can be described
by a (deterministic or nondeterministic) finite automaton, or by a regular
expression. These properties helped in developing techniques for showing
that a language is regular. In this section, we will present a tool that can
be used to prove that certain languages are not regular. Observe that for a
regular language,

1. the amount of memory that is needed to determine whether or not a
given string is in the language is finite, and

2. if the language consists of an infinite number of strings, then this lan-
guage should contain infinite subsets with fairly repetitive structures.

Intuitively, languages that do not follow 1. or 2. should be nonregular. For
example, consider the language

{0"1" : n > 0}.

This language should be nonregular, because it seems unlikely that a DFA can
remember how many Os it has seen when it has reached the border between
the Os and the 1s while reading a string. Similarly the language

{07 : pis a prime number}

2.9. THE PUMPING LEMMA AND NONREGULAR LANGUAGES 65

should be nonregular, because the prime numbers do not have any repetitive
structure that can be used by a DFA. To be more rigorous about this, we will
establish a property that all regular languages must satisfy. This property is
called the pumping lemma. If a language does not have this property, then
it must be nonregular.

The pumping lemma states that any sufficiently long string in a regular
language can be pumped, i.e., there is a section in that string that can be
repeated any number of times, so that the resulting strings are all in the
language.

Theorem 2.9.1 (Pumping Lemma for Regular Languages) Let A be
a reqular language. Then there exists an integer p > 1, called the pumping
length, such that the following holds: Every string s in A, with |s| > p, can
be written as s = xyz, such that

Loy#e fic, |y >1),
2. |yl <p, and

3. zy'z € A, for alli > 0.

In words, the pumping lemma states that by replacing the portion y in s
by zero or more copies of it, the resulting string is still in the language A.

Proof. Since A is a regular language, there exists a DFA M = (Q, %, 9, ¢, F)
that accepts A. We define p to be the number of states in Q).

Let s = s189...5, be an arbitrary string in A, such that n > p. Define
M =q, Ty = 0(r1,81), 13 = 0(72,82), - Tny1 = 0(rn, Sn). Hence, when the
DFA M reads the string s, it visits the states ri,79,...,7,41. Since s € A,
we know that 7,1 € F.

Consider the first p + 1 states 71,79,...,7p41 in this sequence. Since M
contains p states, the pigeon hole principle implies that there must be a state
that occurs twice in this sequence. That is, there are indices 7 and ¢ such
that 1 <j<{¢<p+1andr;=r,.

66 CHAPTER 2. FINITE AUTOMATA AND REGULAR LANGUAGES

We define © = s159...5j_1, y = 5j...5,-1, and 2 = 54...5,. Since j < ¢,
we have y # ¢, proving the first claim in the theorem. Since ¢ < p+ 1, we
have |zy| = £ — 1 < p, proving the second claim in the theorem. To see that
the third claim also holds, recall that the string s = zyz is accepted by M.
While reading z, M moves from the start state ¢ to state r;. While reading
y, it moves from state r; to state r, = r;; hence, after having read y, M is
again in state ;. While reading z, M moves from state r; to the accept state
rni1. Therefore, the substring y can be repeated any number ¢ > 0 of times,
and the corresponding string zy’z will still be in A. [

2.9.1 Applications of the pumping lemma
First example

Consider the language
A={0"1":n > 0}.

We will prove by contradiction that A is not a regular language.

Assume that A is a regular language. Let p > 1 be the pumping length,
as given by the pumping lemma. Consider the string s = 0P17. It is clear
that s € A and |s| = 2p > p. Hence, by the pumping lemma, s can be
written as s = zyz, where y # ¢, |ry| < p, and zy’z € A for all i > 0.

Observe that, since |zy| < p, the string y contains only 0s. Moreover,
since y # €, y contains at least one 0. But now we are in trouble: none of
the strings xy°2 = xz, ry*2z = zyyz, 2y32 = TYyyz, ..., is contained in A.
But, by the pumping lemma, all these strings must be in A. Hence, we have
a contradiction and we conclude that A is not a regular language.

2.9. THE PUMPING LEMMA AND NONREGULAR LANGUAGES 67

Second example

Consider the language
A={we€{0,1}*: the number of 0s in w equals the number of 1s in w}.

Again, we prove by contradiction that A is not a regular language.

Assume that A is a regular language. Let p > 1 be the pumping length,
as given by the pumping lemma. Consider the string s = 0P17. Then s € A
and |s| = 2p > p. By the pumping lemma, s can be written as s = zyz,
where y # ¢, |zy| < p, and zy‘z € A for all 1 > 0.

Since |zy| < p, the string y contains only 0s. Since y # €, y contains
at least one 0. Since the string xy%2 = zyyz contains more Os than 1s, this
string is not contained in A. But, by the pumping lemma, this string is
contained in A. This is a contradiction and, therefore, A is not a regular
language.

Third example

Consider the language
A={ww:we{0,1}"}.

We prove by contradiction that A is not a regular language.

Assume that A is a regular language. Let p > 1 be the pumping length,
as given by the pumping lemma. Consider the string s = 0P10P1. Then s € A
and |s| = 2p+ 2 > p. By the pumping lemma, s can be written as s = zyz,
where y # ¢, |zy| < p, and zy‘z € A for all 1 > 0.

Since |zy| < p, the string y contains only 0s. Since y # €, y contains at
least one 0. Therefore, the string zy?2 = xyyz is not contained in A. But,
by the pumping lemma, this string is contained in A. This is a contradiction
and, therefore, A is not a regular language.

Fourth example
Consider the language
A={0"1":m >n > 0}.

We prove by contradiction that A is not a regular language.

68 CHAPTER 2. FINITE AUTOMATA AND REGULAR LANGUAGES

Assume that A is a regular language. Let p > 1 be the pumping length,
as given by the pumping lemma. Consider the string s = 0°P*'1P. Then s € A
and |s| = 2p+ 1 > p. By the pumping lemma, s can be written as s = zyz,
where y # ¢, |zy| < p, and zy’z € A for all 1 > 0.

Since |zy| < p, the string y contains only Os. Since y # €, y contains at
least one 0. Consider the string zy°z = zz. The number of 1s in this string
is equal to p, whereas the number of Os is at most equal to p. Therefore, the
string 7y’z is not contained in A. But, by the pumping lemma, this string
is contained in A. This is a contradiction and, therefore, A is not a regular
language.

Fifth example

Consider the language
A={1":n>0}.

We prove by contradiction that A is not a regular language.
Assume that A is a regular language. Let p > 1 be the pumping length,
as given by the pumping lemma. Consider the string s = 17", Then s € A
and |s| = p> > p. By the pumping lemma, s can be written as s = zyz,
where y # ¢, |zy| < p, and zy’z € A for all 1 > 0.
Observe that
|s| = |zyz| = p’

and
\zy®z] = |wyyz| = |zyz| + y| = p* + |y|.

Since |zy| < p, we have |y| < p. Since y # €, we have |y| > 1. It follows that
p* < |zy’z| <p*+p < (p+1)>%

Hence, the length of the string zy?z is strictly between two consecutive
squares. In particular, this length is not a square and, therefore, zy%z is
not contained in A. But, by the pumping lemma, this string is contained in
A. This is a contradiction and, therefore, A is not a regular language.

Sixth example

Consider the language

A ={1": nis a prime number}.

2.9. THE PUMPING LEMMA AND NONREGULAR LANGUAGES 69

We prove by contradiction that A is not a regular language.

Assume that A is a regular language. Let p > 1 be the pumping length,
as given by the pumping lemma. Let n > p be a prime number, and consider
the string s = 1". Then s € A and |s| = n > p. By the pumping lemma, s
can be written as s = xyz, where y # ¢, |zy| < p, and zy‘z € A for all i > 0.

Let k be the integer such that y = 1*. Since y # ¢, we have k > 1. For
each i > 0, n+ (i — 1)k is a prime number, because zy’z = 1"tk ¢ A,
For ¢+ = n + 1, however, we have

n+(i—1)k=n+nk=n(l+k),

which is not a prime number, because n > 2 and 1 + k > 2. This is a
contradiction and, therefore, A is not a regular language.

Seventh example

Consider the language

A={we{0,1}*: the number of occurrences of 01 in w is equal to
the number of occurrences of 10 in w }.

Since this language has the same flavor as the one in the second example,
we may suspect that A is not a regular language. This is, however, not true:
as we will show, A is a regular language.

The key property is the following one: Let w be an arbitrary string in
{0,1}*. Then

the absolute value of the number of occurrences of 01 in w minus
the number of occurrences of 10 in w is at most one.

This property holds, because between any two consecutive occurrences of
01, there must be exactly one occurrence of 10. Similarly, between any two
consecutive occurrences of 10, there must be exactly one occurrence of 01.

We will construct a DFA that accepts A. This DFA uses the following
five states:

e ¢: start state.

® ¢o1: the last symbol read was 1, and the number of occurrences of 01
is one more than the number of occurrences of 10.

70 CHAPTER 2. FINITE AUTOMATA AND REGULAR LANGUAGES

® ¢io: the last symbol read was 0, and the number of occurrences of 10
is one more than the number of occurrences of 01.

. ngual: the last symbol read was 0, and the number of occurrences of 01
is equal to the number of occurrences of 10.

® ¢luq: the last symbol read was 1, and the number of occurrences of 01
is equal to the number of occurrences of 10.

The set of accept states is equal t0 {¢, ¢J a1 Goquar}- The state diagram of
the DFA is given below.

2.10 Exercises

2.1 For each of the following languages, construct a DFA that accepts the
language. In all cases, the alphabet is {0, 1}.

1. {w: wis a binary string}
2. {w: the length of w is divisible by three}

3. {w: 110 is not a substring of w}

2.10.

EXERCISES 71

. {w : w contains at least five 1s}

{w : w contains the substring 1011}
{w : w contains at least two 1s and at most two Os}
{w : w contains an odd number of 1s or exactly two Os}

{w : w contains even number of 0s and even number of 1s}

2.2 Construct two NFAs M; and M,, different from those in these notes,
both consisting of at least three states and both containing at least one
cycle, over the alphabet {0,1}. Answer the following questions with some
reasonable justification:

1.

2.

7.

Why are M; and M, NFAs?

Describe the languages L(M;) and L(Ms;), that is, describe the set of
strings that are accepted by M; and M,.

Describe DFAs N; and N,, such that L(N;) = L(M;) and L(N,) =
L(M,). Argue why this is true.

Construct an NFA for L(M;) U L(Ms).
Construct an NFA for L(M;)L(Ms).
Construct NFAs for (L(M;))* and (L(M2))*.

Construct a regular expression that describes L(M;).

2.3 For each of the following languages, construct an NFA, with the specified
number of states, that accepts the language. In all cases, the alphabet is

{0,1}.

1.

2.

The language {w : w ends with 10} with three states.
The language {w : w contains the substring 1011} with five states.

The language {w : w contains an odd number of 1s or exactly two Os}
with six states.

72 CHAPTER 2. FINITE AUTOMATA AND REGULAR LANGUAGES

2.4 Give regular expressions describing the following languages. In all cases,
the alphabet is {0, 1}.

1. {w : w contains at least three 1s}.
2. {w : w contains at least two 1s and at most one 0},

3. {w : w contains an even number of Os and exactly two 1s}.

2.5 For each of the following languages, give two strings that are members
and two strings that are not members, a total of four strings each. The
alphabet is ¥ = {a, b}.

1. a(ba)*b.
2. YraXrbXradr.
3. (aUbaUbb)X*

2.6 Convert the following NFA to an equivalent DFA.

2.7 Convert each of the following regular expressions to an NFA.
1. (OU1)*000(0 U 1)*

2. (((10)*(00)) U 10)*

2.10. EXERCISES 73

2.8 Convert the following DFA to a regular expression.

2.9 Let A be aregular language. Prove that there exists an NFA that accepts
A and that has exactly one accept state.

2.10 For any string w = wyws . .. w,, we denote by w? the string obtained
by reading w backwards, i.e., wf = w,w,_; ... wow,. For any language A, we
define A% to be the language obtained by reading all strings in A backwards,
ie.,

AR = {w":w e A}.

Let A be a regular language. Prove that the language A% is also regular.

2.11 Let X be a non-empty alphabet, and let L be a language over Y, i.e.,
L C ¥*. We define a binary relation Ry on ¥* x ¥* in the following way:
For any two strings v and u' in X*,
uRpu' if and only if (Vv € ¥*:uv € Lo v'v € L).
Prove that Ry is an equivalence relation.
2.12 Let ¥ = {0, 1}, let
L={weX": |w|isodd},

and consider the relation Ry defined in the previous exercise.

74 CHAPTER 2. FINITE AUTOMATA AND REGULAR LANGUAGES

1. Prove that for any two strings v and u’ in ¥*,

uRpu' & |u| — |u/| is even.
2. Determine all equivalence classes of the relation R, .

2.13 Let X be a non-empty alphabet, and let L be a language over X, i.e.,
L C ¥*. Recall the equivalence relation R; that was defined above.

1. Assume that L is a regular language, and let M = (Q, 3,0, qo, F) be
a DFA that accepts L. Let u and u' be strings in ¥*. Let ¢ be the
state reached, when following the path in the state diagram of M, that
starts in gy and that is obtained by reading the string w. Similarly, let
¢’ be the state reached, when following the path in the state diagram
of M, that starts in gy and that is obtained by reading the string u'.

Prove the following: If ¢ = ¢, then uRyu'.

2. Prove the following claim: If L is a regular language, then the equiva-
lence relation Ry, has a finite number of equivalence classes.

2.14 Let L be the language defined by
L= {uu®:ue{0,1}}.

In words, a string is in L if and only if its length is even, and the second half
is the reverse of the first half.

1. Let m and n be two distinct positive integers, and consider the two
strings v = 0™1 and v’ = 0"1. Prove that —(uRu’).

2. Prove that L is not a regular language, without using the pumping
lemma).

2.15 Using the pumping lemma, prove that the following languages are not
regular.

1. {a"b™c"t™ :n > 0,m > 0}.
2. {a™™a™ :n > 0,m > 0}.

3. {a®" :n > 0}. (Remark: " is the string consisting of 2" many a’s.)

2.10. EXERCISES 75

2.16 Let L C ¥* be a reqular language, where ¥ = {0,1}. Let w be any
binary string. Show that the language A = {z € L : w is a substring of z} is
a reqular language.

2.17 Let A be a language over an alphabet ¥ = {0,1}, and define the half-
language H of A to be set of all first halves of strings in A, i.e., H={z €
X*: for somey € ¥*, |z| = |y| and xy € A}. Prove that if A is reqular then
H is also regular.

2.18 In many examples of conversion of an NFA N to an equivalent DFA M
using Theorem 2.5.1, we have seen that many states in M are not reachable
from the start state. We remowve all such “unreachable” states and obtain a
reduced equivalent DFA M'. Suggest an efficient algorithm that can remove
all such unreachable states in M to obtain M'.

2.19 We are given seven quarter coins, where each coin has two sides: the
Queen (=Heads) and the Moose (=Tails). Initially they are placed on a
table with the Queen side facing up for all of them. At any moment we can
select any four coins and flip them over. Show that we can never reach the
configuration where all the coins have the Moose side facing up! (Hint: You
can define a state to represent certain number of Queens (say q) and Moose
(say m), such that m +q = 7. A transition corresponds to flipping 4 coins.)

2.20 Show that if L is a reqular language then the following language is
reqular as well: {zy|lyx € L}.

2.21 Show that if L is regular than so is Ly, where Ly = {c|3a, b such that,|a| =
|b| = ||, abc € L}.

2.22 Show that if L is reqular than so is the SQRT (L), where SQRT (L) =
{a|3b, such that,|b| = |a|?,ab € L}.

2.23 Show that if L is reqular than so is {z|zz® € L}.

2.24 Prove or Disprove the following:
1. If L is reqular than so is L', where L C L.

2. If L is reqular than so is L', where L' C L.

76 CHAPTER 2. FINITE AUTOMATA AND REGULAR LANGUAGES

3. If L and LL' are regular, than L' is reqular.

2.25 Show that every regular language is accepted by a planar NFA. A NFA
1s planar if it can be drawn in the plane so that no two edges cross accept
that they can meet at a state. (See the definition of planar graphs from any
Graph Theory book). What about DFA’s? Does there always ezist a planar
DFA for the corresponding reqular language?

Chapter 3

Context-Free Languages

In this chapter, we introduce the class of context-free languages. As we will
see, this class contains all regular languages. Moreover, this class contains
languages such as {0"1" : n > 0}, which, as we have seen in Section 2.9.1, is
not a regular language.

The class of context-free languages consists of languages that have some
sort of recursive structure. We will see two equivalent methods to obtain this
class. We start with context-free grammars, which is a technique used for
defining the syntax of programming languages and their compilation. Then
we introduce the notion of (nondeterministic) pushdown automata, and show
that these automata have the same power as context-free grammars.

3.1 Context-free grammars

We start with an example. Consider the following three (substitution) rules:

A — 0A1,
A — B,
B — 8.

Here, A and B are wvariables, A is the start variable, and 0, 1, and $ are
terminals. We use these rules to derive strings consisting of terminals (i.e.,
elements of {0,1,$}*), in the following manner:

1. Initialize the current string to be the string consisting of the start
variable A only.

7

78 CHAPTER 3. CONTEXT-FREE LANGUAGES

2. Take a variable in the current string, and take a rule that has this
variable on the left-hand side. Then, in the current string, replace this
variable by the right-hand side of the rule.

3. Repeat 2. until the current string contains only terminals.
For example, the string 0000$1111 can be derived in the following way:

A = 041

00A11
000A111
0000A1111
0000B1111
0000$1111

L

This derivation can also be represented using a parse tree, as in the figure
below:

PN
2\
00/§11

|
S

o

The three rules in this example constitute a context-free grammar. The
language of this grammar is the set of all strings that can be derived from
the start variable, and that contain only terminals. For this example, the
language is

{0"$1" : n > 0}.

Definition 3.1.1 A context-free grammar is a 4-tuple G = (V,%, R, S),
where

1. V is a finite set, whose elements are called variables,

3.1. CONTEXT-FREE GRAMMARS 79

2. Y is a finite set, whose elements are called terminals,
3. VNI =0,

4. S is an element of V; it is called the start variable,

5

. R is a finite set, whose elements are called rules. Each rule has the
form A — w, where A € V and w € (V UX)*.

In our example, we have V = {A, B}, ¥ ={0,1,$}, S = A, and
R={A— 0A1,A — B,B — $}.

Definition 3.1.2 Let G = (V, X, R, S) be a context-free grammar. Let u, v,
and w be strings in (V UX)*, and let A — w be a rule in R. We say that the
string uwv can be derived in one step from the string uAv, and write this as

uAv = uwv.

In other words, by applying the rule A — w to the string uAv, we obtain
the string uwwv.

Definition 3.1.3 Let G = (V, X, R, S) be a context-free grammar. Let u
and v be strings in (V UX)*. We say that v can be derived from u, and write
this as u = v, if one of the following three conditions holds:

1. u=w, or
2. u= v, or

3. there exists an integer £ > 1, and there exists a sequence uy, us, .. ., ug
of strings in (V' U X)*, such that

U= U = Uy = ... = U = 0.
In other words, by starting with the string u, and applying rules zero or more
times, we obtain the string v.

Definition 3.1.4 Let G = (V,X, R,S) be a context-free grammar. The
language of G is defined to be the set of all strings in ¥* that can be derived
from the start variable S:

LG)={weX:S=wh

Definition 3.1.5 A language L is called context-free, if there exists a context-
free grammar G such that L(G) = L.

80 CHAPTER 3. CONTEXT-FREE LANGUAGES

3.2 Examples of context-free grammars

3.2.1 Properly nested parentheses

Consider the context-free grammar G = (V,X, R, S), where V = {S}, ¥ =
{a, b}, and
R={S —aSb,S - SS,S — €}.

We write the three rules in R as

S — aSb|SS]e,

where you can think of “|” as being a short-hand for “or”.

For example, by applying the rules in R, starting with the start variable
S, we obtain

SS

aSbS
aSbSS
aSSbSS
aaSbSbS S
aabSbSS
aabbS S
aabbaSHbS
aabbabS
aabbabaSb
aabbabab

S T 2 R R N A A

What is the language L(G) of this context-free grammar G? If we think
of a as being a left-parenthesis “(”, and of b as being a right-parenthesis
“Y?, then L(G) is the language consisting of all strings of properly nested
parentheses.

3.2.2 A context-free grammar for a nonregular lan-
guage

Consider the language L; = {0"1" : n > 0}. We have seen in Section 2.9.1
that L, is not a regular language. We claim that L, is a context-free language.

3.2. EXAMPLES OF CONTEXT-FREE GRAMMARS 81

In order to prove this claim, we have to construct a context-free grammar
G such that L(G,) = L.
Let G, = (V4, %, Ry, S1), where V; = {S;}, ¥ = {0, 1}, and R; consists of
the rules
Sl — 0511'6.

Hence, R; = {S; — 0511, 51 — €}. It is not difficult to see that L(G;) = L;.
In a symmetric way, we see that the context-free grammar Gy = (15, X, Rs, Ss),
where V5 = {S3}, ¥ ={0,1}, and R, consists of the rules
SQ — 1520'6,

has the property that L(Gy) = Lo, where Ly = {1"0" : n > 0}.
Define L = L, U Ly, i.e.,

L={0"1":n>0}uU{1"0" : n > 0}.

The context-free grammar G = (V, X, R, S), where V = {S,51,5:}, ¥ =
{0,1}, and R consists of the rules

S — Sl|SQ
Sl — 0811|6
SQ — 1SQO|€,

has the property that L(G) = L. Hence, L is a context-free language.

3.2.3 A context-free grammar for the complement of
a nonregular language

Let L be the (nonregular) language L = {0"1" : n > 0}. We want to prove
that the complement L of L is a context-free language. Hence, we want to
construct a context-free grammar G whose language is equal to L. Observe
that a binary string w is in L if and only if

1. w = 0™1", for some integers m and n with 0 < m < n, or
2. w = 0™1", for some integers m and n with 0 < n < m, or

3. w contains 10 as a substring.

82 CHAPTER 3. CONTEXT-FREE LANGUAGES

Let G = (V,3,R,S), where V = {S,T1,T5,T5, X}, ¥ = {0,1}, and R
consists of the rules

S - T1|T2|T3
T, — 1|T,1/07;1
T, — 0/0T3/0T31
T35 — X10X
X — €0X[1X

Observe that
Ty = 0™1", for all integers m and n with 0 < m < n,

and
T, = 0™1", for all integers m and n with 0 < n < m.

Next, observe that
X = u, for each string u in {0,1}*,
which implies that
Ty = w, for every binary string w that contains 10 as a substring.

From these observations, it can be seen that L(G) = L.

3.2.4 A context-free grammar that verifies addition

Consider the language
L={a"b"c"*" :n >0,m > 0}.

Using the pumping lemma for regular languages (Theorem 2.9.1), it can
be shown that L is not a regular language. We will construct a context-
free grammar G whose language is equal to L, thereby proving that L is a
context-free language.

First observe that ¢ € L. Therefore, we will take S — € to be one of the
rules in the grammar.

Let us see how we can derive all strings in L from the start variable S:

1. Every time we add an a, we also add a c¢. In this way, we obtain all
strings of the form a"c", where n > 0.

3.2. EXAMPLES OF CONTEXT-FREE GRAMMARS 83

2. Given a string of the form a”c”, we start adding bs. Every time we add
a b, we also add a c. Observe that every b has to be added between
the as and the cs. Therefore, we use a variable B as a “pointer” to the
position in the current string where a b can be added.

We obtain the context-free grammar G = (V, X, R, S), where V = {S, A, B},
Y ={a,b,c}, and R consists of the rules

S — €A
A — €|aAc|B
B — ¢€bBc

The facts that

o A= a"c", for every n > 0,

e A= a"Bc", for every n > 0,

e B = b™¢™, for every m > 0,
imply that the following strings can be derived from the start variable S:

e S = g, for every n > 0,

e S a"Be" S @b = a"bet™, for all n > 0 and m > 0.
That is, we have L(G) = L. In fact, since

S=A=B=¢

we can simplify this grammar G, by eliminating the rules S — ¢ and A — e.
This gives the context-free grammar G' = (V, X, R/, S), where V = {S, A, B},
Y ={a,b,c}, and R’ consists of the rules

S = A
A — dAc|B
B — ¢bBe

Finally, observe that we do not need S but, instead, can use A as start
variable. This gives our final context-free grammar G” = (V, X, R", S), where
V ={S,A,B}, ¥ ={a,b,c}, and R" consists of the rules

A — aAc|B
B — ¢[bBc

84 CHAPTER 3. CONTEXT-FREE LANGUAGES

3.3 Regular languages are context-free

We mentioned already that the class of context-free languages includes the
class of regular languages. In this section, we will prove this claim.

Theorem 3.3.1 Let X be an alphabet, and let L C X be a regular language.
Then L 1s a context-free language.

Proof. Since L is a regular language, there exists a deterministic finite au-
tomaton M = (Q, %, 0, g, F') that accepts L. Define the context-free grammar
G=(V,5,R,S), where

e VV = (; hence, the variables of G are the states of M,
e S = ¢; hence the start variable of (G is the start state of M, and

e R consists of the rules
A — aB, where A€ Q,a€X, Be@,and §(A,a) =B,

and
A — €, where A € F.

In words,

e every transition §(A4,a) = B of M (i.e., when M is in the state A and
reads the symbol a, it switches to the state B) corresponds to a rule
A — aB in the grammar G,

e every accept state A of M corresponds to a rule A — € in the grammar

G.

We claim that L(G) = L. In order to prove this, we have to show that
L(G) C L and L C L(G).

We prove that L C L(G). Let w = wiws...w, be an arbitrary string
in L. When the finite automaton M reads the string w, it visits the states
T0yT1y- - -, Tn, Where

e 7y =g, and

o i1 =0(rj,wiyq) fori=0,1,...,n— 1.

3.3. REGULAR LANGUAGES ARE CONTEXT-FREE 85

Since w € L = L(M), we know that r, € F.
It follows from the way we defined the grammar G that

e foreacht=0,1,...,n—1, r; = w1741 is a rule in R, and
e r, = cisarulein R.

Therefore, we have
S:q:T():>UJ1T1 = WiWoT9 = ... = W1W2 ... WpTy = W1W2 ... W, = W.

This proves that w € L(G).
The proof of the claim that L(G) C L is left as an exercise. [

In Sections 2.9.1 and 3.2.2, we have seen that the language {0"1" : n >
0} is not regular, but context-free. Therefore, the class of all context-free
languages properly contains the class of regular languages.

3.3.1 An example
Let L be the language defined as
L ={we{0,1}": 101 is a substring of w}.

In Section 2.2.2, we have seen that L is a regular language. In that section,
we constructed the following deterministic finite automaton M that accepts
L (we have renamed the states):

We apply the construction given in the proof of Theorem 3.3.1 to convert
M to a context-free grammar G whose language is equal to L. According

86 CHAPTER 3. CONTEXT-FREE LANGUAGES

to this construction, we have G = (V,X, R, S), where V = {S, A, B,C},
¥ = {0, 1}, the start variable S is the start state of M, and R consists of the
rules

S — 0S[14
A — 0B|1A
B — 0S[1C
C — 0C[1C|e

Consider the string 010011011, which is an element of L. When the finite
automaton M reads this string, it visits the states

S,S,A,B,S,A,A,B,C,C.
In the grammar G, this corresponds to the derivation

S = 08

01A

010B

01008
01001A
010011A
01001108
01001101C
010011011C
010011011.

R 2 T

Hence,
S = 010011011.

3.4 Chomsky normal form

The rules in a context-free grammar G = (V, X, R, S) are of the form
A— w,

where A is a variable and w is a string over the alphabet V U X. In this
section, we show that every context-free grammar G can be converted to a
context-free grammar G’, such that L(G) = L(G’), and the rules of G’ are of
a restricted form, as specified in the following definition:

3.4. CHOMSKY NORMAL FORM 87

Definition 3.4.1 A context-free grammar G = (V, X, R, S) is said to be in
Chomsky normal form, if every rule in R has one of the following three forms:

1. A — BC, where A, B, and C are elements of V', B# S, and C # S.
2. A — a, where A is an element of V', and a is an element of >.

3. S — €, where S is the start variable.

Theorem 3.4.2 Let X be an alphabet, and let L be a context-free language.
There exists a context-free grammar in Chomsky normal form, whose lan-
guage 15 L.

Proof. Since L is a context-free language, there exists a context-free gram-
mar G = (V,X, R, S), such that L(G) = L. We will transform G into a
grammar that is in Chomsky normal form and whose language is equal to
L(G). The transformation consists of five steps.

Step 1: Eliminate the start variable from the right-hand side of the rules.

We define G1 = (V4, %, Ry, S1), where S is the start variable (which is a
new variable), Vi, =V U {S;}, and Ry = RU{S; — S}. This grammar has
the property that

e the start variable S; does not occur on the right-hand side of any rule
in Ry, and

o L(G1) = L(G).

Step 2: An e-rule is a rule that is of the form A — ¢, where A is a variable
that is not equal to the start variable. In the second step, we eliminate all
e-rules from G.

We consider all e-rules, one after another. Let A — € be one such rule,
where A € V; and A # S;. We modify G as follows:

1. Remove the rule A — € from the current set R;.
2. For each rule in the current set R; that is of the form

(a) B — A, add the rule B — € to Ry, unless this rule has already
been deleted from R;; observe that in this way, we replace the two-
step derivation B = A = ¢ by the one-step derivation B — ¢;

88 CHAPTER 3. CONTEXT-FREE LANGUAGES

(b) B — uAv (where u and v are strings that are not both empty),
add the rule B — uv to R;; observe that in this way, we replace
the two-step derivation B = uAv = uv by the one-step derivation
B — uv;

(¢) B — uAvAw (where u, v, and w are strings), add the rules B —
uvw, B = uAvw, and B — uwwAw to Ry; if u = v = w = € and
the rule B — ¢ has already been deleted from R;, then we do not
add the rule B — ¢);

(d) treat rules in which A occurs more than twice on the right-hand
side in a similar fashion.

We repeat this process until all e-rules have been eliminated. Let Rs
be the set of rules, after all e-rules have been eliminated. We define Gy =
(V2, X, Ry, S5), where Vo = V4 and Sy = S;. This grammar has the property
that

e the start variable Sy does not occur on the right-hand side of any rule

in RQ,
e R, does not contain any e-rule (it may contain the rule Sy — €), and
e L(Gs) = L(Gy) = L(G).

Step 3: A unit-rule is a rule that is of the form A — B, where A and B are
variables. In the third step, we eliminate all unit-rules from Gs.

We consider all unit-rules, one after another. Let A — B be one such
rule, where A and B are elements of V,. We know that B # Ss. We modify
G, as follows:

1. Remove the rule A — B from the current set R,.

2. For each rule in the current set Ry that is of the form B — wu, where
u € (Vo UX)* add the rule A — u to the current set Ry, unless this is
a unit-rule that has already been eliminated.

Observe that in this way, we replace the two-step derivation A = B =
u by the one-step derivation A = u.

We repeat this process until all unit-rules have been eliminated. Let
R3 be the set of rules, after all unit-rules have been eliminated. We define
G3 = (V3,%, R3, S3), where V3 = V, and S3 = S;. This grammar has the
property that

3.4. CHOMSKY NORMAL FORM 89

the start variable S3 does not occur on the right-hand side of any rule
in R3,

R3 does not contain any e-rule (it may contain the rule S3 — ¢),

R3 does not contain any unit-rule, and

L(Gs) = L(G>) = L(G1) = L(G).

Step 4: Eliminate all rules having more than two symbols on the right-hand
side.

For each rule in the current set R3 that is of the form A — ujuy ... uy,
where k£ > 3 and each u; is an element of V5 U X, we modify G3 as follows:

1. Remove the rule A — ujusq...u; from the current set Rj.

2. Add the following rules to the current set Rj:
A— U1A1, A1 — ’LLQAQ, A2 — U,3A3, cey Ak_g — Ug_1Ug,

where Ay, Ay, ..., Ay o are new variables that are added to the current
set V3.

Observe that in this way, we replace the one-step derivation A =
U1Us - . . ug by the (k — 1)-step derivation

A= U1A1 = U,1U2A2 = ... = U1Uy ... Uk_QAk_Q = U1U2 . . . Uk-

Let R, be the set of rules, and let V}; be the set of variables, after all rules
with more than two symbols on the right-hand side have been eliminated. We
define G4 = (Vy, X, Ry, S4), where Sy = S3. This grammar has the property
that

e the start variable Sy does not occur on the right-hand side of any rule
in R4,

e R, does not contain any e-rule (it may contain the rule Sy —),
e %4 does not contain any unit-rule,

e 74 does not contain any rule with more than two symbols on the right-
hand side, and

90 CHAPTER 3. CONTEXT-FREE LANGUAGES

Step 5: Eliminate all rules of the form A — w u9, where u; and us are not
both variables.

For each rule in the current set R4 that is of the form A — uyu,, where
up and uy are elements of V, U X, but u; and u, are not both contained in
Vi, we modify G3 as follows:

1. If uy € ¥ and uy € Vj, then replace the rule A — wuqus in the current
set R4 by the two rules A — Ujug and U; — uq, where U; is a new
variable that is added to the current set Vj.

Observe that in this way, we replace the one-step derivation A = uqus
by the two-step derivation A = Ujus = uius.

2. If u; € V, and uy € X, then replace the rule A — ujuy in the current
set R, by the two rules A — u;Us; and Uy — gy, where U, is a new
variable that is added to the current set V.

Observe that in this way, we replace the one-step derivation A = uqus

by the two-step derivation A = uUs = uius.

3. If u; € ¥ and uy € ¥, then replace the rule A — wujuy in the current
set R4 by the three rules A — U Uy, Uy — uq, and Uy — uq, where U
and U, are new variables that are added to the current set Vj.

Observe that in this way, we replace the one-step derivation A = ujus
by the three-step derivation A = U;Uy = u Uy = uqus.

Let Rs be the set of rules, and let V5 be the set of variables, after Step 5
has been completed. We define G5 = (V5,%, Rs, S5), where S5 = S;. This
grammar has the property that

e the start variable S5 does not occur on the right-hand side of any rule
in R5,

e R5 does not contain any e-rule (it may contain the rule S5 — ¢),
e R; does not contain any unit-rule,

e I?5 does not contain any rule with more than two symbols on the right-
hand side,

3.4. CHOMSKY NORMAL FORM 91

e Ry does not contain any rule of the form A — wjus, where u; and us
are not both variables of V5, and

o L(G5) = L(G4) = L(Gs) = L(G2) = L(G1) = L(G).

Since the grammar G5 is in Chomsky normal form, the proof is complete. B

3.4.1 An example

Consider the context-free grammar G = (V, X, R, A), where V = {A, B},
Y = {0}, A is the start variable, and R consists of the rules

A — BAB|Ble
B — 00[e

We apply the construction given in the proof of Theorem 3.4.2 to convert
this grammar to a context-free grammar in Chomsky normal form whose
language is the same as that of G. Throughout the construction, upper case
letters will denote variables.

Step 1: Eliminate the start variable from the right-hand side of the rules.
We introduce a new start variable S, and add the rule S — A. This gives
the following grammar:

S —= A
A — BAB|B|e
B — 00]e

Step 2: Eliminate all e-rules.
We take the e-rule A — ¢, and remove it. Then we consider all rules that
contain A on the right-hand side. There are two such rules:

e S — A; we add the rule S — ¢;
e A — BAB; we add the rule A — BB.
This gives the following grammar:

S — Ale
A — BAB|B|BB
B — 00

92 CHAPTER 3. CONTEXT-FREE LANGUAGES

We take the e-rule B — ¢, and remove it. Then we consider all rules that
contain B on the right-hand side. There are three such rules:

e A — BAB; we add the rules A -+ AB, A — BA, and A — A;

e A — B; we do not add the rule A — ¢, because it has already been
removed;

e A — BB; we add the rule A — B, but not the rule A — € (because it
has already been removed).

At this moment, we have the following grammar:
S — Ale

A — BAB|B|BB|AB|BA|A
B — 00

Since all e-rules have been eliminated, this completes Step 2. (Observe that
the rule S — € is allowed, because S is the start variable.)

Step 3: Eliminate all unit-rules.
We take the unit-rule A — A. We can remove this rule, without adding
any new rule. At this moment, we have the following grammar:

S — Ale
A — BAB|B|BB|AB|BA
B — 00

We take the unit-rule S — A, remove it, and add the rules
S — BAB|B|BB|AB|BA.
This gives the following grammar:

S — ¢ BAB|B|BB|AB|BA
A — BAB|B|BB|AB|BA
B — 00

We take the unit-rule S — B, remove it, and add the rule S — 00. This
gives the following grammar:

S — ¢/BAB|BB|AB|BA|00

A — BAB|B|BB|AB|BA
B — 00

3.4. CHOMSKY NORMAL FORM 93

We take the unit-rule A — B, remove it, and add the rule A — 00. This
gives the following grammar:
S — € BAB|BB|AB|BA|00
A — BAB|BB|AB|BA|00
B — 00

Since all unit-rules have been eliminated, this concludes Step 3.

Step 4: Eliminate all rules having more than two symbols on the right-hand
side. There are two such rules:

o We take the rule S — BAB, remove it, and add the rules S — BA;
and A; — AB.

e We take the rule A — BAB, remove it, and add the rules A — BA,
and A, — AB.

This gives the following grammar:

S — ¢|[BB|AB|BA|00|BA,
A — BB|AB|BA|00|BA,
B — 00

A, — AB

A2 — AB

Step 4 is completed now.

Step 5: Eliminate all rules, whose right-hand side contains exactly two
symbols, which are not both variables. There are three such rules:

e We replace the rule S — 00 by the rules S — A3A3 and A3 — 0.
e We replace the rule A — 00 by the rules A — A4A; and A4 — 0.
e We replace the rule B — 00 by the rules B — A5 A5 and A5 — 0.

This gives the following grammar, which is in Chomsky normal form:

S — ¢|BB|AB|BA|BA;|A3A3
A — BB|AB|BA|BAy|ALA,
B — A5A5

A, — AB

Ay, — AB

As — 0

A4 — 0

As — 0

94 CHAPTER 3. CONTEXT-FREE LANGUAGES

3.5 Pushdown automata

In this section, we introduce nondeterministic pushdown automata. As we
will see, the class of languages that can be accepted by these automata is
exactly the class of context-free languages.

We start with an informal description of a deterministic pushdown au-
tomaton. Such an automaton consists of the following, see also Figure 3.1.

1. There is a tape which is divided into cells. Each cell stores a symbol
belonging to a finite set X, called the tape alphabet. There is a special
symbol O that is not contained in I; this symbol is called the blank
symbol. If a cell contains O, then this means that the cell is actually
empty.

2. There is a tape head which can move along the tape, one cell to the
right per move. This tape head can also read the cell it currently scans.

3. There is a stack containing symbols from a finite set I', called the stack
alphabet. This set contains a special symbol $.

4. There is a stack head which can read the top symbol of the stack. This
head can also pop the top symbol, and it can push symbols of I' onto
the stack.

5. There is a state control, which can be in any one of a finite number
of states. The set of states is denoted by (). The set () contains one
special state ¢, called the start state.

The input for a pushdown automaton is a string in ¥*. This input string
is stored on the tape of the pushdown automaton and, initially, the tape head
is on the leftmost symbol of the input string. Initially, the stack contains
only the special symbol $, and the pushdown automaton is in the start state
g.- In one computation step, the pushdown automaton does the following:

1. Let us say that the pushdown automaton is currently in state r. Let
a be the symbol of ¥ that is read by the tape head, and let A be the
symbol of I" that is on top of the stack.

2. Depending on the current state r, the tape symbol a, and the stack
symbol A,

3.5. PUSHDOWN AUTOMATA 95

(afalblalb]b]a[b[a[5]0] tape

L

state control

Figure 3.1: A pushdown automaton.

(a) the pushdown automaton switches to a state r’ of @ (which may
be equal to r),

(b) the tape head either moves one cell to the right or stays at the
current cell, and

(c) the top symbol A is replaced by a string w that belongs to I'*. To
be more precise,

i. if w = ¢, then A is popped from the stack, whereas

ii. if w= B1By...By, with k > 1 and By, B,,...,B; € T, then
A is replaced by w, and B, becomes the new top symbol of
the stack.

Later, we will specify when the pushdown automaton accepts the input
string.
We now give a formal definition of a deterministic pushdown automaton.

Definition 3.5.1 A deterministic pushdown automaton is a 5-tuple M =
(3, T,Q,46,q), where

96 CHAPTER 3. CONTEXT-FREE LANGUAGES

1. ¥ is a finite set, called the tape alphabet; the blank symbol O is not
contained in 3,

2. T' is a finite set, called the stack alphabet; this alphabet contains the
special symbol $,

3. @ is a finite set, whose elements are called states,
4. ¢ is an element of (); it is called the start state,

5. ¢ is called the transition function, which is a function

0:Qx(Xu{d}) xI' - Q x{N,R} xI'".

The transition function ¢ can be thought of as being the “program” of the
pushdown automaton. This function tells us what the automaton can do in
“one computation step”: Let r € @), a € X U {0}, and A € I'. Furthermore,
let ' € Q, 0 € {R, N}, and w € I'* be such that

d(r,a, A) = (r', o, w). (3.1)
This transition means that if
e the pushdown automaton is in state r,
e the tape head reads the symbol a, and
e the top symbol on the stack is A,
then
e the pushdown automaton switches to state 7/,

e the tape head moves according to o: if 0 = R, then it moves one cell
to the right; if o = IV, then it does not move, and

e the top symbol A on the stack is replaced by the string w.

We will write the computation step (3.1) in the form of the instruction
raA — r'ow.

We now specify the computation of the pushdown automaton M = (X, T, Q, 6,).

3.6. EXAMPLES OF PUSHDOWN AUTOMATA 97

Start configuration: Initially, the pushdown automaton is in the start state
q, the tape head is on the leftmost symbol of the input string a,a, . .. a,, and
the stack contains only the special symbol $.

Computation and termination: Starting in the start configuration, the
pushdown automaton performs a sequence of computation steps as described
above. It terminates at the moment when the stack becomes empty. (Hence,
if the stack never gets empty, the pushdown automaton does not terminate.)

Acceptance: The pushdown automaton accepts the input string aqas . . .a, €

1. the automaton terminates on this input, and

2. at the time of termination (i.e., at the moment when the stack gets
empty), the tape head is on the cell immediately to the right of the
symbol a,, (this cell must contain the blank symbol O).

In all other cases, the pushdown automaton rejects the input string.

We denote by L(M), the language accepted by the pushdown automaton
M; L(M) is the set of all strings in ¥* that are accepted by M.

The pushdown automaton described above is deterministic. For a non-
deterministic pushdown automata, the next computation step may not be
uniquely defined, but the automaton can make a choice out of a finite number
of possibilities. In this case, the transition function § is a function

0:Qx (2u{d}) xT = Pr(@Q x {N,R} xI'),

where Py (K) is the set of all finite subsets of the set K.

We say that a nondeterministic pushdown automaton M accepts an input
string, if there erists an accepting computation, in the sense as described for
deterministic pushdown automata. We say that M rejects an input string, if
every computation on this string is rejecting. As before, we denote by L(M),
the set of all strings in >* that are accepted by M.

3.6 Examples of pushdown automata

3.6.1 Properly nested parentheses

We will show how to construct a deterministic pushdown automaton, that
accepts the set of all strings of properly nested parentheses. Observe that a

98 CHAPTER 3. CONTEXT-FREE LANGUAGES
string w in {(,)}* is properly nested if and only if

e in every prefix of w, the number of “(” is greater than or equal to the
number of “)”, and

Y

e in the complete string w, the number of “(” is equal to the number of

LC)”

We will use the tape symbol a for “(”, and the tape symbol b for)”.

The idea is as follows. Recall that initially, the stack contains only the
special symbol §. The only purpose of this symbol is to enable us to check
whether or not the stack is empty. The pushdown automaton reads the input
string from left to right. For every a it reads, it pushes the symbol S onto
the stack, and for every b it reads, it pops the top symbol from the stack.
In this way, the number of symbols S on the stack will always be equal to
the number of as that have been read minus the number of bs that have
been read. The input string is properly nested if and only if this difference
is always non-negative, and it is zero once the entire input string has been
read. Hence, the input string is accepted if and only if during this process,
the stack is never empty, and at the end, the stack contains only the special
symbol $ (which will then be popped in the final step).

Based on this discussion, we obtain the deterministic pushdown automa-
ton M = (X,T,Q,0,q), where ¥ = {a,b}, T' = {$,5}, @ = {q¢}, and the
transition function ¢ is specified by the following instructions:

ga$ — gR$S because of the a, S is pushed onto the stack

gaS — qRSS because of the a, S is pushed onto the stack

qbS — qRe because of the b, the top element is popped
from the stack

gb$ — qNe the number of bs read is larger than the number of as
read; the stack is made empty (hence, the computation
terminates), and the input string is rejected

¢0$ — gNe the input string has been read completely; the stack is
made empty, and the input string is accepted

qdS — gNS the input string has been read completely, it contains
more as than bs; no changes are made (so the
automaton does not terminate), and the input string
is rejected

3.6. EXAMPLES OF PUSHDOWN AUTOMATA 99

3.6.2 Strings of the form 0"1"

We construct a deterministic pushdown automata that accepts the language
{0™1™ : n > 0}.

The automaton uses two states gy and ¢;, where ¢y is the start state.
Initially, the automaton is in state qq.

e For each 0 that it reads, the automaton pushes one symbol S onto the
stack and stays in state qq.

e When the first 1 is read, the automaton switches to state g;. From that
moment,

— for each 1 that is read, the automaton pops the top symbol from
the stack, and stays in state ¢;;

— if a 0 is read, the automaton does not make any change and,
therefore, does not terminate.

Based on this discussion, we obtain the deterministic pushdown automa-
ton M = (3,T,Q,6,q), where X = {0,1}, T' = {$,S5}, Q@ = {90, 1}, qo is
the start state, and the transition function ¢ is specified by the following
instructions:

q00% — qoR$S push S onto the stack

qo0S — qoRSS push S onto the stack

q1% — qoN$ first symbol in the input is 1; loop forever
qlS — q1 Re first 1 is encountered

0% — gy Ne input string is empty; accept it

go0S — go NS input consists only of 0s; loop forever
¢10$ — 1 N$ 0 to the right of 1; loop forever

¢10S — ¢ NS 0 to the right of 1; loop forever

¢11$ — 1 N$ too many 1s; loop forever

q115 — q1Re pop top symbol from the stack

¢:0% — ¢t Ne accept

¢:0S — ¢t NS too many Os; loop forever

3.6.3 Strings with b in the middle

We will construct a nondeterministic pushdown automaton that accepts the
set L of all strings in {a, b}* having an odd length and whose middle symbol

100 CHAPTER 3. CONTEXT-FREE LANGUAGES

is b, i.e.,

L = {vbw:v € {a,b}",w € {a,b}", |v| = |wl|}.

The idea is as follows. The automaton uses two states ¢ and ¢', where ¢
is the start state. These states have the following meaning:

e Ifthe automaton is in state ¢, then it has not reached the middle symbol
of the input string.

e If the automaton is in state ¢', then it has already read the middle
symbol.

Observe that since the automaton can make only one single pass over the
input string, it has to “guess” (i.e., use nondeterminism) when it reaches the
middle of the string.

e If the automaton is in state ¢, then when reading the current input
symbol,

— it pushes one symbol S onto the stack and stays in state ¢, or

— in case the current input symbol is b, it “guesses” that it has
reached the middle of the input string, by switching to state ¢'.

e If the automaton is in state ¢’, then, when reading the current input
symbol, it pops the top symbol S from the stack and stays in state ¢'.

The input string is accepted if and only if the stack is empty for the first
time, after the entire input string has been read.

We obtain the nondeterministic pushdown automaton M = (3,I', Q, 6, q),
where ¥ = {a,b}, I' = {$,S}, @ = {q,¢'}, ¢ is the start state, and the
transition function ¢ is specified by the following instructions:

3.7. EQUIVALENCE OF PUSHDOWN AUTOMATA AND CONTEXT-FREE GRAMMARS101

qga$ — qR$S

gaS — qRSS

gb$ — ¢'R$ reached the middle

gb$ — qR$S not reached the middle

gbS — ¢'RS reached the middle

gbS — qRSS not reached the middle

¢O0% — gN$ loop forever

qaS — gNS loop forever

g'a$ — ¢'Ne stack is empty; terminate, but reject, because
the input string has not been read completely

q'aS — ¢'Re

q¢'b$ — ¢'Ne stack is empty; terminate, but reject, because
the input string has not been read completely

q'bS — ¢'Re

¢'0% — ¢'Ne accept

¢'0S — ¢'NS loop forever

Remark 3.6.1 It can be shown that there is no deterministic pushdown au-
tomaton that recognizes the language L. The reason is that a deterministic
pushdown automaton cannot determine when it reaches the middle of the in-
put string. Hence, unlike as for finite automata, nondeterministic pushdown
automata are more powerful than their deterministic counterparts.

3.7 Equivalence of pushdown automata and
context-free grammars

In this section, we will show that nondeterministic pushdown automata and
context-free grammars are equivalent in power:

Theorem 3.7.1 Let X be an alphabet, and let A C ¥* be a language. Then
A is context-free if and only if there exists a nondeterministic pushdown
automaton that accepts A.

In fact, we will prove only one direction of this theorem. That is, we will
show how to convert an arbitrary context-free grammar to a nondeterministic
pushdown automaton.

Let G = (V,3,R,$) be a context-free grammar, where V is the set of
variables, Y is the set of terminals, R is the set of rules, and $ is the start

102 CHAPTER 3. CONTEXT-FREE LANGUAGES

variable. By Theorem 3.4.2, we may assume that G is in Chomsky normal
form. Hence, every rule in R has one of the following three forms:

1. A— BC, where A, B, and C are variables, B # S, and C' # S.
2. A — a, where A is a variable and a is a terminal,
3. $ — ¢, where $ is the start variable.

We will construct a nondeterministic pushdown automaton M that ac-
cepts the language L(G) of this grammar G. Observe that M must have the
following property: For every string w = a1as ...a, € X¥,

w € L(G) if and only if M accepts w.
This can be reformulated as follows:
$:*> a1dg...0an

if and only if there exists a computation of M that starts in the initial
configuration

1 N O R A]

and ends in the configuration

1 I] R A]

[y

where | ()| indicates that the stack is empty.

Assume that $ = ajas. . .ay. Then there exists a derivation (using the
rules of R) of the string a;as . . . a, from the start variable $. We may assume
that in each step in this derivation, a rule is applied to the leftmost variable in
the current string. Hence, at any moment during the derivation, the current

string has the form
ajasg ... ai_lAkAk_l ce Al, (32)

3.7. EQUIVALENCE OF PUSHDOWN AUTOMATA AND CONTEXT-FREE GRAMMARS103

for some integers ¢ and k£ with 1 < ¢ <n+1 and £ > 0. (In particular, at
the start of the derivation, we have ¢ = 1 and k£ = 1, and the current string
is A, = $. At the end of the derivation, we have 1 = n + 1 and k£ = 0, and
the current string is ajas ... ay,.)

We will define the pushdown automaton M in such a way that the current
string (3.2) corresponds to the configuration

@] - fai] - Jan[O]

Based on this discussion, we obtain the nondeterministic pushdown au-
tomaton M = (X,V,{q},d,q), where

e the tape alphabet is the set ¥ of terminals of G,
e the stack alphabet is the set V' of variables of G,
e the set of states consists of one state ¢, which is the the start state, and

e the transition function J is obtained from the rules in R, in the following
way:

— For each rule in R that is of the form A — BC, with A, B,C € V,
the pushdown automaton M has the instructions

gaA — gNCB, for all a € X..

— For each rule in R that is of the form A — a, with A € V and
a € Y, the pushdown automaton M has the instruction

qgaA — qRe.

— If R contains the rule $ — ¢, then the pushdown automaton M
has the instruction
¢O%$ — gNe.

104 CHAPTER 3. CONTEXT-FREE LANGUAGES

This concludes the definition of M. It remains to prove that L(M) =
L(@Q), i.e., the language of the nondeterministic pushdown automaton M is
equal to the language of the context-free grammar (G. Hence, we have to
show that for every string w € ¥*,

w € L(QG) if and only if w € L(M),
which can be rewritten as
$ = w if and only if M accepts w.

Claim 3.7.2 Let aias...a, be a string in X*, let Ay, Aq, ..., Ay be variables
m V, and let © and k be integers with 1 <1 <n+1 and k > 0. Then the
following holds:

$:*> a1as ... ai_lAkAk_l e A1

if and only if there exists a computation of M from the initial configuration

1 I] R A]

to the configuration

Proof. The claim can be proved by induction. Let
w=aag... ai,lAkAk,l e Al-

Assume that £ > 1, and assume that the claim is true for the string w. Then
you prove that the claim is still true after applying a rule in R to the leftmost
variable Ay in w. Since the grammar is in Chomsky normal form, the rule to
be applied is either of the form Ay — BC or of the form A, — «a;. In both
cases, the property mentioned in the claim is maintained. |

3.7. EQUIVALENCE OF PUSHDOWN AUTOMATA AND CONTEXT-FREE GRAMMARS105

We now use Claim 3.7.2 to prove that L(M) = L(G). Let w = a1as ... ap
be an arbitrary string in ¥*. By applying Claim 3.7.2, with i = n + 1 and
k =0, we see that w € L(G), i.e.,

*
$:>a1a2...an,

if and only if there exists a computation of M from the initial configuration

1 N O R A]

to the configuration

| @

But this means that w € L(G) if and only if the automaton M accepts the
string w.

This concludes the proof of the fact that every context-free grammar can
be converted to a nondeterministic pushdown automaton. As mentioned
already, we will not give the conversion in the other direction. We finish this
section with the following observation:

Theorem 3.7.3 Let X be an alphabet, and let A C X* be a context-free
language. Then there exists a nondeterministic pushdown automaton that
accepts A and that has only one state.

Proof. Since A is context-free, there exists a context-free grammar G such
that L(Gy) = A. By Theorem 3.4.2, there exists a context-free grammar G
that is in Chomsky normal form and for which L(G) = L(Gy). The construc-
tion given above converts G to a nondeterministic pushdown automaton M
that has only one state and for which L(M) = L(G). [

106 CHAPTER 3. CONTEXT-FREE LANGUAGES

3.8 The pumping lemma for context-free lan-
guages

In Section 2.9, we proved the pumping lemma for regular languages, and
used it to prove that certain languages are not regular. In this section, we
generalize the pumping lemma to context-free languages. The idea is to
consider the parse tree (see Section 3.1) that describes the derivation of a
sufficiently long string in the context-free language A. Since the number of
variables in the corresponding context-free grammar G is finite, there is at
least one variable, say A;, that occurs more than once on the longest root-
to-leaf path in the parse tree. The subtree which is sandwiched between two
occurrences of A; on this path can be copied any number of times. This will
result in a legal parse tree and, hence, in a “pumped” string that is in the
language A.

Theorem 3.8.1 (Pumping Lemma for Context-Free Languages) Let
A be a context-free language. Then there exists an integer p > 1, called the
pumping length, such that the following holds: Every string s in A, with
|s| > p, can be written as s = uwvzyz, such that

1. Jvy| > 1 (i.e., v and y are not both empty),
2. |vzy| < p, and

3. w'zy'z € A, for all i > 0.

3.8.1 Proof of the pumping lemma

The proof of the pumping lemma will use the following result about parse
trees:

Lemma 3.8.2 Let G be a context-free grammar in Chomsky normal form,
let s be a non-empty string in L(G), and let T be a parse tree for s. Let £ be
the number of edges on a longest root-to-leaf path in T'. Then

|| < 2671

Proof. The claim can be proved by induction on ¢. By looking at some
small values of £, you should be able to see why the claim holds. |

3.8. THE PUMPING LEMMA FOR CONTEXT-FREE LANGUAGES107

Now we can start with the proof of the pumping lemma. Let A be a

context-free language. Then, by Theorem 3.4.2, there exists a context-free
grammar in Chomsky normal form, G = (V, ¥, R, S), such that A = L(QG).

Define r to be the number of variables of G, and p := 2". We will prove
that the value of p can be used as the pumping length. Consider an arbitrary
string s in A, such that |s| > p, and let T be a parse tree for s. Let £ be the
number of edges on a longest root-to-leaf path in 7. Then, by Lemma 3.8.2,
we have

|s| < 21
On the other hand, we have
|s| >p=2".

By combining these inequalities, we see that 27 < 2¢~!, which can be rewrit-
ten as

£>r+1.

Consider the nodes on a longest root-to-leaf path in 7. Since this path
consists of £ edges, it consists of £+ 1 nodes. The first £ of these nodes store
variables, which we denote by Ay, A1, ..., As_1 (where Ay = S), and the last
node (which is a leaf) stores a terminal, which we denote by a.

Since £ — 1 —r > 0, the sequence
Apr s Agry s A

of variables is well-defined. Observe that this sequence consists of r + 1
variables. Since the number of variables in the grammar G is equal to r,
the pigeon hole principle implies that there is a variable that occurs at least
twice in this sequence. In other words, there are indices j and k, such that
t—1-r<j<k</{-1and A; = A;. Refer to the figure below for an
illustration.

108 CHAPTER 3. CONTEXT-FREE LANGUAGES

r+1
variables

Recall that 7" is a parse tree for the string s. Therefore, the terminals
stored at the leaves of T, in the order from left to right, form s. As indicated
in the figure above, the nodes storing the variables A; and Aj partition s
into five substrings u, v, x, y, and z, such that s = uvzyz.

It remains to prove that the three properties stated in the pumping lemma
hold. We start with the third property, i.e., we prove that

wlzy'z € A, for all i > 0.

In the grammar G, we have
S = ud;z. (3.3)

Since A; = vAyy and Aj, = A;, we have

Aj :*> UAjy. (34)

3.8. THE PUMPING LEMMA FOR CONTEXT-FREE LANGUAGES109

Finally, since A, = z and A, = Aj, we have
Aj = . (3.5)
From (3.3) and (3.5), it follows that
S = uAz = uxz,

which implies that the string uzz is in the language A. Similarly, it follows
from (3.3), (3.4), and (3.5) that

S = uA;z = uvA;yz = wvvA;yyz = wvvTyy2.

Hence, the string uv?zy?z is in the language A. In general, for each i > 0,
the string uv’zy'z is in the language A, because

S = uA;z = uviAjyiz = wv'zy'z.
This proves that the third property in the pumping lemma holds.

Next we show that the second property holds. That is, we prove that
lvzy| < p. Consider the subtree rooted at the node storing the variable
A;. The path from the node storing A; to the leaf storing the terminal
a is a longest path in this subtree. (Convince yourself that this is true).
Moreover, this path consists of £ — j edges. Since A; = wvzy, this subtree
is a parse tree for the string vazy (where A; is used as the start variable).

Therefore, by Lemma 3.8.2, we can conclude that [vxy| < 2677971 We know
that £ — 1 — r < 7, which is equivalent to £ — 7 — 1 < r. It follows that

ay| <2771 < 2" =,

Finally, we show that the first property in the pumping lemma holds.
That is, we prove that |vy| > 1. Recall that

A, = vAgy.
Let the first rule used in this derivation be A; — BC. (Since the variables
A; and Ay, even though they are equal, are stored at different nodes of the
parse tree, and since the grammar G is in Chomsky normal form, this first
rule exists.) Then
Aj = BC = ’UAky .

Observe that the string BC has length two. Moreover, by applying rules of
a grammar in Chomsky normal form, strings cannot become shorter. (Here,
we use the fact that the start variable does not occur on the right-hand side

of any rule.) Therefore, we have |[vA,y| > 2. But this implies that |vy| > 1.
This completes the proof of the pumping lemma.

110 CHAPTER 3. CONTEXT-FREE LANGUAGES

3.8.2 Applications of the pumping lemma
First example

Consider the language
A={a"b"c" : n > 0}.

We will prove by contradiction that A is not a context-free language.

Assume that A is a context-free language. Let p > 1 be the pumping
length, as given by the pumping lemma. Consider the string s = a?bPcP.
Observe that s € A and |s| = 3p > p. Hence, by the pumping lemma, s can
be written as s = uvryz, where |vy| > 1, |vay| < p, and wv'zy'z € A for all
1> 0.

Observe that, since |vzy| < p, the string vxy cannot contain all three
different symbols a, b, and c. In fact, there is a symbol « € {a, ¢} that does
not occur in v and that does not occur in y. Hence, in the string uxz, the
symbol « occurs exactly p times. Since |vy| > 1, we have |uxz| < |uvzyz| =
|s| = 3p. Therefore, in the string uzz, the symbol a occurs exactly p times,
whereas the total number of occurrences of the other two symbols is less
than 2p. This implies that there is a symbol that occurs less than p times in
the string uzz. This means that the string uv°zy’z = uzz is not contained
in A. But, by the pumping lemma, this string is contained in A. This is
a contradiction and, therefore, we have shown that the language A is not
context-free.

Second example

Consider the languages
A = {ww® :w € {a,b}*},

where w? is the string obtained by writing w backwards, and
B ={ww:w € {a,b}*}.

Even though these languages look similar, we will show that A is context-free,
whereas B is not context-free.
Consider the following context-free grammar, in which S is the start vari-
able:
S — €|aSa|bSh.

3.8. THE PUMPING LEMMA FOR CONTEXT-FREE LANGUAGES111

It is easy to see that the language of this grammar is exactly the language A.
Therefore, A is context-free. Alternatively, we can show that A is context-
free, by constructing a (nondeterministic) pushdown automaton that accepts
A. This automaton has two states ¢ and ¢', where ¢ is the start state. If
the automaton is in state ¢, then it did not yet read the leftmost half of the
input string; it pushes all symbols read onto the stack. If the automaton is
in state ¢', then it is reading the rightmost half of the input string; for each
symbol read, it checks whether it is equal to the symbol on top of the stack
and, if so, pops the top symbol from the stack. The pushdown automaton
uses nondeterminism to “guess” when to switch from state ¢ to state ¢’ (i.e.,
when it has completed reading the leftmost half of the input string).

At this point, you should convince yourself that the two approaches above,
which showed that A is context-free, do not work for B. The reason why
they do not work is that the language B is not context-free, as we will prove
now.

Assume that B is a context-free language. Let p > 1 be the pumping
length, as given by the pumping lemma. At this point, we must choose a
string s in B, whose length is at least p, and that does not satisfy the three
properties stated in the pumping lemma. Let us try the string s = a?baPb.
Then s € B and |s| = 2p + 1 > p. Hence, by the pumping lemma, s can be
written as s = uvryz, where (i) [vy| > 1, (i) |vzy| < p, and (iii) uwvizy'z € B
for all 7 > 0. It may happen that p > 3, andu =a? Y, v =a, 2 =0, y = a,
and z = aP~'b. If this is the case, then properties (i), (ii), and (iii) hold,
and, thus, we do not get a contradiction. In other words, we have chosen
the “wrong” string s. This string is “wrong”, because there is only one b
between the as. Because of this, v can be in the leftmost block of as, and
y can be in the rightmost block of as. Observe that if there were at least p
many bs between the as, then this cannot happen, because |vzy| < p.

Based on the discussion above, we choose s = aPb?aPb?. Observe that
s € B and |s| = 4p > p. Hence, by the pumping lemma, s can be written as
s = uvzyz, where jvy| > 1, |vay| < p, and wv'zy'z € B for all 1 > 0. Based
on the location of vxy in the string s, we distinguish three cases:

Case 1: The substring vzy overlaps both the leftmost half and the rightmost
half of s.

Since |vzy| < p, the substring vzy is contained in the “middle” part of s,
i.e., vay is contained in the block b?aP. Consider the string uv’zy°z = uwz.
Since |vy| > 1, we know that at least one of v and y is non-empty.

112 CHAPTER 3. CONTEXT-FREE LANGUAGES

o If v # ¢, then v contains at least one b from the leftmost block of bs in
s, whereas y does not contain any b from the rightmost block of bs in s.
Therefore, in the string uxz, the leftmost block of bs contains fewer bs
than the rightmost block of bs. Hence, the string uzz is not contained
in B.

e If y # ¢, then y contains at least one a from the rightmost block of
as in s, whereas v does not contain any a from the leftmost block of
as in s. Therefore, in the string uxz, the leftmost block of as contains
more as than the rightmost block of as. Hence, the string uzz is not
contained in B.

In both cases, we conclude that the string uzz is not an element of the
language B. But, by the pumping lemma, this string is contained in B.

Case 2: The substring vzy is in the leftmost half of s.

In this case, none of the strings uzz, uvixy?z, uwvdzydz, uwvizy'z, etc.,
is contained in B. But, by the pumping lemma, each of these strings is
contained in B.

Case 3: The substring vxy is in the rightmost half of s.

This case is symmetric to Case 2: None of the strings uzrz, wv?zy?z,
wvdzydz, uvizy’z, etc., is contained in B. But, by the pumping lemma, each
of these strings is contained in B.

To summarize, in each of the three cases, we have obtained a contradic-
tion. Therefore, the language B is not context-free.

Third example

We have seen in Section 3.2.4 that the language
{a™"c¢™™ :m > 0,n > 0}

is context-free. Using the pumping lemma for regular languages, it is easy to
prove that this language is not regular. In other words, context-free gram-
mars can verify addition, whereas finite automata are not powerful enough
for this. We now consider the problem of verifying multiplication: Let A be
the language defined as

A={a™b"c™" :m > 0,n > 0}.

3.9. EXERCISES 113

We will prove by contradiction that A is not a context-free language.
Assume that A is context-free. Let p > 1 be the pumping length, as
given by the pumping lemma. Consider the string s = aPbPc?’. Then, s € A
and |s| = 2p + p? > p. Hence, by the pumping lemma, s can be written as
s = uwvzyz, where |vy| > 1, |vzy| < p, and wv'zy'z € A for all i > 0.
There are three possible cases, depending on the location of vxy in the
string s.

Case 1: The substring vxy is completely contained in the block of ¢s in s.

Consider the string uv?zy?z. Since |vy| > 1, the string uv?zy®z consists
of p many as, p many bs, but more than p? many cs. Therefore, this string
is not contained in A. But, by the pumping lemma, it is contained in A.

Case 2: The substring vxy does not contain any c.

Consider again the string uv?xy?z. This string consists of p? many cs.
Since |vy| > 1, in the string uv?zy?z, the number of as multiplied by the
number of bs is larger than p?. Therefore, uv?zy?z is not contained in A.
But, by the pumping lemma, this string is contained in A.

Case 3: The substring vy contains at least one b and at least one c.

In this case, we can write vy = b’cF, where j > 0, k> 0, and j + k > 1.
Consider the string uxz. We can write this string as uxz = aPbP=i =k,
Since, by the pumping lemma, this string is contained in A, we have p(p—j) =
p? — k, which implies that jp = k.

If j = 0, then k = 0, which contradicts the fact that j+ & > 1. Therefore,
j > 1. It follows that £ = jp > p and

lvzy| > vyl =j+k>1+p.

But, by the pumping lemma, we have |vzy| < p.

Observe that, since |vzy| < p, the above three cases cover all possibilities
for the location of vxy in the string s. In each of the three cases, we have
obtained a contradiction. Therefore, the language A is not context-free.

3.9 Exercises

3.1 Construct context-free grammars that generate the following languages.
In all cases, ¥ = {0, 1}.

e {w: w contains at least three 1s}

114 CHAPTER 3. CONTEXT-FREE LANGUAGES

e {w: the length of w is odd and its middle symbol is 0}

e {w: w is a palindrome}. A palindrome is a string w having the prop-

erty that w = w®, i.e., reading w from left to right gives the same result
as reading w from right to left.

e {w: w starts and ends with the same symbol}

3.2 Let G = (V, %, R, S) be the context-free grammar, where V = {A, B, S},
¥ =40,1}, S is the start variable, and R consists of the rules

S — 0S[1Ale
A — 0B|1S
B — 0A[1B

Define the following language L:

L:={we{0,1}*: w is the binary representation of a non-negative integer

that is divisible by three } U {e}

Prove that L = L(G). (Hint: The variables S, A, and B are used to
remember the remainder after division by three.)

3.3 Let A and B be context-free languages over the same alphabet X.
e Prove that the union AU B of A and B is also context-free.

e Prove that the concatenation AB of A and B is also context-free.

e Prove that the star A* of A is also context-free.
3.4 Define the following two languages A and B:

A={a™"c" :m >0,n> 0}
and

B ={a"b"c" : m >0,n>0}.

e Prove that both A and B are context-free, by constructing two gram-
mars, one that generates A and one that generates B.

3.9. EXERCISES 115

e We have seen in Section 3.8.2 that the language
{a™"c" :n >0}

is not context-free. Explain why this implies that the intersection of
two context-free languages is not necessarily context-free.

e Use De Morgan’s Law to conclude that the complement of a context-
free language is not necessarily context-free.

3.5 Let L be a language consisting of finitely many strings. Show that L is
regular and, therefore, context-free. Let k£ be the maximum length of any
string in L.

e Prove that every context-free grammar in Chomsky Normal Form that
generates L has more than logk variables. (The logarithm is in base
2.)

e Prove that there is a context-free grammar that generates L and that
has only one variable.

3.6 Construct (deterministic or nondeterministic) pushdown automata that
accept the following languages.

1. {w e {0,1}* : w contains more 1s than 0s}.
2. {w € {0,1}* : w is a palindrome}.
3. {w € {a,b}* : number of as is at least equal to number of bs and is at most twice the number of

3.7 Prove that the following languages are not context-free.
o {a"b"a"b" : n > 0}.

e {w#zx| w is a substring of z, and w,z € {a,b}*}. For example, aba#tabbababbb
is a string in the language, whereas aba#baabbaabb is not a string in
the language. The alphabet is {a, b, #}.

e {1": n is a prime number}.

o {a®v?*cFlk=0,1,2,3,---}.

116 CHAPTER 3. CONTEXT-FREE LANGUAGES

3.8 Prove that the intersection of a context free language L with a regular
language M is a context free language. The languages L and M are defined
over the same alphabet set 3.

3.9 Suppose that for a pushdown automaton M the size of the stack never
grows more than a fixed constant k. Show that the language accepted by M
is a regular language.

3.10 Convert the following context free grammars to the Chomsky Normal
Form.

e S—S585—(5),S—=¢X={()}
e S—aSh,S — bSa,S — ¢ ¥ = {a,b}.
e S— AB,A — aAa,B — bBb,A — ¢,B — ¢; ¥ = {a,b}.

3.11 We know that the language L = {z € {0,1}*|z = ww for any w €
{0,1}*} is not a context free language as shown in the Second Example in
Section 3.8.2. What about the complement of L? Show that the complement
of L is a context free language. (Hint: You can think of the complement as
the union of the languages consisting of odd number of strings or languages
of the form u0vlw or ulvOw, where |v| = |u| + |w|.

3.12 If a context free grammar G is given in the Chomsky Normal Form,
then show that for any string w € L(G), exactly 2|w| — 1 steps are required
for any derivation of w.

3.13 In one of the exercises above we showed that context free languages
are closed under the operation of union, concatenation and star. Using this
show how regular expressions can be converted to an equivalent context free
grammars.

3.14 Construct a CFG to generate all regular expressions over the alphabet
¥ = {a,b}.

Chapter 4

Turing Machines and the
Church-Turing Thesis

In the previous chapters, we have seen several computational devices that
can be used to accept or generate regular and context-free languages. Even
though these two classes of languages are fairly large, we have seen in Sec-
tion 3.8.2 that these devices are not powerful enough to accept simple lan-
guages such as A = {a™b"¢™" : m > 0,n > 0}. In this chapter, we introduce
the Turing machine, which is a simple model of a real computer. Turing ma-
chines can be used to accept all context-free languages, but also languages
such as A. We will argue that every problem that can be solved on a real
computer can also be solved by a Turing machine (this statement is known
as the Church-Turing Thesis). In Chapter 5, we will consider the limitations
of Turing machines and, hence, of real computers.

4.1 Definition of a Turing machine

We start with an informal description of a Turing machine. Such a machine
consists of the following, see also Figure 4.1.

1. There are k tapes, for some fixed £ > 1. Each tape is divided into
cells, and is infinite both to the left and to the right. Each cell stores
a symbol belonging to a finite set [', which is called the tape alphabet.
The tape alphabet contains the blank symbol O. If a cell contains O,
then this means that the cell is actually empty.

117

118CHAPTER 4. TURING MACHINES AND THE CHURCH-TURING THESIS

finite control

- [B[o[0]afa]blalb[b[a]b]a]b[0]O[O] -

ﬁ

- [0]o[0]b[a]a]b[O]a]s][O]O]T] -

Figure 4.1: A Turing machine with k = 2 tapes.

2. Each tape has a tape head which can move along the tape, one cell
per move. It can also read the cell it currently scans and replace the
symbol in this cell by another symbol.

3. There is a finite control, which can be in any one of a finite number
of states. The finite set of states is denoted by (). The set () contains
three special states: a start state, an accept state, and a reject state.

The Turing machine performs a sequence of computation steps. In one
such step, it does the following:

1. Immediately before the computation step, the Turing machine is in a
state r of (), and each of the k£ tape heads is on a certain cell.

2. Depending on the current state r and on the £ symbols that are read
by the tape heads,

(a) the Turing machine switches to a state r' of @ (which may be
equal to),

(b) each tape head writes a symbol of I' in the cell it is currently
scanning (this symbol may be equal to the symbol currently stored
in the cell), and

4.1. DEFINITION OF A TURING MACHINE 119

(c) each tape head either moves one cell to the left, moves one cell to
the right, or stays at the current cell.

We now give a formal definition of a deterministic Turing machine.

Definition 4.1.1 A deterministic Turing machine is a 7-tuple M = (X, T, Q, 6, ¢, Gaccepts Greject)
where

1. ¥ is a finite set, called the input alphabet; the blank symbol O is not
contained in 3,

2. T' is a finite set, called the tape alphabet; this alphabet contains the
blank symbol O, and X C T,

3. @ is a finite set, whose elements are called states,

4. q is an element of (Q; it is called the start state,

5. Qaccept 15 an element of Q); it is called the accept state,
6. Qreject is an element of Q; it is called the reject state,

7. ¢ is called the transition function, which is a function

§:QxI'* 5 QxT*x{L R N}.

The transition function ¢§ is basically the “program” of the Turing ma-
chine. This function tells us what the machine can do in “one computation
step”: Let r € @, and let ai,a9,...,a; € I'. Furthermore, let ' € Q,
aj,ab,...,a, €', and 01,09,...,0p € {L, R, N} be such that

§(r,ar,a9,...,a;r) = (r',a},ay, ..., a,01,09,...,0%). (4.1)
This transition means that if
e the Turing machine is in state r, and
e the head of the i-th tape reads the symbol a;, 1 < i <k,
then

e the Turing machine switches to state r’,

120CHAPTER 4. TURING MACHINES AND THE CHURCH-TURING THESIS

e the head of the i-th tape replaces the scanned symbol a; by the symbol
a;, 1 <i<k,and

e the head of the i-th tape moves according to 0;, 1 <1 < k: if 0; = L,
then the tape head moves one cell to the left; if o; = R, then it moves
one cell to the right; if o; = N, then the tape head does not move.

Usually, we will write the computation step (4.1) in the form of the instruc-
tion
raiay . ..ax — r'ajay. .. ao109. . .0y

We now specify the computation of the Turing machine M = (X, T, Q, 6, ¢, Gaccept; Greject)-

Start configuration: The input is a string over the input alphabet 3.
Initially, this input string is stored on the first tape, and the head of this
tape is on the leftmost symbol of the input string. Initially, all other £ — 1
tapes are empty, i.e., contain only blanks, and the Turing machine is in the
start state q.

Computation and termination: Starting in the start configuration, the
Turing machine performs a sequence of computation steps as described above.
The computation terminates at the moment when the Turing machine en-
ters the accept state guecept OF the reject state ¢reject. (Hence, if the Turing
machine never enters the states gyccept and greject, the computation does not
terminate.)

Acceptance: The Turing machine M accepts the input string w € ¥*, if the
computation on this input terminates in the state ggccepr- If the computation
on this input terminates in the state greject, then M rejects the input string
w.

We denote by L(M), the language accepted by the Turing machine M,
L(M) is the set of all strings in ¥* that are accepted by M.

4.2 Examples of Turing machines

4.2.1 Accepting palindromes using one tape

We will show how to construct a Turing machine with one tape, that decides
whether or not any input string w € {a,b}* is a palindrome. Recall that the
string w is called a palindrome, if reading w from left to right gives the same

4.2. EXAMPLES OF TURING MACHINES 121

result as reading w from right to left. Examples of palindromes are abba,
baabbbbaab and the empty string’.

Start of the computation: The tape contains the input string w, the tape
head is on the leftmost symbol of w, and the Turing machine is in the start
state qp-

Idea: The tape head reads the leftmost symbol of w, deletes this symbol
and “remembers” it by means of a state. Then the tape head moves to
the rightmost symbol and tests whether it is equal to the (already deleted)
leftmost symbol.

e If they are equal, then the rightmost symbol is deleted, the tape head
moves to the new leftmost symbol, and the whole process is repeated.

e If they are not equal, the Turing machine enters the reject state, and
the computation terminates.

The Turing machine enters the accept state as soon as the string currently
stored on the tape is empty.

We will use the input alphabet ¥ = {a,b} and the tape alphabet I" =
{a,b,0}. The set @ of states consists of the following eight states:

Qo : start state; tape head is on the leftmost symbol

Qo : leftmost symbol was a; tape head is moving to the right

qp : leftmost symbol was b; tape head is moving to the right

q : reached rightmost symbol; test whether it is equal to a, and delete it
q reached rightmost symbol; test whether it is equal to b, and delete it
Qs : test was positive; tape head is moving to the left

Qaccept = accept state
Qreject © Teject state

The transition function ¢ is specified by the following instructions:

goa — ¢,0OR ¢a0 — ggalR g0 — gpa R’
qob — ¢OR Gab — qibR gpb — bR
QOD — qaccept an — QZLDL qu — QII)DL

! Another example is: Bob: “Did Anna peep?” Anna: “Did Bob?”. See the web page
http://www.palindromes.org/

122CHAPTER 4. TURING MACHINES AND THE CHURCH-TURING THESIS

q,0 — q20L Q0 — Greject qa — qzal
400 = Greject qb — ¢20OL q2b — q2bL
q;D — Gaccept QII)D — Gaccept QQD — qODR

You should go through the computation of this Turing machine for some
sample inputs, for example abba, b, abb and the empty string (which is a
palindrome).

4.2.2 Accepting palindromes using two tapes

We again consider the palindrome problem, but now we use a Turing machine
with two tapes.

Start of the computation: The first tape contains the input string w, and
the head of the first tape is on the leftmost symbol of w. The second tape is
empty, and its tape head is at an arbitrary position. The Turing machine is
in the start state g.

Idea: First, the input string w is copied to the second tape. Then the head
of the first tape moves back to the leftmost symbol of w, while the head of
the second tape stays at the rightmost symbol of w. Finally, the actual test
starts: The head of the first tape moves to the right and, at the same time,
the head of the second tape moves to the left. While moving, the Turing
machine tests whether the two tape heads read the same symbol in each
step.

The input alphabet is ¥ = {a, b}, and the tape alphabet is I' = {a, b, O}.
The set @) of states consists of the following five states:

Q : start state; copy w to the second tape
q: w has been copied; head of first tape moves to the left
Q2 : head of first tape moves to the right; head of second tape moves

to the left; until now, all tests were positive
Qaccept - accept state
Greject © Teject state

4.2. EXAMPLES OF TURING MACHINES 123

The transition function ¢ is specified by the following instructions:

goad — goaaRR qiaa — qraalLN
qob0 — qobbRR qiab — qrabLN
go00 — ¢:O0OLL giba — q1baLN

q1bb — q1bbLN
¢10a — ¢0aRN
¢:0b — ¢ObRN
(hl:”:] — Gaccept

g200 — qaaaRL

QQa'b — Qreject

QQba — Qreject
g2bb — gobbRL

g2 ad — Gaccept

Again, you should run this Turing machine for some sample inputs.

4.2.3 Accepting a"b"c" using one tape

We will construct a Turing machine with one tape that accepts the language
{a"b"c" : n > 0}.

Recall that we have proved in Section 3.8.2 that this language is not context-

free.

Start of the computation: The tape contains the input string w, and the
tape head is on the leftmost symbol of w. The Turing machine is in the start
state qp-

Idea: Repeat the following Stages 1 and 2, until the string is empty.

Stage 1. Walk along the string from left to right, delete the leftmost a,
delete the leftmost b, and delete the rightmost c.

Stage 2. Shift the substring of bs and cs one position to the left.
The input alphabet is ¥ = {a,b,c}, and the tape alphabet is I' =

124CHAPTER 4. TURING MACHINES AND THE CHURCH-TURING THESIS

{a,b,c,O}. For Stage 1, we use the following states:

9 -
Qq :
Qb -
qc :

!

q. -
g :

Qaccept :
Qreject -

start state; tape head is on the leftmost symbol

leftmost a has been deleted; have not read b

leftmost b has been deleted; have not read c

leftmost ¢ has been read; tape head moves to the right
tape head is on the rightmost ¢

rightmost ¢ has been deleted; tape head is on the rightmost
symbol or O

accept state

reject state

The transitions for Stage 1 are specified by the following instructions:

Q0 = oUR GaC = GaaR?
QOb — Qreject qab — quR
goC — Qreject aC — Greject
QOD — Gaccept an - Greject
ga — Qreject qc0 — Qreject
qbb — beR QCb — Qreject
gc — q.cR g.c — q.cR
qu — Qreject QCD — quL
g.c — 0L

For Stage 2, we use the following states:

q1:

C

q

b

q° -
g2 :

as above; tape head is on the rightmost symbol or on O
copy c one cell to the left

copy b one cell to the left

done with Stage 2; head moves to the left

Additionally, we use a state ¢; which has the following meaning: If the input
string is of the form a’be, for some 7 > 1, then after Stage 1, the tape contains
the string ¢*~'00, the tape head is on the O immediately to the right of the
as, and the Turing machine is in state ¢;. In this case, we move one cell to
the left; if we then read O, then 7 = 1, and we accept; otherwise, we read a,
and we reject.

4.2. EXAMPLES OF TURING MACHINES 125

The transitions for Stage 2 are specified by the following instructions:

¢ia — cannot happen ¢10 = Greject

q1b = Greject gib — cannot happen
qic — ¢°0L ¢} ¢ — cannot happen
QID — CADL qlllj — qaccept

¢°a — cannot happen g°a — cannot happen
q°b — gbcL q°b — ¢°bL

q°c — q°cL g°c — cannot happen
qcD - Greject qu - q2bL

G20 — qoa L

g2b — cannot happen
goc — cannot happen
g0 — @OR

4.2.4 Accepting a"b"c™ using one tape

We will sketch how to construct a Turing machine with one tape that accepts
the language

{a™b"c™ :m > 0,n > 0}.
Recall that we have proved in Section 3.8.2 that this language is not context-

free.

Start of the computation: The tape contains the input string w, and the
tape head is on the leftmost symbol of w. The Turing machine is in the start
state.

Idea: Observe that a string a™b"c” is in the language if and only if for every
a, the string contains exactly n many cs. Based on this, the computation
consists of the following stages:

Stage 1. Walk along the input string w from left to right, and check whether
w is an element of a*b*c*. If this is not the case, then reject the input string.
Otherwise, go to Stage 2.

Stage 2. Walk back to the leftmost symbol of w. Go to Stage 3.
Stage 3. In this stage, the Turing machine does the following:

e Replace the leftmost a by the blank symbol O.

126CHAPTER 4. TURING MACHINES AND THE CHURCH-TURING THESIS

e Walk to the leftmost b.

e Zigzag between the bs and cs; each time, replace the leftmost b by the
symbol $, and replace the rightmost ¢ by the blank symbol O. If, for
some b, there is no c left, the Turing machine rejects the input string.

e Continue zigzagging until there are no bs left. Then go to Stage 4

Observe that in this third stage, the string a™b"c* is transformed to the
string a™ 1§k,

Stage 4. In this stage, the Turing machine does the following:
e Replace each $ by b.
o Walk to the leftmost a.

Hence, in this fourth stage, the string a™1$"c*~" is transformed to the string
am—lbnck—n_

Observe that the input string a™b"c” is in the language if and only if the
string a™~1b"cF~" is in the language. Therefore, the Turing machine repeats
Stages 3 and 4, until there are no as left. At that moment, it checks whether
there are any cs left; if so, it rejects the input string; otherwise, it accepts
the input string.

We hope you believe that this description of the algorithm can be turned
into a formal description of a Turing machine.

4.3 Multi-tape Turing machines

In Section 4.2, we have seen two Turing machines that accept palindromes;
the first Turing machine has one tape, whereas the second one has two tapes.
You will have noticed that the two-tape Turing machine was easier to obtain
than the one-tape Turing machine. This leads to the question whether multi-
tape Turing machines are more powerful than their one-tape counterparts.
The answer is “no”:

Theorem 4.3.1 Let k > 1 be an integer. Any k-tape Turing machine can
be converted to an equivalent one-tape Turing machine.

4.3. MULTI-TAPE TURING MACHINES 127

Proof. We will sketch the proof for the case when £ = 2. Let M =
(3,T,Q, 0,9, Qaccepts Greject) be a two-tape Turing machine. Our goal is to
convert M to an equivalent one-tape Turing machine N. That is, N should
have the property that for all strings w € ¥*,

e M accepts w if and only if NV accepts w,
e M rejects w if and only if N rejects w,

e M does not terminate on input w if and only if N does not terminate
on input w.

The tape alphabet of the one-tape Turing machine NN is
Fu{z:zeT}U{#}

In words, we take the tape alphabet I' of M, and add, for each x € I', the
symbol . Moreover, we add a special symbol #.

The Turing machine N will be defined in such a way that any configura-
tion of the two-tape Turing machine M, for example

- [E[Tofo 117 -

- [Ofa]a]b]a[O]--

corresponds to the following configuration of the one-tape Turing machine
N:

The Turing machine N simulates one computation step of M, as follows:

128CHAPTER 4. TURING MACHINES AND THE CHURCH-TURING THESIS

e At the start of the simulation, the tape head of N is on the leftmost
symbol #.

e N walks along the string to the right, and finds the first dotted symbol.
(This symbol indicates the location of the head of the first tape of M.)
Then, it updates this part of the tape, by making the change that M
would make on its first tape. (This change is given by the transition
function of M.)

e Next, N continues to walk to the right, and finds the second dotted
symbol. (This symbol indicates the location of the head of the second
tape of M.) Then, it updates this part of the tape, by making the
change that M would make on its second tape.

e In the two steps above, it may be necessary to shift a part of the tape.
e Finally, N walks back to the leftmost symbol #.

It should be clear that by introducing appropriate states, the Turing
machine N can be constructed. |

4.4 Non-deterministic Turing Machine

A non-deterministic Turing Machine (NDTM) can be defined in a similar
manner as a non-deterministic finite automaton or a non-deterministic push-
down automaton. The transition function of a single tape NDTM will be of
the form

0:QxT —->PQxT x{L,R,N}).

View the computation of a NDTM as a tree. If one of the branches lead
us to the accepting state, then the machine accepts the input. It turns out
that for every NDTM there is an equivalent Deterministic Turing Machine
(DTM). In other words, NDTM and DTM have the same power.

The following simulation leads to the sketch of the proof of the above
statement. View the computation of the given NDTM N as a tree rooted
at the start state. Each branch of the tree represents a branch of nondeter-
minism. An equivalent DTM M explores this tree in a breadth first search
manner. All branches of the same depth are explored before exploring the

4.5. THE CHURCH-TURING THESIS 129

branches of successive depth. Due to the nature of the search it is obvious
that D will visit every node in the computation tree till it finds an accept-
ing configuration. This can be realized concretely by defining M precisely;
we leave the details as an exercise (fairly technical) and conclude with the
following theorem.

Theorem 4.4.1 Every non-deterministic Turing Machine has an equivalent
deterministic Turing Machine.

4.5 The Church-Turing Thesis

You have some intuitive notion of what an algorithm is. This notion will
probably be something like “an algorithm is a procedure consisting of com-
putation steps that can be specified in a finite amount of text”. For example,
any “computational process” that can be specified by a Java program, should
be considered an algorithm. Similarly, a Turing machine specifies a “com-
putational process” and, therefore, should be considered an algorithm. This
leads to the question of whether it is possible to give a mathematical defini-
tion of an “algorithm”. We just saw that every Java program represents an
algorithm, and that every Turing machine also represents an algorithm. Are
these two notions of an algorithm equivalent? The answer is “yes”. In fact,
the following theorem states that many different notions of “computational
process” are equivalent. (We hope that you have gained sufficient intuition,
so that none of the claims in this theorem comes as a surprise to you.)

Theorem 4.5.1 The following computation models are equivalent, i.e., any
one of them can be converted to any other one:

1. One-tape Turing machines.

2. k-tape Turing machines, for any k > 1.

co

Non-deterministic Turing machines.

=~

Java programs.

S

C++ programs.

6. Lisp programs.

130CHAPTER 4. TURING MACHINES AND THE CHURCH-TURING THESIS

In other words, if we define the notion of an algorithm using any of the
models in this theorem, then it does not matter which model we take: All
these models give the same notion of an algorithm.

The problem of defining the notion of an algorithm goes back to David
Hilbert. On August 8, 1900, at the Second International Congress of Math-
ematicians in Paris, Hilbert presented a list of problems that he considered
crucial for the further development of mathematics. Hilbert’s 10th problem
is the following:

Does there exist a finite process that decides whether or not any
given polynomial with integer coefficients has integral roots?

Of course, in our language, Hilbert asked whether or not there exists an
algorithm that, when given an arbitrary polynomial equation (with integer
coefficients), such as

1223y 72° + Toytz — 2 + 22" — 2 +10 =0,

has a solution in integers. In 1970, Matiyasevich proved that such an algo-
rithm does not exist. Of course, in order to prove this claim, we first have
to agree on what an algorithm is. In the beginning of the twentieth century,
mathematicians gave several definitions, such as Turing machines (1936) and
the A-calculus (1936), and they proved that all these are equivalent. Later,
after programming languages were invented, it was shown that these older
notions of an algorithm are equivalent to notions of an algorithm that are
based on C++ programs, Java programs, Lisp program, Pascal programs,
etc.

In other words, all attempts to give a rigorous definition of the notion of
an algorithm led to the same concept. Because of this, computer scientists
nowadays agree on what is called the Church-Turing Thesis:

Church-Turing Thesis: Every computational process that is intuitively
considered to be an algorithm can be converted to a Turing machine.

In other words, this basically states that we define an algorithm to be a
Turing machine. At this point, you should ask yourself, whether the Church-
Turing Thesis can be proved. Alternatively, what has to be done in order to
disprove this thesis?

4.6. EXERCISES 131

4.6 Exercises
4.1 Construct a Turing machine with one tape, that accepts the language
{0°"1" : n. > 0}.

Assume that, at the start of the computation, the tape head is on the leftmost
symbol of the input string.

4.2 Construct a Turing machine with one tape, that accepts the language
{w: w contains twice as many 0s as 1s}.

Assume that, at the start of the computation, the tape head is on the leftmost
symbol of the input string.

4.3 Let A be the language

A = {we{ab,c}* : w contains more bs than as, and
w contains more cs than as }.

Give an informal description (in plain English) of a Turing machine with one
tape, that accepts the language A.

4.4 Construct a Turing machine with one tape, that receives as input a non-
negative integer z, and that returns as output the integer x 4 1. Integers are
represented as binary strings.

Start of the computation: The tape contains the binary representation
of the input z. The tape head is on the leftmost symbol, and the Turing
machine is in the start state ¢;. For example, if x = 431, the tape looks as
follows:

\DIDIDI%Il|0|1|0|1|1|1|1|D|D|D\

End of the computation: The tape contains the binary representation of
the integer x + 1. The tape head is on the leftmost symbol, and the Turing
machine is in the final state g;. For our example, the tape looks as follows:

132CHAPTER 4. TURING MACHINES AND THE CHURCH-TURING THESIS

\DIDIDI%|1|0|1|1|0|0|0|0|D|D|D\

The Turing machine in this exercise does not have an accept state or a
reject state; instead, it has a final state g;. As soon as state g; is entered,
the Turing machine terminates. At termination, the contents of the tape is
the output of the Turing machine.

4.5 Construct a Turing machine with three tapes, that receives as input two
non-negative integers x and y, and that returns as output the integer x + y.
Integers are represented as binary strings.

Start of the computation: The first tape contains the binary represen-
tation of x, and its head is on the rightmost symbol of . The second tape
contains the binary representation of y, and its head is on the rightmost bit
of y. The third tape is empty (that is, contains only Os), and its head is at
an arbitrary position. At the start, the Turing machine is in the start state

qo-

End of the computation: The first two tapes are empty, and the third
tape contains the binary representation of the integer +y. The head of the
third tape is on the rightmost bit of x + y. The Turing machine is in the
final state ¢;.

4.6 Give an informal description (in plain English) of a Turing machine with
one tape, that receives as input two non-negative integers x and y, and that
returns as output the integer x+y. Integers are represented as binary strings.
If you are an adventurous student, you may give a formal definition of your
Turing machine.

4.7 Construct a Turing machine with one tape, that receives as input an
integer z > 1, and that returns as output the integer x — 1. Integers are
represented in binary.

Start of the computation: The tape contains the binary representation
of the input z. The tape head is on the leftmost symbol of x, and the Turing
machine is in the start state g.

End of the computation: The tape contains the binary representation of
the integer z — 1. The tape head is on the leftmost bit of x — 1, and the
Turing machine is in the final state ¢;.

4.6. EXERCISES 133

4.8 Construct a Turing machine with one tape, that receives as input a
binary string b.

Start of the computation: The tape head is on the leftmost symbol of b,
and the Turing machine is in the start state gq.

End of the computation: The tape contains the binary string bb, i.e., the
concatenation of binary string b with itself.

4.9 Show that every language accepted by a single tape read-only Turing Ma-
chine is reqular. (We are not allowed to write onto the tape.) Show that such
a Turing Machine can be simulated by a NFA.

134CHAPTER 4. TURING MACHINES AND THE CHURCH-TURING THESIS

Chapter 5

Decidable and Undecidable
Languages

We have seen in Chapter 4 that Turing machines form a model for “everything
that is intuitively computable”. In this chapter, we consider the limitations
of Turing machines. That is, we ask ourselves the question whether or not
“everything” is computable. As we will see, the answer is “no”. In fact, we
will even see that “most” problems are not solvable by Turing machines and,
therefore, not solvable by computers.

5.1 Decidability and enumerability

In Chapter 4, we have defined when a Turing machine accepts an input string,
and when it rejects an input string. Based on this, we define two classes of
languages.

Definition 5.1.1 Let X be an alphabet, and let A C ¥* be a language. We
say that A is decidable, if there exists a Turing machine M, such that for
every string w € X%, the following holds:

1. If w € A, then the computation of the Turing machine M, on the input
string w, terminates in the accept state.

2. If w ¢ A, then the computation of the Turing machine M, on the input
string w, terminates in the reject state.

135

136 CHAPTER 5. DECIDABLE AND UNDECIDABLE LANGUAGES

In other words, the language A is decidable, if there exists an algorithm
that (i) terminates on every input string w, and (ii) correctly tells us whether

we Aorw ¢ A.

Definition 5.1.2 Let X be an alphabet, and let A C ¥* be a language. We
say that A is enumerable, if there exists a Turing machine M, such that for
every string w € 3%, the following holds:

1. If w € A, then the computation of the Turing machine M, on the input
string w, terminates in the accept state.

2. If w ¢ A, then the computation of the Turing machine M, on the
input string w, does not terminate in the accept state. That is, the
computation terminates in the reject state or the computation does
not terminate.

In other words, the language A is enumerable, if there exists an algorithm
having the following property. If w € A, then the algorithm terminates on
the input string w, and tells us that w € A. On the other hand, if w ¢ A,
then (i) either the algorithm terminates on the input string w, and tells us
that w ¢ A, or (ii) the algorithm does not terminate on the input string w,
in which case it does not tell us that w ¢ A.

The following theorem follows immediately from the above two defini-
tions.

Theorem 5.1.3 FEvery decidable language is enumerable.

5.2 Examples

5.2.1 Hilbert’s problem

We have seen Hilbert’s problem in Section 4.5: Is there an algorithm that
decides, for any given polynomial p with integer coefficients, whether or not
p has integral roots? If we formulate this problem in terms of languages,
then Hilbert asked whether or not the language

Hilbert = {(p) : p is a polynomial with integer coefficients that has an integral root}

is decidable. Here, (p) denotes the binary string that forms an encoding of
the polynomial p.

5.2. EXAMPLES 137

As we mentioned in Section 4.5, it was proven by Matiyasevich in 1970
that the language Hilbert is not decidable. We claim, that this language is
enumerable. In order to prove this claim, we have to construct an algorithm
P with the following property: For any input polynomial p with integer
coefficients,

e if p has an integral root, then algorithm P will find one in a finite
amount of time,

e if p does not have an integral root, then either algorithm P terminates
and tells us that p does not have an integral root, or algorithm P does
not terminate.

Recall that Z denotes the set of integers. Algorithm P does the following,
on any input polynomial p with integer coefficients. Let n denote the number
of variables in p. Algorithm P tries all elements (z1,s,...,2Z,) € Z", in a
systematic way, and for each such element, it computes p(z1,xo, ..., Z,). If
this value is zero, then algorithm P terminates and accepts the input.

We observe the following:

o If p € Hilbert, then algorithm P terminates and accepts p, provided
we are able to visit all elements (x1, Z2,...,%,) € Z™ in a “systematic
way” .

e If p & Hilbert, then p(x1,x2,...,x,) # 0 for all (z1,x2,...,2,) € Z"
and, therefore, algorithm P does not terminate.

But these are exactly the requirements for the language Hilbert to be enu-
merable.

It remains to explain how we visit all elements (z1,z9,...,2,) € Z™ in a
systematic way. For any integer d > 0, let H; denote the hypercube

Hd - [—d, d]n
in Z™. That is, Hy consists of the set of all points = = (z1, z2,...,2,) € Z",
such that there exists at least one index ¢ for which x; = d or x; = —d. We

observe that H, contains a finite number of elements. In fact, this number is
less than (2d+1)". The algorithm will visit all elements (x1, o, ..., x,) € Z",
in the following order: First, it visits the origin, which is the only element
in Hy. Then it visits all elements of H;, followed by all elements of H,, etc.,
etc.

138 CHAPTER 5. DECIDABLE AND UNDECIDABLE LANGUAGES

To summarize, we obtain the following algorithm, proving that the lan-
guage Hilbert is enumerable:

Algorithm HILBERT((p))
n := the number of variables in p;

d = 0;
while d > 0
do for each (z,z9,...,2,) € Hy
do R := p(z1,x9,...,2y,);
ifR=0
then terminate and accept
endif
endfor;
d=d+1
endwhile

Theorem 5.2.1 The language Hilbert is enumerable.

5.2.2 The language Apry
We define the following language:

Appa = {{M,w) : M is a deterministic finite automaton that accepts the string w}.

Here, (M, w) denotes the binary string that forms an encoding of the finite
automaton M and the string w that is given as input to M.

We claim that the language Apps is decidable. In order to prove this
claim, we have to construct an algorithm with the following property, for
any given input string w:

e If u is the encoding of a deterministic finite automaton M and a string
w, and if M accepts w, then the algorithm terminates in its accept
state.

e In all other cases, the algorithm terminates in its reject state.

An algorithm that exactly does this, is easy to obtain: On input u, the algo-
rithm first checks whether or not u encodes a deterministic finite automaton
M and a string w. If this is not the case, then it terminates and rejects the
input string u. Otherwise, the algorithm “constructs” M and w, and then

5.2. EXAMPLES 139

simulates the computation of M on the input string w. If M accepts w,
then the algorithm terminates and accepts the input string u. If M does not
accept w, then the algorithm terminates and rejects the input string u.

Theorem 5.2.2 The language Appa ts decidable.

5.2.3 The language Anps
We define the following language:

Anpa = {{M,w) : M is a nondeterministic finite automaton that accepts the string w}.

To prove that this language is decidable, consider the algorithm that does
the following: On input u, the algorithm first checks whether or not v en-
codes a nondeterministic finite automaton M and a string w. If this is not
the case, then it terminates and rejects the input string u. Otherwise, the
algorithm constructs M and w. Since a computation of M (on input w) is
not unique, the algorithm first converts M to an equivalent deterministic
finite automaton N. Then, it proceeds as in Section 5.2.2.

Observe that the construction for converting a nondeterministic finite au-
tomaton to a deterministic finite automaton (see Section 2.5) is algorithmic,
in the sense that it can be described by an algorithm. Because of this, the
algorithm described above is a valid algorithm; it accepts all strings u that
are in Aypa, and it rejects all strings u that are not in Aypy.

Theorem 5.2.3 The language Anpa is decidable.

5.2.4 The language Acrg
We define the following language:

Acre = {(G,w) : G is a context-free grammar such that w € L(G)}.

We claim that this language is decidable. In order to prove this claim, con-
sider a string u that encodes a context-free grammar G = (V, X, S, R) and a
string w € ¥*. Deciding whether or not w € L(G) is equivalent to deciding
whether or not S = w. A first idea to decide this is by trying all possible
derivations that start with the start variable S, and that use rules of R. The
problem is that, in case w € L(G), it is not clear how many such derivations

140 CHAPTER 5. DECIDABLE AND UNDECIDABLE LANGUAGES

have to be checked before we can be sure that w is not in the language of
G: If w € L(G), then it may be that w can only be derived from S, by first
deriving a very long string, say v, and then use rules to shorten it so as to
obtain the string w. Since there is no obvious upper bound on the length of
the string v, we have to be careful.

The trick is to do the following. First, convert the grammar G to an
equivalent grammar G’ in Chomsky normal form. (The construction given
in Section 3.4 can be described by an algorithm.) Let n be the length of the
string w. Then, if w € L(G) = L(G"), any derivation of w, from the start
variable of G', consists of exactly 2n — 1 steps (where a “step” is defined as
applying one rule of G'). Hence, we can decide whether or not w € L(G),
by trying all possible derivations, in G, consisting of 2n — 1 steps. If one of
these (finite number of) derivations leads to the string w, then w € L(G).
Otherwise, w ¢ L(G).

Theorem 5.2.4 The language Acrg s decidable.
In fact, the arguments above imply the following result:
Theorem 5.2.5 Fvery context-free language is decidable.

Proof. Let X be an alphabet, and let A C ¥* be an arbitrary context-free
language. There exists a context-free grammar in Chomsky normal form,
whose language is equal to A. Given an arbitrary string w € ¥*, we have
seen above how we can decide whether or not w can be derived from the
start variable of this grammar. |

5.2.5 The language Ay

After having seen the languages Appa, Anra, and Ac¢pe, it is natural to
consider the following language:

Aqy = {(M,w): M is a Turing machine that accepts the string w}.

We will prove in Section 5.5 that this language is not decidable. Let us
mention here what this means:

There is no algorithm that, when given an arbitrary algorithm M
and an arbitrary input string w for M, decides in a finite amount
of time, whether or not M accepts w.

5.3. MOST LANGUAGES ARE NOT ENUMERABLE 141

Interestingly, the language Ay, is enumerable. In order to prove this, we
have to construct an algorithm P with the following property: For any given
input string u,

e if u encodes a Turing machine M and an input string w for M, and if
M accepts w, then algorithm P terminates in its accept state,

e in all other cases, either algorithm P terminates in its reject state, or
algorithm P does not terminate.

On input string u = (M, w), algorithm P does the following:
1. Tt simulates the computation of M on input w.

2. If M terminates in its accept state, then P terminates in its accept
state.

3. If M terminates in its reject state, then P terminates in its reject state.
4. if M does not terminate, then P does not terminate.

Hence, if u = (M, w) € Ary, then M accepts w and, therefore, P accepts
u. On the other hand, if u = (M, w) ¢ Ary, then M does not accept w. This
means that, on input w, M either terminates in its reject state or does not
terminate. But this implies that, on input u, P either terminates in its reject
state or does not terminate. This proves that algorithm P has the properties
that are needed in order to show that the language Ay, is enumerable.

Theorem 5.2.6 The language Ay is enumerable.

5.3 Most languages are not enumerable

In this section, we will prove that there exist languages that are not enumer-
able. The proof is based on the following two facts:

e The set consisting of all enumerable languages is countable.
e The set consisting of all languages is not countable.

Before we prove these facts, we review the notion of countability.

142 CHAPTER 5. DECIDABLE AND UNDECIDABLE LANGUAGES

5.3.1 Countable sets

Let A and B be two sets, and let f : A — B be a function. Recall that f is
called a bijection, if

e f is one-to-one (or injective), i.e., for any two distinct elements a and
a' in A, we have f(a) # f(a'), and

e fis onto (or surjective), i.e., for each element b € B, there exists an
element ¢ € A, such that f(a) = b.

The set of natural numbers is denoted by N. That is, N ={1,2,3,...}.

Definition 5.3.1 Let A and B be two sets. We say that A and B have the
same size, if there exists a bijection f: A — B.

Definition 5.3.2 Let A be a set. We say that A is countable, if A is finite,
or A and N have the same size.

In other words, if A is an infinite and countable set, then there exists a
bijection f : N — A, and we can write A as

A={r(1),£(2),f(3),f(4),.-}.

Since f is a bijection, every element of A occurs exactly once in the set on
the right-hand side. This means that we can number the elements of A using
the positive integers: Every element of A receives a unique number.

Theorem 5.3.3 The following sets are countable:

1. The set 7 of integers:

Z=1{.,6-3,-2-1,0123,.. .}

2. The Cartestan product N x N:

NxN={(m,n) :m e N,n € N}.

3. The set Q of rational numbers:

Q={m/n:meZ,ne’Z,n+#0}.

5.3. MOST LANGUAGES ARE NOT ENUMERABLE 143

Proof. To prove that the set Z is countable, we have to give each element of
Z a unique number in N. We obtain this numbering, by listing the elements
of Z in the following order:

0,1,-1,2,-2,3,-3,4,—4, . ..

In this (infinite) list, every element of Z occurs exactly once. The number of
an element of Z is given by its position in this list.
Formally, define the function f : N — Z by

[n/2 if n is even,
fn) = { —(n—1)/2 if nis odd.

This function f is a bijection and, therefore, the sets N and Z have the same
size. Hence, the set Z is countable.

For the proofs of the other two claims, we refer to the course COMP 1805.
|

Theorem 5.3.4 The set R of real numbers is not countable.

Proof. Define
A={reR:0<z <1}

We will prove that the set A is not countable. This will imply that the set
R is not countable, because A C R.

The proof that A is not countable is by contradiction. So we assume that
A is countable. Then there exists a bijection f : N — A. Hence, we can
write

A={r(1),f(2),f(3),-- -}, (5.1)

where every element of A occurs exactly once in the set on the right-hand
side. Hence, for each n € N, f(n) is a real number between zero and one.

Consider the real number f(1). We can write this number in decimal
notation as

f(l) = 0.dy1dr2ds3 .. .,

where each dy; is a digit in the set {0,1,2,...,9}. In general, for every n € N,
we can write the real number f(n) as

f(n) = O.dnldngdngg ey

144 CHAPTER 5. DECIDABLE AND UNDECIDABLE LANGUAGES

where, again, each d,,; is a digit in {0,1,2,...,9}.
We define the real number

xr = 0.d1d2d3 ey

where, for each n > 1,

g4 i A4,
"5 if dy = 4.

Observe that z is a real number between zero and one, i.e., x € A. Therefore,
by (5.1), there is an element n € N, such that f(n) = z. We compare the
n-th digits of f(n) and x:

e The n-th digit of f(n) is equal to d,.
e The n-th digit of x is equal to d,,.

Since f(n) and z are equal, their n-th digits must be equal, i.e., dp, = d,.
But, by the definition of d,,, we have d,,,, # d,. This is a contradition and,
therefore, the set A is not countable. |

5.3.2 The set of enumerable languages is countable

We define the set £ as
E={A:AC{0,1}" is an enumerable language}.

In words, £ is the set whose elements are the enumerable languages. Every
element of £ is an enumerable language. Hence, every element of the set £
is itself a set consisting of strings.

Lemma 5.3.5 The set € is countable.

Proof. Let A C {0,1}* be an enumerable language. There exists a Turing
machine T, that satisfies the conditions in Definition 5.1.2. This Turing
machine 74 can be uniquely specified by a string in English. This string can
be converted to a binary string s4. Hence, the binary string s4 is a unique
encoding of the Turing machine 7'4.

5.3. MOST LANGUAGES ARE NOT ENUMERABLE 145

Consider the set
S ={sa:AC{0,1}* is an enumerable language}.

Observe that the function f : £ — S, defined by f(A) = s, for each A € &,
is a bijection. Therefore, the sets £ and S have the same size. Hence, in
order to prove that the set £ is countable, it is sufficient to prove that the
set § is countable.

Why is the set S countable? For each integer n > 0, there are exactly 2"
binary strings of length n. Hence, the set S contains at most 2" strings of
length n; in particular, the number of strings in & having length n is finite.
Therefore, we obtain an infinite list of the elements of S, in the following
way:

List all strings in & having length 0. (Well, the empty string is not in
S, so in this step, nothing happens.)

List all strings in § having length 1.

List all strings in & having length 2.

List all strings in & having length 3.
e Etcetera, etcetera.

In this infinite list, every element of & occurs exactly once. Therefore, S is
countable. [

5.3.3 The set of all languages is not countable

We define the set £ as
L={A:AC{0,1}" is a language}.

In words, L is the set consisting of all languages. Every element of the set £
is a set consisting of strings.

Lemma 5.3.6 The set L is not countable.

146 CHAPTER 5. DECIDABLE AND UNDECIDABLE LANGUAGES

Proof. We define the set B as
B = {w : w is an infinite binary sequence}.

We claim that this set is not countable. The proof of this claim is almost
identical to the proof of Theorem 5.3.4. We assume that the set B is count-
able. Then there exists a bijection f : N — B. Hence, we can write

B={f(1),f(2),f3),--}, (5.2)

where every element of B occurs exactly once in the set on the right-hand
side. Hence, for each n € N, f(n) is an infinite binary sequence.

We define the infinite binary sequence w = wiwsows ..., where, for each
n>1,

0 if the n-th bit of f(n) is 1.

Since w € B, it follows from (5.2) that there is an element n € N, such that
f(n) = w. Hence, the n-th bits of f(n) and w are equal. But, by definition,
these n-th bits are not equal. This is a contradition and, therefore, the set
B is not countable.

In the rest of the proof, we will show that the sets £ and B have the same
size. Since B is not countable, this will imply that £ is not countable.

In order to prove that £ and B have the same size, we have to show that
there exists a bijection

_ { 1 if the n-th bit of f(n) is 0,

g:L—B.

We first observe that the set {0, 1}* is countable, because for each n > 0,
there are exactly 2" strings of length n. In fact, we can write

{0,1}* ={e,0,1,00,01,10,11, 000,001,010, 100,011,101,110,111, .. .}.
For each n > 1, we denote by s, the n-th string in this list. Hence,

{0,1}* = {s1, 2, 83, .} (5.3)

Now we are ready to define the bijection ¢ : L — B: Let A € L, i.e.,
A C {0,1}* is a language. We define the infinite binary sequence g(A) as
follows: For each n > 1, the n-th bit of g(A) is equal to

1 ifs, € A,
0 ifs, & A.

5.3. MOST LANGUAGES ARE NOT ENUMERABLE 147

In words, the infinite binary sequence g(A) contains a one exactly in those
positions n for which the string s, in (5.3) is in the language A.

To give an example, assume that A is the language consisting of all binary
strings that start with 0. The following table gives the corresponding infinite
binary sequence g(A) (this sequence is obtained by reading the rightmost
column from top to bottom):

({013] A [g(4)]

€ not in A 0
in A 1

1 not in A 0
00 in A 1
01 in A 1
10 not in A 0
11 not in A 0
000 in A 1
001 in A 1
010 in A 1
100 | notin A 0
011 in A 1
101 not in A 0
110 not in A 0
111 not in A 0

The function g defined above has the following properties:
e If A and A’ are two different languages in £, then g(A) # g(A’).

e For every infinite binary sequence w in B, there exists a language A in
L, such that g(A) = w.

This means that the function g is a bijection from L to B. |

5.3.4 There are languages that are not enumerable

We have proved that the set
E={A:AC{0,1}" is an enumerable language}

148 CHAPTER 5. DECIDABLE AND UNDECIDABLE LANGUAGES

is countable, whereas the set
L={A:AC{0,1}" is a language}

is not countable. This means that there are “more” languages in £ than
there are in £, proving the following result:

Theorem 5.3.7 There exist languages that are not enumerable.

The proof given above shows the existence of languages that are not enu-
merable. Since every decidable language is enumerable (see Theorem 5.1.3),
it also shows the existence of languages that are not decidable. However, the
proof does not give us a specific example of a language that is not enumer-
able, or that is not decidable. In the next sections, we will see examples of
such languages.

5.4 The Halting Problem

We define the following language:
Halt = {{P,w) : P is a Java program that terminates on the input string w}.

In Section 5.2.5, we proved that the language A7y, is enumerable. Using a
simple modification of this proof, it can be shown that the language Halt is
enumerable.

Theorem 5.4.1 The language Halt is undecidable.

Proof. The proof is by contradiction. So we assume that the language Halt
is decidable. Then there exists a Java program H, that takes as input a
string of the form (P, w), where P is an arbitrary Java program, and w is an
arbitrary input for P. The program H has the following property:

e H outputs true, if (P,w) € Halt (i.e., program P terminates on input
w).

e H outputs false, if (P,w) ¢ Halt, (i.e., program P does not terminate
on input w).

5.4. THE HALTING PROBLEM 149

We will write the output of H as H (P, w). Moreover, we will denote by P(w)
the computation obtained by running the program P on the input w. Hence,

H(P,w) = {

true if P(w) terminates,
false if P(w) does not terminate.

Consider the following algorithm (), which takes as input the encoding
(P) of an arbitrary Java program P:

Algorithm Q((P)):

while H (P, (P)) = true
do have a beer
endwhile

Since H is a Java program, this new algorithm () can also be written as
a Java program. Observe that

Q((P)) terminates if and only if H(P, (P)) = false.

This means that for every Java program P,
Q((P)) terminates if and only if P({P)) does not terminate. (5.4)

What happens if we run the Java program) on the input string (@Q)?
In other words, what happens if we run Q((Q))? Then, in (5.4), we have to
replace P by (). Hence,

Q({Q)) terminates if and only if Q({Q)) does not terminate.

This is obviously a contradiction, and we can conclude that the Java program
H does not exist. Hence, the language Halt is undecidable. |

Remark 5.4.2 In this proof, we run the Java program @) on the input (Q).
This means that the input to @) is a description of itself. In other words, we
give @ itself as input. This is an example of what is called self-reference. If
this does not confuse you yet, consider the following statement S:

This statement is false.

Is the statement S true or false? Another example of self-reference can
be found in Remark 5.4.2 of the lecture notes Discrete Structures II by A.
Maheshwari and M. Smid.

150 CHAPTER 5. DECIDABLE AND UNDECIDABLE LANGUAGES

5.5 The language A1) is undecidable

Recall the definition of the language Aqy,:
Ary = {(M,w): M is a Turing machine that accepts the string w}.

We know that this language is enumerable; see Theorem 5.2.6. In this section,
we prove that Arys is undecidable.

The proof is by contradiction. So we assume that A7y, is decidable. Then
there exists a Turing machine H that has the following property: On every
input string (M, w),

e H terminates in its accept state, if (M, w) € Ary (i.e., if M accepts
w),

e H terminates in its reject state, if (M, w) ¢ Ary (i-e., if M rejects w
or M does not terminate on input w).

Observe that H terminates on any input string (M, w).

We construct a new Turing machine D, that does the following: On input
(M), the Turing machine D uses H as a subroutine to determine what M
does when it is given its own description as input. Once D has determined
this information, it does the opposite from what H does.

Turing machine D: On input (M), where M is a Turing machine,
the new Turing machine D does the following:

Step 1: Run the Turing machine H on the input (M, (M)).
Step 2:

e If H terminates in its accept state, then D terminates in its
reject state.

e If H terminates in its reject state, then D terminates in its
accept state.

First, observe that this new Turing machine D terminates on every input
string (M), because H terminates on every input. Next, observe that, for
every possible input string (M),

e D terminates in its accept state, if (M, (M)) & Ay (i.e., if M rejects
(M) or M does not terminate on input (M)),

5.6. THE RELATION BETWEEN DECIDABLE AND ENUMERABLE LANGUAGES151

e D terminates in its reject state, if (M, (M)) € Ary (i.e., if M accepts

(M)).
This means that for every string (M),

e D accepts (M), if M rejects (M) or M does not terminate on input
(M),

e D rejects (M), if M accepts (M).

We now consider what happens if we give the Turing machine D the string
(D) as input, i.e., we take M = D:

e D accepts (D), if D rejects (D) or D does not terminate on input (D),
e D rejects (D), if D accepts (D).
Since D terminates on every input string, this means that
e D accepts (D), if D rejects (D),
e D rejects (D), if D accepts (D).

This is clearly a contradiction. Therefore, the Turing machine H that decides
the language A7y cannot exist, and Ay is not decidable.

Theorem 5.5.1 The language Ay is undecidable.

5.6 The relation between decidable and enu-
merable languages

We know from Theorem 5.1.3 that every decidable language is enumerable.
On the other hand, we know from Theorems 5.2.6 and 5.5.1 that the converse
is not true. The following result should not come as a surprise:

Theorem 5.6.1 Let X be an alphabet, and let A C X~ be a language. Then,
A is decidable if and only if both A and its complement A are enumerable.

152 CHAPTER 5. DECIDABLE AND UNDECIDABLE LANGUAGES

Proof. We first assume that A is decidable. Then, by Theorem 5.1.3, A
is enumerable. Since A is decidable, it is not difficult to see that A is also
decidable. Then, again by Theorem 5.1.3, A is enumerable.

To prove the converse, we assume that both A and A are enumerable.
Since A is enumerable, there exists a Turing machine M, such that for any
string w € ¥*, the following holds:

e Ifw € A, then the computation of M7, on the input string w, terminates
in the accept state of M.

e Ifw ¢ A, then the computation of My, on the input string w, terminates
in the reject state of M; or does not terminate.

Similarly, since A is enumerable, there exists a Turing machine M,, such that
for any string w € ¥*, the following holds:

e Ifw € A, then the computation of My, on the input string w, terminates
in the accept state of Ms.

e Ifw ¢ A, then the computation of My, on the input string w, terminates
in the reject state of M, or does not terminate.

We construct a two-tape Turing machine M:

Two-tape Turing machine M: For any input string w € ¥*, M
does the following:

e M simulates the computation of M;, on input w, on the first
tape, and, simultaneously, it simulates the computation of Ms,
on input w, on the second tape.

e If the simulation of M; terminates in the accept state of M,
then M terminates in its accept state.

e If the simulation of M, terminates in the accept state of Mo,
then M terminates in its reject state.

Observe the following;:

o If w € A, then M; terminates in its accept state and, therefore, M
terminates in its accept state.

5.7. EXERCISES 153

o If w & A, then M, terminates in its accept state and, therefore, M
terminates in its reject state.

We conclude that the Turing machine M accepts all strings in A, and rejects
all strings that are not in A. This proves that the language A is decidable.
|

Theorem 5.6.2 The language Ay is not enumerable.

Proof. We know from Theorems 5.2.6 and 5.5.1 that the language Ay is
enumerable but not decidable. Combining these facts with Theorem 5.6.1
implies that the language Ay, is not enumerable. |

5.7 Exercises

5.1 Prove that the language Halt, see Section 5.4, is enumerable.

5.2 Prove that the language
{w € {0,1}" : w is the binary representation of 2", for some n > 0}

is decidable. In other words, construct a Turing machine that gets as input
an arbitrary number x € N, represented in binary as a string w, and that
decides whether or not = is a power of two.

5.3 Let F' be the set of all functions f : N — N. Prove that F' is not
countable.

5.4 A function f : N — N is called computable, if there exists a Turing
machine, that gets as input an arbitrary positive integer n, written in binary,
and gives as output the value of f(n), again written in binary. This Turing
machine has a final state. As soon as the Turing machine enters this final
state, the computation terminates, and the output is the binary string that
is written on its tape.

Prove that there exist functions f : N — N that are not computable.

154 CHAPTER 5. DECIDABLE AND UNDECIDABLE LANGUAGES

5.5 Let n be a fixed positive integer, and let £ be the number of bits in the
binary representation of n. (Hence, k¥ = 1 + |logn].) Construct a Turing
machine with one tape, tape alphabet {0,1,0}, and exactly k + 1 states
qo, 41, - - -, Qx, that does the following:

Start of the computation: The tape is empty, i.e., every cell of the tape
contains O, and the Turing machine is in the start state gqo.

End of the computation: The tape contains the binary representation of
the integer n, the tape head is on the rightmost bit of the binary represen-
tation of n, and the Turing machine is in the final state gy.

The Turing machine in this exercise does not have an accept state or a
reject state; instead, it has a final state ¢;. As soon as state ¢ is entered,
the Turing machine terminates.

5.6 Give an informal description (in plain English) of a Turing machine
with three tapes, that gets as input the binary representation of an arbitrary
integer m > 1, and returns as output the unary representation of m.

Start of the computation: The first tape contains the binary representa-
tion of the input m. The other two tapes are empty (i.e., contain only Os).
The Turing machine is in the start state.

End of the computation: The third tape contains the unary representation
of m, i.e., a string consisting of m many ones. The Turing machine is in the
final state.

The Turing machine in this exercise does not have an accept state or a
reject state; instead, it has a final state. As soon as this final state is entered,
the Turing machine terminates.

Hint: Use the second tape to maintain a string of ones, whose length is
a power of two.

5.7 In this exercise, you are asked to prove that the busy beaver function
BB : N — N is not computable.

For any integer n > 1, we define T'M,, to be the set of all Turing machines
M, such that

e M has one tape,

e M has exactly n states,

5.7. EXERCISES 155

e the tape alphabet of M is {0,1,0}, and
e M terminates, when given the empty string € as input.

For every Turing machine M € TM,,, we define f(M) to be the number of
ones on the tape, after the computation of M, on the empty input string,
has terminated.

The busy beaver function BB : N — N is defined as

BB(n) := max{f(M): M € TM,}, for every n > 1.

In words, BB(n) is the maximum number of ones that any Turing machine
with n states can produce, when given the empty string as input, and as-
suming the Turing machine terminates on this input.

Prove that the function BB is not computable.

Hint: Assume that BB is computable. Then there exists a Turing ma-
chine M that, for any given n > 1, computes the value of BB(n). Fix a large
integer n > 1. Define (in plain English) a Turing machine that, when given
the empty string as input, terminates and outputs a string consisting of more
than BB(n) many ones. Use Exercises 5.5 and 5.6 to argue that there exists
such a Turing machine having O(logn) states. Then, if you assume that n
is large enough, the number of states is at most n.

5.8 We define the following language:

L={u : u=(0,M,w) for some (M,w) € Arpy,
or u = (1, M,w) for some (M,w) & Ary } .

Prove that both J and its complement J are not enumerable.

Hint: There are two ways to solve this exercise. In the first solution, (i)
you assume that .J is enumerable, and then prove that Ay, is decidable, and
(ii) you assume that J is enumerable, and then prove that Ary is decidable.
In the second solution, (i) you assume that J is enumerable, and then prove
that Agy, is enumerable, and (ii) you assume that J is enumerable, and then
prove that A1y is enumerable.

156 ~CHAPTER 5. DECIDABLE AND UNDECIDABLE LANGUAGES

Chapter 6

Complexity Theory

In the previous chapters, we have considered the problem of what can be
computed by Turing machines (i.e., computers) and what cannot be com-
puted. We did not, however, take the efficiency of the computations into
account. In this chapter, we introduce a classification of decidable languages
A, based on the running time of the “best” algorithm that decides A. That
is, given a decidable language A, we are interested in the “fastest” algorithm
that, for any given string w, decides whether or not w € A.

6.1 The running time of algorithms

Let M be a Turing machine, and let w be an input string for M. We define
the running time ty (w) of M on input w as

tar(w) := the number of computation steps made by M on input w.

As usual, we denote by |w|, the number of symbols in the string w. We
denote the set of non-negative integers by Ny.

Definition 6.1.1 Let ¥ be an alphabet, let 7' : Ny — Ny be a function, let
A C ¥* be a decidable language, and let F' : ¥* — ¥* be a computable
function.

e We say that the Turing machine M decides the language A in time T,
if
tar(w) < T(|wl)

for all strings w in X*.

157

158 CHAPTER 6. COMPLEXITY THEORY

e We say that the Turing machine M computes the function F' in time
T, if
tar(w) < T(|wl)

for all strings w € ¥*.

In other words, the “running time function” 7' is a function of the length
of the input, which we usually denote by n. For any n, the value of T'(n) is
an upper bound on the running time of the Turing machine M, on any input
string of length n.

To give an example, consider the Turing machine of Section 4.2.1 that
decides, using one tape, the language consisting of all palindromes. The tape
head of this Turing machine moves from the left to the right, then back to
the left, then to the right again, back to the left, etc. Each time it reaches
the leftmost or rightmost symbol, it deletes this symbol. The running time
of this Turing machine, on any input string of length n, is

O(1+2+3+...+n)=0(?.

On the other hand, the running time of the Turing machine of Section 4.2.2,
which also decides the palindromes, but using two tapes instead of just one,
is O(n).

In Section 4.5, we mentioned that all computation models listed there are
equivalent, in the sense that if a language can be decided in one model, it
can be decided in any of the other models. We just saw, however, that the
language consisting of all palindromes allows a faster algorithm on a two-
tape Turing machine than on one-tape Turing machines. (Even though we
did not prove this, it is true that Q(n?) is a lower bound on the running
time to decide palindromes on a one-tape Turing machine.) The following
theorem can be proved.

Theorem 6.1.2 Let A be a language (resp. let F be a function) that can be
decided (resp. computed) in time T by an algorithm of type M. Then there is
an algorithm of type N that decides A (resp. computes F') in time T', where

M | N N
k-tape Turing machine one-tape Turing machine | O(T?)
one-tape Turing machine | Java program O(T?)
Java program k-tape Turing machine O(T*)

6.2. THE COMPLEXITY CLASS P 159

6.2 The complexity class P

Definition 6.2.1 We say that algorithm M decides the language A (resp.
computes the function F') in polynomial time, if there exists an integer k > 1,
such that the running time of M is O(n*), for any input string of length n.

It follows from Theorem 6.1.2 that this notion of “polynomial time” does
not depend on the model of computation:

Theorem 6.2.2 Consider the models of computation “Java program”, “k-
tape Turing machine”, and “one-tape Turing machine”. If a language can
be decided (resp. a function can be computed) in polynomial time in one of
these models, then it can be decided (resp. computed) in polynomial time in
all of these models.

Because of this theorem, we can define the following two complexity
classes:

P :={A: the language A is decidable in polynomial time},
and

FP := {F: the function F' is computable in polynomial time}.

6.2.1 Some examples
Palindromes
Let Pal be the language
Pal .= {w € {a,b}" : w is a palindrome}.

We have seen that there exists a one-tape Turing machine that decides Pal
in O(n?) time. Therefore, Pal € P.
Some functions in FP
The following functions are in the class FP:

o [:Ny — Ny defined by Fi(z) := z + 1,

o F,: N2 — N defined by Fy(z,y) :=z + v,

o F3: N2 - N defined by F3(x,y) := zy.

160 CHAPTER 6. COMPLEXITY THEORY

Context-free languages

We have shown in Section 5.2.4 that every context-free language is decidable.
The algorithm presented there, however, does not run in polynomial time.
In COMP 3804, the following result will be shown (using a technique called
dynamic programming):

Theorem 6.2.3 Let ¥ be an alphabet, and let A C ¥* be a context-free
language. Then A € P.

Observe that, obviously, every language in P is decidable.

The 2-coloring problem

Let G be a graph with vertex set V and edge set E. We say that G is
2-colorable, if it is possible to give each vertex of V' a color such that

1. for each edge (u,v) € E, the vertices u and v have different colors, and
2. only two colors are used to color all vertices.
See Figure 6.1 for an example. We define the following language:

2Color := {(G) : the graph G is 2-colorable},

where (G) denotes the binary string that encodes the graph G.

We claim that 2Color € P. In order to show this, we have to construct an
algorithm that decides in polynomial time, whether or not any given graph
is 2-colorable.

Let G be an arbitrary graph with vertex set V = {1,2,...,m}. The edge
set of G is given by an adjacency matriz. This matrix, which we denote by
E is a two-dimensional array with m rows and m columns. For all 7 and j
with 1 <7 <m and 1 < j < m, we have

. J 1 if(4,7) is an edge of G,
B, j) = { 0 otherwise.
The length of the input G, i.e., the number of bits needed to specify G, is
equal to m? =: n. We will present an algorithm that decides, in O(n) time,
whether or not the graph G is 2-colorable.

6.2. THE COMPLEXITY CLASS P 161

b

G

Figure 6.1: The graph G is 2-colorable; r stands for red; b stands for blue.
The graph G is not 2-colorable.

The algorithm uses the colors red and blue. It gives the first vertex the
color red. Then, the algorithm considers all vertices that are connected by
an edge to the first vertex, and colors them blue. Now the algorithm is done
with the first vertex; it marks this first vertex.

Next, the algorithm chooses a vertex ¢ that already has a color, but that
has not been marked. Then it considers all vertices j that are connected by
an edge to 7. If 7 has the same color as ¢, then the input graph G is not
2-colorable. Otherwise, if vertex j does not have a color yet, the algorithm
gives j the color that is different from ¢’s color. After having done this for
all neighbors j of 7, the algorithm is done with vertex 4, so it marks .

It may happen that there is no vertex 7 that already has a color but that
has not been marked. (In other words, each vertex i that is not marked does
not have a color yet.) In this case, the algorithm chooses an arbitrary vertex
i having this property, and colors it red. (This vertex i is the first vertex in
its connected component that gets a color.)

This procedure is repeated until all vertices of G have been marked.

We now give a formal description of this algorithm. Vertex ¢ has been
marked, if

1. 4 has a color,

2. all vertices that are connected by an edge to ¢ have a color, and

162 CHAPTER 6. COMPLEXITY THEORY

3. the algorithm has verified that each vertex that is connected by an edge
to 7 has a color different from ’s color.

The algorithm uses two arrays f(1...m) and a(l...m), and a variable
M. The value of f(7) is equal to the color (red or blue) of vertex 4; if ¢ does
not have a color yet, then f(i) = 0. The value of a(7) is equal to

a(i) = 1 if vertex 7 has been marked,
| 0 otherwise.

The value of M is equal to the number of marked vertices. The algorithm
is presented in Figure 6.2. You are encouraged to convince yourself of the
correctness of this algorithm. That is, you should convince yourself that this
algorithm returns YES if the graph G is 2-colorable, whereas it returns NO
otherwise.

What is the running time of this algorithm? First we count the number
of iterations of the outer while-loop. In one iteration, either M increases by
one, or a vertex i, for which a(i) = 0, gets the color red. In the latter case,
the variable M is increased during the next iteration of the outer while-loop.
Since, during the entire outer while-loop, the value of M is increased from
zero to m, it follows that there are at most 2m iterations of the outer while-
loop. (In fact, the number of iterations is equal to m plus the number of
connected components of G minus one.)

One iteration of the outer while-loop takes O(m) time. Hence, the total
running time of the algorithm is O(m?), which is O(n). Therefore, we have
shown that 2Color € P.

6.3 The complexity class NP

Before we define the class NP, we consider some examples.

Example 6.3.1 Let G be a graph with vertex set V and edge set F, and
let £ > 1 be an integer. We say that G is k-colorable, if it is possible to give
each vertex of V' a color such that

1. for each edge (u,v) € E, the vertices u and v have different colors, and

2. at most k different colors are used to color all vertices.

6.3. THE COMPLEXITY CLASS NP 163

Algorithm 2COLOR
for i := 1 to m do f(i) := 0; a(i) := 0 endfor;
f(1) :=red; M :=0;
while M #m
do (* Find the minimum index 4 for which vertex i has not
been marked, but has a color already x)
bool := false; i :=1;
while bool = false and i <m
do if a(i) = 0 and f(i) # 0 then bool := true else i := i + 1 endif;
endwhile;
(* If bool = true, then i is the smallest index such that
a(i) =0 and f(i) #0.
If bool = false, then for all i, the following holds: if a(i) = 0, then
f (@) = 0; because M < m, there is at least one such i. *)
if bool = true
then for j :=1tom
do if E(i,j) =1
then if £(i) = £(j)
then return NO and terminate
else if f(j) =0
then if f(i) = red
then f(j) := blue
else f(j) := red
endif
endif
endif
endif
endfor;
a(i):=1, M :=M+1;
else i :=1;
while a(i) # 0 do i := i + 1 endwhile;
(* an unvisited connected component starts at vertex i *)
f(@) :=red
endif
endwhile;
return YES

Figure 6.2: An algorithm that decides whether or not a graph G is 2-
colorable.

We define the following language:
kColor := {(G) : the graph G is k-colorable}.

164 CHAPTER 6. COMPLEXITY THEORY

We have seen that for £ = 2, this problem is in the class P. For k£ > 3, it
is not known whether there exists an algorithm that decides, in polynomial
time, whether or not any given graph is k-colorable. In other words, for
k > 3, it is not known whether or not k£Color is in the class P.

Example 6.3.2 Let G be a graph with vertex set V' = {1,2,...,m} and
edge set E. A Hamilton cycle is a cycle in G that visits each vertex exactly
once. Formally, it is a sequence vy, vs, ..., v, of vertices such that

1. {v1,ve,...,v} =V, and

2. {(v1,v2), (v2,v3), - -, (Vim—1,Vm), (Um,v1)} C E.

We define the following language:
HC := {(G) : the graph G contains a Hamilton cycle}.
It is not known whether or not HC is in the class P.

Example 6.3.3 The sum of subset language is defined as follows:

SOS :={{a1,a9,...,am,b) : m,ai,as,...,a,,0€ Ny and
I C{1,2,...,m},> .. a; = b}.
Also in this case, no polynomial-time algorithm is known that decides the

language SOS. That is, it is not known whether or not SOS is in the class
P.

Example 6.3.4 An integer x > 2 is a prime number, if there are no a,b € N
such that a # x, b # =, and x = ab. Hence, the language of all non-primes
that are greater than or equal to two, is

NPrim := {(z) : > 2 and z is not a prime number}.

It is not obvious at all, whether or not NPrim is in the class P. In fact, it
was shown only in 2002 that NPrim is in the class P.

Observation 6.3.5 The four languages above have the following in com-
mon: If someone gives us a “solution” for any given input, then we can
easily, i.e., in polynomial time, verify whether or not this “solution” is a cor-
rect solution. Moreover, for any input to each of these four problems, there
exrists a “solution” whose length is polynomial in the length of the input.

6.3. THE COMPLEXITY CLASS NP 165

Let us again consider the language kColor. Let G be a graph with vertex
set V= {1,2,...,m} and edge set F, and let k be a positive integer. We
want to decide whether or not GG is k-colorable. A “solution” is a coloring of
the nodes using at most £ different colors. That is, a solution is a sequence
fi, fay -+, fm- (Interpret this as: vertex i receives color f;, 1 < i < m). This
sequence is a correct solution if and only if

1. fi€{1,2,...,k}, for all i with 1 < ¢ < m, and

2. for all ¢ with 1 < ¢ < m, and for all j with 1 < j < m, if (4,j) € E,
then fz ?é fJ

If someone gives us this solution (i.e., the sequence fi, fa,..., fm), then
we can verify in polynomial time whether or not these two conditions are
satisfied. The length of this solution is O(mlogk): for each i, we need about
log k bits to represent f;. Hence, the length of the solution is polynomial in
the length of the input, i.e., it is polynomial in the number of bits needed to
represent the graph G' and the number £.

For the Hamilton cycle problem, a solution consists of a sequence vy,
Vg, ..., U, of vertices. This sequence is a correct solution if and only if

1. {v,ve,...,v5} ={1,2,...,m} and

2. {(v1,v2), (v2,3), .-, (Vm—1,Vm), (Vm,v1)} C E.

These two conditions can be verified in polynomial time. Moreover, the
length of the solution is polynomial in the length of the input graph.

Consider the sum of subset problem. A solution is a sequence cy, co, . . ., Ci.
It is a correct solution if and only if

1. ¢; € {0,1}, for all 4 with 1 < ¢ < m, and
2. Z:’;l C;a; = b.

Hence, the set I C {1,2,...,m} in the definition of SOS is the set of indices
i for which ¢; = 1. Again, these two conditions can be verified in polynomial
time, and the length of the solution is polynomial in the length of the input.

Finally, let us consider the language NPrim. Let x > 2 be an integer.
The integers a and b form a “solution” for x if and only if

166 CHAPTER 6. COMPLEXITY THEORY

1. 2<a<x,
2. 2<b< z, and
3. x = ab.

Clearly, these three conditions can be verified in polynomial time. Moreover,
the length of this solution, i.e., the total number of bits in the binary rep-
resentations of ¢ and b, is polynomial in the number of bits in the binary
representation of x.

Languages having the property that the correctness of a proposed “solu-
tion” can be verified in polynomial time, form the class NP:

Definition 6.3.6 A language A belongs to the class NP, if there exist a
polynomial p and a language B € P, such that for every string w,

w e A<= Js:|s| < p(Jlw|) and (w,s) € B.

In words, a language A is in the class NP, if for every string w, w € A if
and only if the following two conditions are satisfied:

1. There is a “solution” s, whose length |s| is polynomial in the length of
w (i-e., |s| < p(Jwl|), where p is a polynomial).

2. In polynomial time, we can verify whether or not s is a correct “solu-
tion” for w (i.e., (w,s) € B and B € P).

Hence, the language B can be regarded to be the “verification language”:
B = {{w, s): sis a correct “solution” for w}.

We have given already informal proofs of the fact that the languages
kColor, HC', SOS, and NPrim are all contained in the class NP. Below, we
formally prove that NPrim € NP. To prove this claim, we have to specify
the polynomial p and the language B € P. First, we observe that

NPrim = {(x) : there exist a and b in N such that

2<a<z,2<b<z andz =uab}. (6.1)

We define the polynomial p by p(n) := n + 2, and the language B as

B :={(z,a,b) :x>2,2<a<2,2<b<zandz=ab}.

6.3. THE COMPLEXITY CLASS NP 167

It is obvious that B € P: For any three positive integers x, a, and b, we
can verify in polynomial time whether or not (x,a,b) € B. In order to do
this, we only have to verify whether or not z > 2, 2 <a <z, 2 < b < z,
and = = ab. If all these four conditions are satisfied, then (z,a,b) € B. If at
least one of them is not satisfied, then (x,a,b) ¢ B.

It remains to show that for all z € N:

(x) € NPrim <= Ja,b : [{a,b)| < [{(z)| + 2 and (x,a,b) € B. (6.2)

(Remember that |(x)| denotes the number of bits in the binary representation
of z; |(a,b)| denotes the total number of bits of a and b, i.e., [{(a,b)| =

[(a)| + [{b)].)

Let x € NPrim. It follows from (6.1) that there exist a and b in N, such
that 2 <a <z, 2<b<zx, and x = ab. Sincex =ab>2-2=42> 2, it
follows that (x,a,b) € B. Hence, it remains to show that

{a,b)| < [(z)| + 2.

The binary representation of z contains |log x| +1 bits, i.e., [{z)| = |logz|+1.
We have

e, 0)] = Ka)| + [(0)]

(lloga| +1) + (|logb] + 1)
loga +logb+ 2
logab + 2

logz + 2

|logz| +3

[{z)] + 2.

IA

IN

This proves one direction of (6.2).

To prove the other direction, we assume that there are positive integers
a and b, such that [{(a,b)| < |{(z)| + 2 and (x,a,b) € B. Then it follows
immediately from (6.1) and the definition of the language B, that x € NPrim.
Hence, we have proved the other direction of (6.2). This completes the proof
of the claim that

NPrim € NP.

168 CHAPTER 6. COMPLEXITY THEORY

6.3.1 P is contained in NP

Intuitively, it is clear that P C NP, because a language is

e in P if for every string w, it is possible to compute the “solution” s in
polynomial time,

e in NP, if for every string w and for any given “solution” s, it is possible
to verify in polynomial time whether or not s is a correct solution for
w (hence, we do not need to compute the solution s ourselves, we only
have to verify it).

We give a formal proof of this:
Theorem 6.3.7 P C NP.

Proof. Let A € P. We will prove that A € NP. Define the polynomial p
by p(n) := 0 for all n € Ny, and define

B :={(w,¢e) : w e A}.
Since A € P, the language B is also contained in P. It is easy to see that
weE A<= 3s:|s| <p(Jw|) =0 and (w,s) € B.

This completes the proof. |

6.3.2 Deciding NP-languages in exponential time

Let us look again at the definition of the class NP. Let A be a language in
this class. Then there exist a polynomial p and a language B € P, such that
for all strings w,

w e A<= Ts:|s| < p(|lw|) and (w, s) € B. (6.3)

How do we decide whether or not any given string w belongs to the language
A? If we can find a string s that satisfies the right-hand side in (6.3), then
we know that w € A. On the other hand, if there is no such string s, then
w ¢ A. How much time do we need to decide whether or not such a string s
exists?

6.3. THE COMPLEXITY CLASS NP 169

Algorithm NONPRIME
(* decides whether or not (z) € NPrim x)
ifr=0orx=1orz=2
then return NO and terminate
else a := 2;
while a < z
doif x moda =0
then return YES and terminate
elsea:=a+1
endif
endwhile;
return NO
endif

Figure 6.3: An algorithm that decides whether or not a number x is contained
in the language NPrim.

For example, let A be the language NPrim, and let x € N. The algorithm
in Figure 6.3 decides whether or not (z) € NPrim.

It is clear that this algorithm is correct. Let n be the length of the binary
representation of z, i.e., n = |logz| + 1. If z > 2 and z is a prime number,
then the while-loop makes 2 — 2 iterations. Therefore, since n—1 = |logz]| <
log x, the running time of this algorithm is at least

r—2>2"t 9

i.e., it is at least exponential in the length of the input.

We now prove that every language in NP can be decided in exponential
time. Let A be an arbitrary language in NP. Let p be the polynomial, and
let B € P be the language such that for all strings w,

w € A<= Ts: |s| < p(Jlw|) and (w, s) € B. (6.4)

The following algorithm decides, for any given string w, whether or not
w € A. It does so by looking at all possible strings s for which |s| < p(|w|):

for all s with |s| < p(Jw|)
do if (w,s) € B

170 CHAPTER 6. COMPLEXITY THEORY

then return YES and terminate
endif

endfor;

return NO

The correctness of the algorithm follows from (6.4). What is the running
time? We assume that w and s are represented as binary strings. Let n be
the length of the input, i.e., n = |w|.

How many binary strings s are there whose length is at most p(Jw|)? Any
such s can be described by a sequence of length p(|w|) = p(n), consisting of
the symbols “0”, “1”, and the blank symbol. Hence, there are at most 37("
many binary strings s with |s| < p(n). Therefore, the for-loop makes at most
3P iterations.

Since B € P, there is an algorithm and a polynomial ¢, such that this
algorithm, when given any input string z, decides in ¢(|z|) time, whether or
not z € B. This input z has the form (w, s), and we have

2| = [w] + [s] < |w[+ p(lw]) = 7 + p(n).

It follows that the total running time of our algorithm that decides whether
or not w € A, is bounded from above by

2% (n + p(n))

RO g(n+pn)) <
< 92p(n) | 9q(n+p(n))

— 2;0'(")’

where p’ is the polynomial that is defined by p'(n) := 2p(n) + g(n + p(n)).
If we define the class EXP as

EXP := {A: there exists a polynomial p, such that A can be
decided in time 2P(™ } |

then we have proved the following theorem.

Theorem 6.3.8 NP C EXP.

6.3.3 Summary

e P C NP. It is not known whether P is a proper subclass of NP, or
whether P = NP. This is one of the most important open problems in

6.4. NON-DETERMINISTIC ALGORITHMS 171

computer science. If you can solve this problem, then you will get one
million dollars; not from us, but from the Clay Mathematics Institute,
see

http://www.claymath.org/prizeproblems/index.htm

Most people believe that P is a proper subclass of NP.

e NP C EXP, i.e., each language in NP can be decided in exponential
time. It is not known whether NP is a proper subclass of EXP, or
whether NP = EXP.

e It follows from P C NP and NP C EXP, that P C EXP. It can
be shown that P is a proper subset of EXP, i.e., there exist languages
that can be decided in exponential time, but that cannot be decided in
polynomial time.

e P is the class of those languages that can be decided efficiently, i.e., in
polynomial time. Sets that are not in P, are not efficiently decidable.

6.4 Non-deterministic algorithms

The abbreviation NP stands for Non-deterministic Polynomial time. The al-
gorithms that we have considered so far are deterministic, which means that
at any time during the computation, the next computation step is uniquely
determined. In a non-deterministic algorithm, there are one or more possi-
bilities for being the next computation step, and the algorithm chooses one
of them.

To give an example, we consider the language SOS, see Example 6.3.3.
Let m, a1, ag, ..., a,,, and b be elements of Ny. Then

(a1,az,...,am, by € SOS <= there exist ¢, co,...,cn € {0,1},
such that >~ c;a; = b.

The following non-deterministic algorithm decides the language SOS"

Algorithm SOS(m, a1, as, - .., an, b):
s:=0;

fori:=1tom

dos:=s | s:=s+a,

172 CHAPTER 6. COMPLEXITY THEORY

endfor;

ifs=5b

then return YES
else return NO
endif

The line
s:=s|s:=s+a

means that either the instruction “s := s” or the instruction “s := s+ q;” is
executed.

Let us assume that (a;, ag, . .., Gy, b) € SOS. Then there are ¢y, co, ..., ¢y €
{0, 1} such that >"'", ¢;a; = b. Assume our algorithm does the following, for
each 7 with 1 <4 < m: In the i-th iteration,

e if ¢; = 0, then it executes the instruction “s := s,
e if ¢; = 1, then it executes the instruction “s := s+ a;”.

Then after the for-loop, we have s = b, and the algorithm returns YES;
hence, the algorithm has correctly found out that (ai, as,. .., an,b) € SOS.
In other words, in this case, there exists at least one accepting computation.
On the other hand, if (a1, as, - . ., am, b) & SOS, then the algorithm always
returns NO, no matter which of the two instructions is executed in each
iteration of the for-loop. In this case, there is no accepting computation.

Definition 6.4.1 Let M be a non-deterministic algorithm. We say that M
accepts a string w, if there exists at least one computation that, on input w,
returns YES.

Definition 6.4.2 We say that a non-deterministic algorithm M decides a
language A in time T, if for every string w, the following holds: w € A if
and only if there exists at least one computation that, on input w, returns
YES and that takes at most 7T'(Jw|) time.

The non-deterministic algorithm that we have seen above decides the
language SOS in linear time: Let (a1, ay, .. ., @y, b) € SOS, and let n be the
length of this input. Then

n = [{a1)| + [ag)| + .. + Kam)| + [(0)] = m.

6.5. NP-COMPLETE LANGUAGES 173

For this input, there is a computation that returns YES and that takes
O(m) = O(n) time.

As in Section 6.2, we define the notion of “polynomial time” for non-
deterministic algorithms. The following theorem relates this notion to the
class NP that we defined in Definition 6.3.6.

Theorem 6.4.3 A language A is in the class NP if and only if there exists
a non-deterministic Turing machine (or Java program) that decides A in
polynomial time.

6.5 NP-complete languages

Languages in the class P are considered easy, i.e., they can be decided in
polynomial time. People believe (but cannot prove) that P is a proper sub-
class of NP. If this is true, then there are languages in NP that are hard,
i.e., cannot be decided in polynomial time.

Intuition tells us that if P # NP, then the hardest languages in NP are
not contained in P. These languages are called NP-complete. In this section,
we will give a formal definition of this concept.

If we want to talk about the “hardest” languages in NP, then we have to
be able to compare two languages according to their “difficulty”. The idea is
as follows: We say that a language B is “at least as hard” as a language A,
if the following holds: If B can be decided in polynomial time, then A can
also be decided in polynomial time.

Definition 6.5.1 Let A C {0,1}* and B C {0,1}* be languages. We say
that A <p B, if there exists a function

f:40,1}r - {0,1}*
such that
1. f € FP and
2. for all strings w in {0, 1}*,

we A+ f(w) € B.

174 CHAPTER 6. COMPLEXITY THEORY

If A <p B, then we also say that “B is at least as hard as A”, or “A is
polynomial-time reducible to B”.

We first show that this formal definition is in accordance with the intuitive
definition given above.

Theorem 6.5.2 Let A and B be languages such that B € P and A <p B.
Then A € P.

Proof. Let f: {0,1}* — {0,1}* be the function in FP for which
we A+ f(w) € B. (6.5)

The following algorithm decides whether or not any given binary string w is
in A:

u = f(w);
ifueB

then return YES
else return NO
endif

The correctness of this algorithm follows immediately from (6.5). So it
remains to show that the running time is polynomial in the length of the
input string w.

Since f € FP, there exists a polynomial p such that the function f can
be computed in time p. Similarly, since B € P, there exists a polynomial g,
such that the language B can be decided in time q.

Let n be the length of the input string w, i.e., n = |w|. Then the length
of the string u is less than or equal to p(Jw|) = p(n). (Why?) Therefore, the
running time of our algorithm is bounded from above by

p(lwl) + q(uf) < p(n) + q(p(n)).

Since the function p', defined by p'(n) := p(n)+q(p(n)), is a polynomial, this
proves that A € P. [|

The following theorem states that the relation <p is reflexive and tran-
sitive. We leave the proof as an exercise.

Theorem 6.5.3 Let A, B, and C be languages. Then

6.5. NP-COMPLETE LANGUAGES 175

1. A<p A, and
2. if A<p B and B <p C, then A <p C.
We next show that the languages in P are the easiest languages in NP:

Theorem 6.5.4 Let A be a language in P, and let B be an arbitrary lan-
guage such that B # () and B # {0,1}*. Then A <p B.

Proof. We choose two strings u and v in {0, 1}*, such that v € B and v ¢ B.
(Observe that this is possible.) Define the function f : {0,1}* — {0,1}* by

u if w e A,

f(“’)::{ v ifw¢ A

Then it is clear that for any binary string w,
we A< f(w) € B.

Since A € P, the function f can be computed in polynomial time, i.e.,
f € FP. [|

6.5.1 Two examples of reductions
Sum of subsets and knapsacks

We start with a simple reduction. Consider the two languages
SOS :={{(a1,...,am,b) : m,ay,...,a,,b€ Ny and there exist
Cly- -5 Cm € {0,1}, such that > c;a; = b}

and

KS = {(wy,...,wm, k1,... kyn, W,K):
m, Wi, ..., W, ki,...,km, W, K €Ny
and there exist ¢y, ..., ¢, € {0,1},
such that Y ", c;w; < W and Y ', ¢;k; > K}.

The notation KS stands for knapsack: We have m pieces of food. The
1-th piece has weight w; and contains k; calories. We want to decide whether
or not we can fill our knapsack with a subset of the pieces of food such that
the total weight is at most W, and the total amount of calories is at least K.

176 CHAPTER 6. COMPLEXITY THEORY

Theorem 6.5.5 SOS <p KS.

Proof. Let us first see what we have to show. According to Definition 6.5.1,
we need a function f € FP, that maps input strings for SOS to input strings
for KS, in such a way that

(a1,...,am,b) € SOS <= f({(ai,...,an,b)) € KS.

In order for f({ai,...,am,b)) to be an input string for KS, this function
value has to be of the form

fay, ... am, b)) = (w, ..., W, k1, ..., by, W, K).
We define

fay,...,am, b)) :={a1,...,0m,a1,-..,05,b,b).
It is clear that f € FP. We have

(as,. .., am,b) € SOS
<= there exist ci,...,¢n € {0,1} such that Y. cia; = b
<= there exist ¢, ..., ¢, € {0,1} such that > " ca; <band > " cia; > b
< (a1,...,0m, A1, ..., 0y, b b) € KS
<~ f({a1,...,an,b)) € KS.

Cliques and Boolean formulas

We will define two languages A = 3SAT and B = Clique that have, at
first sight, nothing to do with each other. Then we show that, nevertheless,
A Sp B.

Let G be a graph with vertex set V and edge set E. A subset V' of V' is
called a clique, if each pair of distinct vertices in V' is connected by an edge
in . We define the following language:

Clique := {(G, k) : k € N and G has a clique with k vertices}.

We encourage you to prove the following claim:

6.5. NP-COMPLETE LANGUAGES 177

Theorem 6.5.6 Clique € NP.

Next we consider Boolean formulas ¢, with variables z,zs, ..., 2, hav-
ing the form
o=Ci ANCyNA...N\Ck, (6.6)

where each C;, 1 < i < k, is of the form
Cy =L\ 1V 1

Each £ is either a variable or the negation of a variable. An example of such
a formula is

@ = (1 Vx Vxe) A (3 V2oV ay) A(—zy V oz Vomy).

A formula ¢ of the form (6.6) is said to be satisfiable, if there exists a truth-
value in {0,1} for each of the variables x1,zs, ..., Zn, such that the entire
formula ¢ is true. Our example formula is satisfiable: If we take x; = 0 and
xo =1, and give x3 and x4 an arbitrary value, then

e=0VIVO)A(z3V1IVzyH) ALV -z3V-xy) =1
We define the following language:
3SAT := {{p) : ¢ is of the form (6.6) and is satisfiable}.
Again, we encourage you to prove the following claim:
Theorem 6.5.7 3SAT € NP.

Observe that the elements of Clique (which are pairs consisting of a graph
and a positive integer) are completely different from the elements of 3SAT
(which are Boolean formulas). We will show that 3SAT <p Cligue. Recall
that this means the following: If the language Clique can be decided in
polynomial time, then the language 3SAT can also be decided in polynomial
time. In other words, any polynomial-time algorithm that decides Clique can
be converted to a polynomial-time algorithm that decides 3SAT.

Theorem 6.5.8 3S5AT <p Clique.

178 CHAPTER 6. COMPLEXITY THEORY

Proof. We have to show that there exists a function f € FP, that maps
input strings for 3SAT to input strings for Clique, such that for each Boolean
formula ¢ that is of the form (6.6),

(¢) € BSAT <= f((¢)) € Clique.

The function f maps the binary string encoding an arbitrary Boolean formula
¢ to a binary string encoding a pair (G, k), where G is a graph and k is a
positive integer. We have to define this function f in such a way that

 is satisfiable <= G has a clique with k vertices.

Let
QDZCl/\CQ/\.../\Ck
be an arbitrary Boolean formula in the variables =y, xs, ..., z,,, where each
C;, 1 <1<k, is of the form
Cy =L\ Ly 1,

Remember that each ¢ is either a variable or the negation of a variable.
The formula ¢ is mapped to the pair (G, k), where the vertex set V' and
the edge set E of the graph G are defined as follows:

o V = {vhv}vi ... vF vE v5}. The idea is that each vertex v} corre-

sponds to one term /.
e The pair (v%,v]) of vertices form an edge in E if and only if
— i # j and
— /i is not the negation of £,
To give an example, let ¢ be the Boolean formula
o= (1 VzoVx3) A(mxy VI Vas)A(zg Vg Vas), (6.7)

i.e., k= 3, Cl =T V X9 V -3, CQ = T \/332 V xs, and 03 =T \/332 V$3.
The graph G that corresponds to this formula is given in Figure 6.4.

It is not difficult to see that the function f can be computed in polynomial
time. So it remains to prove that

¢ is satisfiable <= G has a clique with k vertices. (6.8)

6.5. NP-COMPLETE LANGUAGES 179

Figure 6.4: The formula ¢ in (6.7) is mapped to this graph. The vertices on
the top represent Cy; the vertices on the left represent Cy; the vertices on
the right represent Cs.

To prove this, we first assume that the formula
QOZCl/\CQ/\.../\Ck

is satisfiable. Then there exists a truth-value in {0, 1} for each of the variables
Z1,To, ..., Tm, such that the entire formula ¢ is true. Hence, for each 7 with
1 < i < k, there is at least one term ¢ in

Cy =LV OV 1

that is true (i.e., has value 1).

Let V' be the set of vertices obtained by choosing for each i, 1 < i < k,
exactly one vertex v} such that ¢ has value 1.

It is clear that V' contains exactly k vertices. We claim that this set is
a clique in G. To prove this claim, let v’ and v] be two distinct vertices in
V'. Tt follows from the definition of V' that ¢ # j and ¢, = ¢} = 1. Hence,
¢: is not the negation of ¢/. But this means that the vertices v} and v] are
connected by an edge in G.

180 CHAPTER 6. COMPLEXITY THEORY

This proves one direction of (6.8). To prove the other direction, we assume
that the graph G contains a clique V' with k vertices.

The vertices of G consist of k groups, where each group contains exactly
three vertices. Since vertices within the same group are not connected by
edges, the clique V' contains exactly one vertex from each group. Hence, for
each ¢ with 1 < ¢ < k, there is exactly one a, such that vfl e V'. Consider
the corresponding term ¢. We know that this term is either a variable or
the negation of a variable, i.e., £ is either of the form z; or of the form —z;.
If /! = z;, then we give z; the truth-value 1. Otherwise, we have ¢!, = —z;,
in which case we give z; the truth-value 0. Since V' is a clique, each variable
gets at most one truth-value. If a variable has no truth-value yet, then we
give it an arbitrary truth-value.

If we substitute these truth-values into ¢, then the entire formula has
value 1. Hence, ¢ is satisfiable. |

In order to get a better understanding of this proof, you should verify the
proof for the formula ¢ in (6.7) and the graph G in Figure 6.4.

6.5.2 Definition of NP-completeness

Reductions, as defined in Definition 6.5.1, allow us to compare two language
according to their difficulty. A language B in NP is called NP-complete,
if B belongs to the most difficult languages in NP; in other words, B is at
least as hard as any other language in NP.

Definition 6.5.9 Let B C {0,1}* be a language. We say that B is NP-
complete, if

1. B € NP and
2. A <p B, for every language A in NP.
Theorem 6.5.10 Let B be an NP-complete language. Then

BeP <« P =NP.

Proof. Intuitively, this theorem should be true: If the language B is in P,
then B is an easy language. On the other hand, since B is NP-complete,
it belongs to the most difficult languages in NP. Hence, the most difficult

6.5. NP-COMPLETE LANGUAGES 181

language in NP is easy. But then all languages in NP must be easy, i.e.,
P = NP.

We give a formal proof. Let us first assume that B € P. We already
know that P C NP. Hence, it remains to show that NP C P. Let A be an
arbitrary language in NP. Since B is NP-complete, we have A <p B. Then,
by Theorem 6.5.2, we have A € P.

To prove the converse, assume that P = NP. Since B € NP, it follows
immediately that B € P. [|

Theorem 6.5.11 Let B and C' be languages, such that C € NP and B <p
C. If B is NP-complete, then C' is also NP-complete.

Proof. First, we give an intuitive explanation of the claim: By assumption,
B belongs to the most difficult languages in NP, and C' is at least as hard as
B. Since C' € NP, it follows that C' belongs to the most difficult languages
in NP. Hence, C' is NP-complete.

To give a formal proof, we have to show that A <p C, for all languages A
in NP. Let A be an arbitrary language in NP. Since B is NP-complete, we
have A <p B. Since B <p C, it follows from Theorem 6.5.3, that A <p C.
Therefore, C' is NP-complete. |

Theorem 6.5.11 can be used to prove the NP-completeness of languages:
Let C be a language, and assume that we want to prove that C' is NP-
complete. We can do this in the following way:

1. We first prove that C' € NP.

2. Then we find a language B that looks “similar” to C, and for which
we already know that it is NP-complete.

3. Finally, we prove that B <p C.
4. Then, Theorem 6.5.11 tells us that C is NP-complete.

Of course, this leads to the question “How do we know that the language
B is NP-complete?” In order to apply Theorem 6.5.11, we need a “first” NP-
complete language; the NP-completeness of this language must be proven
using Definition 6.5.9.

Observe that it is not clear at all that there exist NP-complete languages!
For example, consider the language 3SAT. If we want to use Definition 6.5.9
to show that this language is NP-complete, then we have to show that

182 CHAPTER 6. COMPLEXITY THEORY

o 35AT € NP. We know from Theorem 6.5.7 that this is true.

o A <p 3SAT, for every language A € NP. Hence, we have to show this
for languages A such as kColor, HC, SOS, NPrim, KS, Clique, and
for infinitely many other languages.

In 1973, Cook has exactly done this: He showed that the language 3SAT
is NP-complete. Since his proof is rather technical, we will prove the NP-
completeness of another language.

6.5.3 An NP-complete domino game

We are given a finite collection of tile types. For each such type, there are
arbitrarily many tiles of this type. A tile is a square that is partitioned into
four triangles. Each of these triangles contains a symbol that belongs to a
finite alphabet ¥. Hence, a tile looks as follows:

b

aX ¢
d

We are also given a square frame, consisting of cells. Each cell has the same
size as a tile, and contains a symbol of X..

The problem is to decide whether or not this domino game has a solution.
That is, can we completely fill the frame with tiles such that

e for any two neighboring tiles s and ', the two triangles of s and s’ that
touch each other contain the same symbol, and

e cach triangle that touches the frame contains the same symbol as the
cell of the frame that is touched by this triangle.

There is one final restriction: The orientation of the tiles is fixed, they cannot
be rotated.

Let us give a formal definition of this problem. We assume that the sym-
bols belong to the finite alphabet ¥ = {0,1}™, i.e., each symbol is encoded
as a bit-string of length m. Then, a tile type can be encoded as a tuple of
four bit-strings, i.e., as an element of ¥*. A frame consisting of ¢ rows and ¢
columns can be encoded as a string in X%,

6.5. NP-COMPLETE LANGUAGES 183

We denote the language of all solvable domino games by Domino:

Domino = {{m,k,t,R,T,...,T}) :
m>1Lk>1,t>1,Re X", T, e X' 1 <i<k,
frame R can be filled using tiles of types
Ty, ..., Ty}

We will prove the following theorem.
Theorem 6.5.12 The language Domino is NP-complete.

Proof. It is clear that Domino € NP: A solution consists of a ¢ X ¢ matrix,
in which the (7, j)-entry indicates the type of the tile that occupies position
(,7) in the frame. The number of bits needed to specify such a solution is
polynomial in the length of the input. Moreover, we can verify in polynomial
time whether or not any given “solution” is correct.

It remains to show that

A <p Domino, for every language A in NP.

Let A be an arbitrary language in NP. Then there exist a polynomial p and
a non-deterministic Turing machine M, that decides the language A in time
p. We may assume that this Turing machine has only one tape.

On input w = a;as ... a,, the Turing machine M starts in the start state
2y, with its tape head on the cell containing the symbol a;. We may assume
that during the entire computation, the tape head never moves to the left of
this initial cell. Hence, the entire computation “takes place” in and to the
right of the initial cell. We know that

w€E€ A <= oninput w, there exists an accepting computation
that makes at most p(n) computation steps.

At the end of such an accepting computation, the tape only contains the
symbol 1, which we may assume to be in the initial cell, and M is in the final
state z;. In this case, we may assume that the accepting computation makes
exactly p(n) computation steps. (If this is not the case, then we extend the
computation using the instruction z;1 — 2z;1N.)

We need one more technical detail: We may assume that za — 2’bR and
za' — 2"V L are not both instructions of M. Hence, the state of the Turing
machine uniquely determines the direction in which the tape head moves.

184 CHAPTER 6. COMPLEXITY THEORY

We have to define a domino game, that depends on the input string w
and the Turing machine M, such that

w € A <= this domino game is solvable.

The idea is to encode an accepting computation of the Turing machine M as

a solution of the domino game. In order to do this, we use a frame in which

each row corresponds to one computation step. This frame consists of p(n)

rows. Since an accepting computation makes exactly p(n) computation steps,

and since the tape head never moves to the left of the initial cell, this tape

head can visit only p(n) cells. Therefore, our frame will have p(n) columuns.
The domino game will use the following tile types:

1. For each symbol a in the alphabet of the Turing machine M:

Intuition: Before and after the computation step, the tape head is not
on this cell.

2. For each instruction za — 2z'bR of the Turing machine M:

(2, 0)
X7

Intuition: Before the computation step, the tape head is on this cell;
the tape head makes one step to the right.

3. For each instruction za — 2'bL of the Turing machine M:

(2, a)
k4 #

6.5. NP-COMPLETE LANGUAGES 185
Intuition: Before the computation step, the tape head is on this cell;
the tape head makes one step to the left.

4. For each instruction za — 2'bN of the Turing machine M:
(2,0)

X
(#',0)

Intuition: Before and after the computation step, the tape head is on
this cell.

5. For each state z and for each symbol a in the alphabet of the Turing
machine M, there are two tile types:

a a
z # # z
(2,0) (2,a)

Intuition: The leftmost tile indicates that the tape head enters this cell
from the left; the righmost tile indicates that the tape head enters this
cell from the right.

This specifies all tile types. The p(n) x p(n) frame is given in Figure 6.5.
The top row corresponds to the start of the computation, whereas the bottom
row corresponds to the end of the computation. The left and right columns
correspond to the part of the tape in which the tape head can move.

The encodings of these tile types and the frame can be computed in
polynomial time.

It can be shown that, for any input string w, any accepting computation
of length p(n) of the Turing machine M can be encoded as a solution of
this domino game. Conversely, any solution of this domino game can be
“translated” to an accepting computation of length p(n) of M, on input
string w. Hence, the following holds.

w € A <= there exists an accepting computation that makes
p(n) computation steps

<= the domino game is solvable.

186 CHAPTER 6. COMPLEXITY THEORY

- p(n) -
(20,a1)| a2 an O O
#
#
p(n)
#
(21,1)| O | .. | o O 0

Figure 6.5: The p(n) x p(n) frame of the domino game.

Therefore, we have A <p Domino. Hence, the language Domino is NP-
complete.]

An example of a domino game

We have defined the domino game corresponding to a Turing machine that
solves a decision problem. Of course, we can also do this for Turing machines
that compute functions. In this section, we will exactly do this for a Turing
machine that computes the successor function x — x + 1.

We will design a Turing machine with one tape, that gets as input the
binary representation of a natural number z, and that computes the binary
representation of x + 1.

Start of the computation: The tape contains a 0 followed by the binary
representation of the integer x € Ny. The tape head is on the leftmost bit
(which is 0), and the Turing machine is in the start state zy. Here is an

6.5. NP-COMPLETE LANGUAGES 187

example, where x = 431:

Lof1frfof1]ofr[1[1][1]O]

!

End of the computation: The tape contains the binary representation of
the number z + 1. The tape head is on the rightmost 1, and the Turing
machine is in the final state z;. For our example, the tape looks as follows:

Lof11]of1[1]0fo]0]0]|O]

!

Our Turing machine will use the following states:

zp © start state; tape head moves to the right
z; : final state
zy : tape head moves to the left; on its way to the left, it has not read 0

The Turing machine has the following instructions:

200 — Z()OR 291 — 220L
20l — ZolR 290 — leN
2O — ZQDL

In Figure 6.6, you can see the sequence of states and tape contents of this
Turing machine on input x = 11.

We now construct the domino game that corresponds to the computation
of this Turing machine on input x = 11. Following the general construction
in Section 6.5.3, we obtain the following tile types:

1. The three symbols of the alphabet yield three tile types:

0 1 [}
#

188 CHAPTER 6. COMPLEXITY THEORY

(2,0) 1 0 1 1 O
0 (Zo, 1) 0 1 1 O
0 1 (2,00 1 1 O
0 1 0 (2,1) 1 O
0 1 0 1 (2,1) O
0 1 0 1 1 (20,0)
0 1 0 1 (22,1) O
0 1 0 (2,1 0 O
0 1 (2,00 0 0 O
0 1 (z»,1) 0 0 O

Figure 6.6: The computation of the Turing machine on input x = 11. The
pair (state,symbol) indicates the position of the tape head.

2. The five instructions of the Turing machine yield five tile types:

(20,0) (z0,1) (307 D) (22,1) (22,0)
20 # 20 22 # 22 # #
0 1 [m] 0 (21, 1)

3. The states zy and z,, and the three symbols of the alphabet yield twelve

tile types:
0 1 O 0 1 O
20 # 20 # 20 # 22 # 22 # 22 #
(20,0) (#0,1) (20,0) (22,0) (#2,1) (22,0)
0 1 O 0 1]
X 20 # X zo # X 20 # X 22 # X 22 # X 22
(#0,0) (#0,1) (20,0) (22,0) (#2,1) (22,0)

The computation of the Turing machine on input = 11 consists of nine
computation steps. During this computation, the tape head visits exactly six
cells. Therefore, the frame of the domino game has nine rows and six columns.
This frame is given in Figure 6.7. In Figure 6.8, you find the solution of the
domino game. Observe that this solution is nothing but an equivalent way of
writing the computation of Figure 6.6. Hence, the computation of the Turing

6.5. NP-COMPLETE LANGUAGES 189

machine corresponds to a solution of the domino game; in fact, the converse
also holds.

6.5.4 Examples of NP-complete languages

In Section 6.5.3, we have shown that Domino is NP-complete. Using this
result, we will apply Theorem 6.5.11 to prove the NP-completeness of some
other languages.

Satisfiability

We consider Boolean formulas ¢, in the variables x1, zo, . .., Z,,, having the
form

QOZCl/\CQ/\.../\Ck, (69)

where each C;, 1 <1 < k, is of the following form:
Ci=Ul NNV VL.

Each Ej- is either a variable or the negation of a variable. Such a formula ¢
is said to be satisfiable, if there exists a truth-value in {0, 1} for each of the
variables z1, s, ..., Z,,, such that the entire formula ¢ is true. We define the
following language:

SAT = {{(p) : ¢ is of the form (6.9) and is satisfiable}.

We will prove that SAT is NP-complete.
It is clear that SAT € NP. If we can show that

Domino <p SAT,

then it follows from Theorem 6.5.11 that SAT is NP-complete. (In Theo-
rem 6.5.11, take B := Domino and C := SAT.)

Hence, we need a function f € FP, that maps input strings for Domino
to input strings for SAT, in such a way that for every domino game D, the
following holds:

the formula encoded by the

string f((D)) is satisfiable. (6.10)

domino game D is solvable <=

190 CHAPTER 6. COMPLEXITY THEORY

Let us consider an arbitrary domino game D. Let k be the number of
tile types, and let the frame have ¢ rows and ¢ columns. We denote the tile
types by T1,T5, ..., Ty.

We map this domino game D to a Boolean formula ¢, such that (6.10)
holds. The formula ¢ will have variables

These variables can be interpretated as follows:
Tije = 1 <=> there is a tile of type T; at position (i, j) of the frame.

We define:
e Foralliand jwithl <:<tand 1< j<t:

1.
Cz'j = T vV Tij2 V...V Tijk-

This formula expresses the condition that there is at least one tile at
position (i, 7).

e Foralli, j,fand ¢/ with1 <i<t, 1<j<t,and1</l</l <k:

2 —
Cij%’ = e \% X -

This formula expresses the condition that there is at most one tile at
position (i, 7).

e Foralli, j,fand /' with1 <i<t,1<j<t,1</l<kandl </l <k,
such that ¢ < t and the right symbol on a tile of type 7} is not equal
to the left symbol on a tile of type Ty:

3
Cijée’ = e V XG5 41,0 -

This formula expresses the condition that neighboring tiles in the same
row “fit” together. There are symmetric formulas for neighboring tiles
in the same column.

e Forall j and Zwith 1 < j <tand 1 </ <k, such that the top symbol
on a tile of type T} is not equal to the symbol at position j of the upper
boundary of the frame:

C_;-Lz = T e-
This formula expresses the condition that tiles that touch the upper
boundary of the frame “fit” there. There are symmetric formulas for
the lower, left, and right boundaries of the frame.

6.5. NP-COMPLETE LANGUAGES 191

The formula ¢ is the conjunction of all these formulas Cj;, Cpp, g, and
Cjs- The complete formula ¢ consists of

Otk + 2k* + k> + tk) = O(*k?)

terms, i.e., its length is polynomial in the length of the domino game. This
implies that ¢ can be constructed in polynomial time. Hence, the function
f that maps the domino game D to the Boolean formula ¢, is in the class
FP. It is not difficult to see that (6.10) holds for this function f. Therefore,
we have proved the following result.

Theorem 6.5.13 The language SAT is NP-complete.
In Section 6.5.1, we have defined the language 3SAT.
Theorem 6.5.14 The language 3SAT is NP-complete.
Proof. It is clear that 3SAT € NP. If we can show that
SAT <p 35AT,
then the claim follows from Theorem 6.5.11. Let
o=CiACyA...NCy

be an input for SAT, in the variables z1, x9, . . ., £,,. We map ¢, in polynomial
time, to an input ¢’ for 3SAT, such that

@ is satisfiable <= ¢' is satisfiable. (6.11)
For each ¢ with 1 < ¢ < k, we do the following. Consider
Ci=Ul VBNV
e If k; =1, then we define
Cl=0 VvV,

o If k; = 2, then we define

Cl =0Vl b

2

192 CHAPTER 6. COMPLEXITY THEORY

o If k; = 3, then we define

e If k; > 4, then we define

C! = (VBN ZYN(ZVIEV Z) AN(=2b VIV ZE) A ...
A(ﬁzlii—:i \v gzi—l \ g;c;)’

where z{,..., 2 5 are new variables.
Let
¢ =CIANCyA ... ANCY.
Then ¢ is an input for 3SAT, and (6.11) holds. |

Theorems 6.5.6, 6.5.8, 6.5.11, and 6.5.14 imply:

Theorem 6.5.15 The language Clique is NP -complete.

The traveling salesperson problem

We are given two positive integers £ and m, a set of m cities, and an integer
m X m matrix M, where

M (i, j) = the cost of driving from city 7 to city 7,

for all 4,j € {1,2,...,m}. We want to decide whether or not there is a tour
through all cities whose total cost is less than or equal to k. This problem is
NP-complete.

Bin packing

We are given three positive integers m, k, and /, a set of m objects having
volumes ay, as, ..., a,, and k£ bins. FEach bin has volume /. We want to
decide whether or not all objects fit within these bins. This problem is NP-
complete.

Here is another interpretation of this problem: We are given m jobs that
need time aq, ay, . . ., a,;, to complete. We are also given k processors, and an
integer /. We want to decide whether or not it is possible to divide the jobs
over the k processors, such that no processor needs more than £ time.

6.5. NP-COMPLETE LANGUAGES 193

Time tables

We are given a set of courses, class rooms, and professors. We want to
decide whether or not there exists a time table such that all courses are
being taught, no two courses are taught at the same time in the same class
room, no professor teaches two courses at the same time, and conditions such
as “Prof. L. Azy does not teach before 1pm” are satisfied. This problem is
NP-complete.

Motion planning

We are given two positive integers k and ¢, a set of k£ polyhedra, and two
points s and ¢ in @®. We want to decide whether or not there exists a path
between s and t, that does not intersect any of the polyhedra, and whose
length is less than or equal to . This problem is NP-complete.

Map labeling

We are given a map with m cities, where each city is represented by a point.
For each city, we are given a rectangle that is large enough to contain the
name of the city. We want to decide whether or not these rectangles can be
placed on the map, such that

e no two rectangles overlap,

e For each ¢ with 1 <7 < m, the point that represents city ¢ is a corner
of its rectangle.

This problem is NP-complete.

This list of NP-complete problems can be extended almost arbitrarily:
For thousands of problems, it is known that they are NP-complete. For all
of these, it is not known, whether or not they can be solved efficiently (i.e.,
in polynomial time). Collections of NP-complete problems can be found in
the book

e M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman, New York, 1979,

and on the web page

http://www.nada.kth.se/"viggo/wwwcompendium/

194 CHAPTER 6. COMPLEXITY THEORY

6.6 Exercises

6.1 Prove that the function F' : N — N, defined by F(z) := 2%, is not in FP.
6.2 Prove Theorem 6.5.3.

6.3 Prove that the language Clique is in the class NP.

6.4 Prove that the language 3SAT is in the class NP.

6.5 We define the following languages:

e Sum of subset:

SOS = {(al,aQ,...,am,b):Ellg {1,2,...,m},2ai:b}_

il
e Set partition:

SP := {{a1,a9,...,ay,): 3 C {1,2,...,m},2ai :Zai}.

iel igl
e Bin packing: BP is the set of all strings (s1, o, ..., Sy, B) for which

1. 0 <s; <1, for all 7,

2. BeN,
3. the numbers s1, s9, ..., s, fit into B bins, where each bin has size
one, i.e., there exists a partition of {1,2,...,m} into subsets I,

1 < k < B, such that ZieIkSi <lforallk,1<k<B.

For example, (1/6,1/2,1/5,1/9,3/5,1/5,1/2,11/18,3) € BP, because
the eight fractions fit into three bins:

1/6+1/9+11/18 <1, 1/2+1/2=1, and 1/5+3/5+1/5 = 1.

1. Prove that SOS <p SP.

2. Prove that the language SOS is NP-complete. You may use the fact
that the language SP is NP-complete.

6.6. EXERCISES 195

3. Prove that the language BP is NP-complete. Again, you may use the
fact that the language SP is NP-complete.

6.6 Prove that 3Color <p 3SAT.
Hint: For each vertex i, and for each of the three colors k, introduce a
Boolean variable z;.

6.7 The (0,1)-integer programming language IP is defined as follows:

IP :={(A,c): Ais an integer m X n matrix for some m,n € N,
c is an integer vector of length m, and
dz € {0,1}" such that Az < ¢ (componentwise) }.

Prove that the language IP is NP-complete. You may use the fact that
the language SOS is NP-complete.

6.8 Let ¢ be a Boolean formula in the variables x1, s, ..., -
We say that ¢ is in disjunctive normal form (DNF) if it is of the form

Q0:C1VCQV...\/Ck, (612)
where each C;, 1 < i < k, is of the following form:
Ci=lNGA..NE,.

Each €§- is a literal, which is either a variable or the negation of a variable.
We say that ¢ is in conjunctive normal form (CNF) if it is of the form

<,0:C'1/\02/\.../\C'k, (613)
where each C;, 1 <1 < k, is of the following form:
Ci=Ul VBNV ...VL .

Again, each £} is a literal.
We define the following two languages:

DNFSAT := {(¢) : ¢ is in DNF-form and is satisfiable},

and
CNFSAT = {{(¢) : ¢ is in CNF-form and is satisfiable}.

196 CHAPTER 6. COMPLEXITY THEORY

1. Prove that the language DNFSAT is in P.

2. What is wrong with the following argument: Since we can rewrite
any Boolean formula in DNF-form, we have CNFSAT <p DNFSAT.
Hence, since CNFSAT is NP-complete and since DNFSAT € P, we
have P = NP.

3. Prove directly that for every language A in P, A <p CNFSAT. “Di-
rectly” means that you should not use the fact that CNFSAT is NP-
complete.

6.9 Prove that the polynomial upper bound on the length of the string y in
the definition of NP is necessary, in the sense that if it is left out, then any
decidable language would satisfy the condition.

More precisely, we say that the language A belongs to the class D, if there
exists a language B € P, such that for every string w,

we A< Jy:(w,y) € B.

Prove that D is equal to the class of all decidable languages.

6.6. EXERCISES 197

(20,0) | 1 0 1 1 O
#
#
#
#
#
#
#
#
#

0 1 | (z,1)| 0 0 O

Figure 6.7: The frame of the domino game for input x = 11.

198 CHAPTER 6. COMPLEXITY THEORY

(20,0) | 1 0 1 1 m
(20,0) 1 0 1 1 O

X 20 | 20 X # | # # | # #|# #|# X #
(20,1) 0 1 1 O
(z0,1) 0 1 1 O

| # Xz | 20 #|# # | # # | # #
1 (20,0) 1 1 O
1 (20,0) 1 1 O

| # # | # X | 20X #| # #|# X #
1 0 (20,1) 1 O
1 0 (z0,1) 1 O

#|# # | # # | # X2 |20 X #|# X #
1 0 1 (20,1) O
1 0 1 (20,1) O

#o a1 # | #X# | # X # | #X# | # X o | 20X #| #
1 1 1 (20,0)
1 1 1 (20,0)

#o w1 X # | #X#|# X # | #X# | # X e | X #| #
1 0 1 (z2,1) O
1 0 1 (22,1) O

#\|# #|# #|# X |2 X #|# X #
1 (22,1) O
1 (22,1) O

#\|# #|# X2 |2 X #|# #|# X #
1 (22,0) O
1 (22,0) O

#o a1 X # | #X #|# X # | #X # | # X # | #X #H| #
0 1 (#1,1) 0 0 m
0 1 | (z, 1) 0 0 O

Figure 6.8: The solution of the domino game for input x = 11.

Chapter 7

Summary

In this course, we have seen several different models for “processing” lan-
guages, i.e., processing sets of strings over some finite alphabet. For each of
these models, we have asked the question which types of languages can be
processed, and which type of languages cannot be processed. In this final
chapter, we give a brief summary of these results.

Regular languages: This class of languages was considered in Chapter 2.
The following statements are equivalent;:

1. The language A is regular.
2. There exists a deterministic finite automaton that accepts A.
3. There exists a nondeterministic finite automaton that accepts A.
4. There exists a regular expression that describes A.
This claim was proved by the following conversions:

1. Every nondeterministic finite automaton can be converted to an equiv-
alent deterministic finite automaton.

2. Every deterministic finite automaton can be converted to an equivalent
regular expression.

3. Every regular expression can be converted to an equivalent nondeter-
ministic finite automaton.

199

200 CHAPTER 7. SUMMARY

We have seen that the class of regular languages is closed under the regular
operations: If A and B are regular languages, then

1. AU B is regular,
2. AN B is regular,
3. AB is regular,

4. A* is regular, and
5. A is regular.

Finally, the Pumping Lemma for Regular Languages gives a property that
every regular language possesses. We have used this to prove that languages
such as {a™b™ : n > 0} are not regular.

Context-free languages: This class of languages was considered in Chap-
ter 3. We have seen that every regular language is context-free. Moreover,
there exist languages, for example {a"b" : n > 0}, that are context-free, but
not regular. The following statements are equivalent:

1. The language A is context-free.
2. There exists a context-free grammar whose language is A.

3. There exists a context-free grammar in Chomsky normal form whose
language is A.

4. There exists a nondeterministic pushdown automaton that accepts A.
This claim was proved by the following conversions:

1. Every context-free grammar can be converted to an equivalent context-
free grammar in Chomsky normal form.

2. Every context-free grammar in Chomsky normal form can be converted
to an equivalent nondeterministic pushdown automaton.

3. Every nondeterministic pushdown automaton can be converted to an
equivalent context-free grammar. (This conversion was not covered in
class.)

201

Nondeterministic pushdown automata are more powerful than determin-
istic pushdown automata: There exists a nondeterministic pushdown au-
tomaton that accepts the language

{vbw : v € {a,b}", w € {a,b}", |v| = |w|},

but there is no deterministic pushdown automaton that accepts this language.
(We did not prove this.)

We have seen that the class of context-free languages is closed under
the union, concatenation, and star operations: If A and B are context-free
languages, then

1. AU B is context-free,

2. AB is context-free, and

3. A* is context-free.
However,

1. the intersection of two context-free languages is not necessarily context-
free, and

2. the complement of a context-free language is not necessarily context-
free.

Finally, the Pumping Lemma for Context-Free Languages gives a property
that every context-free language possesses. We have used this to prove that
languages such as {a"b"c"” : n > 0} are not context-free.

The Church-Turing Thesis: In Chapter 4, we considered “reasonable”
computational devices that model real computers. Examples of such devices
are Turing machines (with one or more tapes) and Java programs. It turns
out that all known “reasonable” devices are equivalent, i.e., can be converted
to each other. This led to the Church-Turing Thesis:

e Every computational process that is intuitively considered to be an
algorithm can be converted to a Turing machine.

202 CHAPTER 7. SUMMARY

Decidable and enumerable languages: These classes of languages were
considered in Chapter 5. They are defined based on “reasonable” computa-
tional devices, such as Turing machines and Java programs. We have seen
that

1. every context-free language is decidable, and
2. every decidable language is enumerable.
Moreover,

1. there exist languages, for example {a"b"c™ : n > 0} that are decidable,
but not context-free,

2. there exist languages, for example the Halting Problem, that are enu-
merable, but not decidable,

3. there exist languages, for example the complement of the Halting Prob-
lem, that are not enumerable.

In fact,
1. the class of all languages is not countable, whereas
2. the class of all enumerable languages is countable.
The following statements are equivalent:
1. The language A is decidable.
2. Both A and its complement A are enumerable.
Complexity classes: These classes of languages were considered in Chap-
ter 6.

1. The class P consists of all languages that can be decided in polynomial
time by a deterministic Turing machine.

2. The class NP consists of all languages that can be decided in poly-
nomial time by a nondeterministic Turing machine. Equivalently, a
language A is in the class NP, if for every string w € A, there exists a
“solution” s, such that (i) the length of s is polynomial in the length
of w, and (ii) the correctness of s can be verified in polynomial time.

203

The following properties hold:

1. Every context-free language is in P. (We did not prove this).

[\

. Every language in P is also in NP.
3. It is not known if there exist languages that are in NP, but not in P.
4. Every language in NP is decidable.

We have introduced reductions to define the notion of a language B to be
“at least as hard” as a language A. A language B is called NP-complete, if

1. B belongs to the class NP, and
2. B is at least as hard as every language in the class NP.

We have seen that NP-complete exist.

The figure below summarizes the relationships among the various classes
of languages.

204 CHAPTER 7. SUMMARY

all languages

enumerable

decidable

context-free

regular

