COMP 2805 — Solved Problems

Question 1: Let p be a prime number. Prove that |/p is irrational.

Solution: The proof is basically the same as the one we did in class for /2. The proof is
by contradiction. So we assume that |/p is a rational number. Then we can write

VB =a/b,

where ¢ and b are integers and b is non-zero. We may assume that a¢ and b are not both
divisible by p. Taking squares, we get

a® = pb®. (1)

Hence, a? is divisible by p. Since p is a prime number, the integer a is also divisible by p.
Hence, we can write
a = pc,

for some integer c. Substituting a into (1) gives
(po)* = pb*,
which simplifies to
pc® = b2,

We see that b? is divisible by p. Again, since p is a prime number, it follows that b is divisible

by p.
We have shown that a and b are both divisible by p, which is a contradiction. Therefore,
/P is not a rational number.

Question 2: Prove by induction that

n

Zilz<2—1/n,

=1

for every integer n > 2.

Solution: First observe that the claim is not true for n = 1; that is why we start the
induction with n = 2.

Basis of the induction: If n = 2, then the left-hand side is equal to 1/12+1/22 = 5/4,
whereas the right-hand side is equal to 2 —1/2 = 3/2. Since 5/4 < 3/2, the claim is true for
this case.

Induction step: Let n > 2, and assume that

n

Z%<2—1/n. (2)

=1

We have to prove that

n+1
Y 5 <2-1/(n+1) (3)
1=1
Using (11), we obtain
an g NN | R (2 1) L1
o= 2 2 - 9"
—~ —~ > (n+1) n (n+1)
If we can show that . . .
2— —+ (4)

) S
n (n+1)2 ~ n+1’

then the inequality in (12) holds, and we are done. So the final step is to prove that the
inequality in (13) holds. We can rewrite (13) as
1 1 1

-S4+ —— <0,
n+1 n+(n+1)2_

which can be rewritten as

—1 1
<0
1) (1) s

which can be rewritten as 1 !

W12 = nnt1)

which can be rewritten as
(n+1)2>n(n+1). (5)

Since (5) is equivalent to (13), we need to prove that (5) is true. But this is easy to prove:
(n+1)2 =mn+1)(n+1)>n(n+1).

In summary, we have proved that (5) holds. This implies that (13) holds. This, in turn,
implies that (12) holds, completing the proof of the induction step.

Question 3: For each of the following languages, construct a DFA that accepts the
language. In all cases, the alphabet is {0, 1}.

(3.1) {w : w contains at least five 1s}.
Solution: We will use six states:

® ¢o: no 1 has been read

e ¢;: exactly one 1 has been read

® ¢,: exactly two 1s have been read

e ¢3: exactly three 1s have been read

e q4: exactly four 1s have been read
® ¢>5: five or more 1s have been read

The start state is go; there is one accept state: ¢>5. Here is the state diagram:

(3.2) {w : w contains the substring 1011, i.e., w = 21011y for some strings = and y}.

Solution: We will use five states:
e g: start state

e ¢;: we have just seen 1 and hope that the next three symbols are 011.

q10: we have just seen 10 and hope that the next two symbols are 11.

q101: we have just seen 101 and hope that the next symbol is 1.

Q1011: the input string contains 1011.

The start state is ¢; there is one accept state: gip11. Here is the state diagram:

(3.3) {w : w contains at least two 1s and at most two Os}.

Solution: We will use ten states:

e ¢): we have seen zero Os and zero 1s

e ¢;: we have seen zero Os and one 1

e g2: we have seen zero 0s and at least two 1s

e ¢¥: we have seen one 0 and zero 1s

® g;: we have seen one 0 and one 1

e ¢;: we have seen one 0 and at least two 1s
® g5: we have seen two Os and zero 1s

® g,: we have seen two Os and one 1

® g;: we have seen two Os and at least two 1s
e ¢: we have seen at least three Os

The start state is gJ; there are three accept states: ¢2, ¢7, and ¢3. Here is the state
diagram:

(3.4) {w : w contains an odd number of 1s or exactly two 0Os}.

Solution: We will use eight states; each state records
e that we have seen an even or odd number of 1s (given by the subscript) and
e that we have seen zero, one, two, or at least three Os (given by the superscript).

Here is the state diagram:

Question 4: For each of the following languages, construct an NFA, with the specified
number of states, that accepts the language. In all cases, the alphabet is {0, 1}.

(4.1) The language {w : w ends with 10} with three states.
Solution: We will use the following states:
® go: we have not reached the rightmost two symbols in the input string.

e ¢;: we have read the entire string except for the rightmost symbol (which we hope is
0); the last symbol read was 1.

e ¢5: we have read the entire string and the last two symbols were 10.

The start state is qq; there is one accept state: go. Here is the state diagram:

O O ©)
——»(g0 |/
@

(4.2) The language {w : w contains the substring 1011} with five states.

Solution: Here is the state diagram:

?

G e G e O e Y e

(4.3) The language {w : w contains an odd number of 1s or exactly two Os} with six states.

Solution: First, we give a DFA (which is also an NFA) with two states that accepts all
strings having an odd number of 1s. Then, we give an NFA with three states that accepts
all strings having exactly two 0s. Finally, we apply the union construction to these NFA’s.

Here is the DFA with two states that accepts all strings having an odd number of 1s. It
has states

® ¢o: we have seen an even number of 1s.
® ¢;: we have seen an odd number of 1s.
Qo 1s the start state, whereas ¢, is the accept state. Here are the transitions:
e When in state gy and reading 1: go to state q;
e When in state gy and reading 0: go to state qq
e When in state ¢; and reading 1: go to state qq
e When in state ¢; and reading 0: go to state ¢;

Here is the NFA with three states that accepts all strings having exactly two 0s. It has
states

® ¢,: we have not seen a 0 yet.
® ¢3: we have seen exactly one 0.
e ¢,: we have seen exactly two 0s.
Q> is the start state, g, is the accept state. Here are the transitions:
e When in state ¢, and reading 1: go to state ¢,
e When in state ¢, and reading 0: go to state g3
e When in state ¢3 and reading 1: go to state g3
e When in state g3 and reading 0: go to state g4

e When in state ¢, and reading 1: go to state ¢4

This automaton is nondeterministic, so there are no other arrows.

We now draw the state diagrams of these two automata; then we apply the union con-
struction to them: Add a new start state ¢ and give it e-arrows to the start states of the two
automata. Here is the result:

1 1

Question 5: Let X be a non-empty alphabet, and let L be a language over X, i.e., L C ¥*.
We define a binary relation Ry, on ¥* x X*, in the following way: For any two strings v and
u' in 3,

uRpu' if and only if (Vv € ¥*:uv e Lo v'veL).

Prove that Ry is an equivalence relation.

Solution: This question is actually easy, once you write down what has to be proven.
Here we go. We have to prove that the relation Ry, satisfies the following three properties:
Ry is reflexive, symmetric, and transitive.

Reflexive: First we show that Rj is reflexive. Let u be a string in >*. We have to show
that uRpu, i.e.,
YveX tuve L& uv € L.

This is obviously true.

Symmetric: Next we show that Ry, is symmetric. Let v and v’ be strings in ¥, and assume
that uRzu’. We have to show that u'Rpu.
Since uRpu', we know that

Yo eX tuve L u'veL. (6)
To prove that u'Rju, we have to show that

YweX :uveL&suw e L. (7)

Since (6) and (7) are equivalent, and since (6) is true, it follows that (7) is also true. This
means that v'Ryu.

Transitive: Finally, we show that R; is transitive. Let u, v/, and u” be strings in ¥*, and
assume that uRru' and v Ryu”. We have to show that uRyu".
Since uRru', we know that

YweX :uveLsuveL. (8)
Since u'Ryu", we know that

Yo e X :u've L s u"v e L. 9)
To prove that uRyu", we have to show that

YweX :uwwelsuveL. (10)
It is clear that (10) follows from (8) and (9). Hence, (10) is true, which means that uRyu".
Question 6: Let X = {0,1}, let

L={weX*: |w|isodd},

and consider the relation R defined in the previous question.
(6.1) Prove that for any two strings v and u' in ¥,

uRpu' < |u| — |u'] is even.
(6.2) Determine all equivalence classes of the relation Ry.

Solution: For this question, the main trick is to realize that

an even number minus an even number is an even number,
and

an odd number minus an odd number is an even number.

We start with the first part of the question. This first part asks for a <-proof, so we
have to prove both directions. Let u and «' be strings in 3*.

<: Assume that |u| — |u/| is even. We have to show that uRpv/, i.e.,
YVweX*:uwweLsuvel,

ie.,
Vo € ¥*: |uv| is odd & |u'v] is odd .

Let v be a string in ¥*. We have
uv| = Ju'v| = (Jul + |v]) = (Jo/| +[v]) = [u] = o]

8

Since the right-hand side is even, it follows that |uv| and |u'v| are either both even or both
odd. This means that
luv| is odd & |u'v| is odd .

This proves that uR;u'.

=: We now assume that uRyu’. We have to show that |u| — |u'| is even. Let v be a string
in ¥* such that |uv| is odd. (If |u| is even, then we can take for v any string whose length
is odd. If |u| is odd, then we can take for v any string whose length is even.) Since |uv| is
odd, we know that uv € L. Since uRpu', this implies that u'v € L. By the definition of L,
it follows that |u'v| is odd. Therefore,

|u| — [u'| = |uv| — |u'v]| = odd minus odd = even.

This concludes the proof of the first part of the question. Next, we turn to the second
part. We have to determine all equivalence classes of the relation R;. I hope you see that
the equivalence classes have something to do with being even or odd. Let

Co={we X" : |w|iseven },

and
Ci={weX: |w|isodd }.

First we show that any two strings in Cy are in the relation Ry: Let v and u' be strings
in Cy. Then
|u| — |u'| = even minus even = even.

Hence, by the first part of the question, we have uRu'.
Next we show that any two strings in C; are in the relation Ry: Let v and u' be strings

in C;. Then
|u| — |u'| = odd minus odd = even.

Hence, by the first part of the question, we have uRpu'.
It is clear that Co U C; = X* and Cy N C; = 0. Hence, Cy and C; form a partition of ¥*.
Conclusion: Cj and C are the two equivalence classes of the relation Ry.
Question 7: Let A be a regular language. Prove that there exists an NFA that accepts A
and that has exactly one accept state. (Hint: There exists a DFA/NFA that accepts A. If
this automaton has more than one accept state, modify it.)

Solution: Let M = (Q,3,0,q, F') be a DFA that accepts A. If |F| = 1, then we are done,
so we assume that F' contains at least two states. We construct an NFA N that accepts A
and that has exactly one accept state:

1. We make a copy of M.
2. We make each accept state of M a non-accept state of N.

3. We create a new state ¢', which will be the only accept state of V.

4. We add an e-transition from every state of F' to ¢'.

5. There are no transitions from ¢’ to any state of V.

Formally, we define the NFA N = (@', 3,0, ¢q, F'), where

e Q'=QU{d},
e the start state ¢ of N is the start state of M,
o ' ={q'},

e for every r € ' and every a € ¥,

{6(r,a)} ifre@ anda#e,

0 ifre@\F and a =e,
{¢'} ifre Fanda=e,

0 ifr=¢.

8 (r,a) =

The careful reader will ask whether this proof also works if the language A is empty. If
A = (), then the set F' of accept states of M could be empty as well. In this case, however,
the above proof is correct.

Question 8: For any string w = wiws...w,, we denote by w’ the string obtained by
reading w backwards, i.e., w® = w,w,_; ... wow;. For any language A, we define A% to be
the language obtained by reading all strings in A backwards, i.e.,

AR = {wh:w e A}

Let A be a regular language. Prove that the language A® is also regular. (Hint: Use
Question 1.)

Solution: Let M = (@, X, 4, ¢, F) be an NFA that accepts A. By the previous question, we
may assume that F' consists of exactly one state, say F = {¢'}.

If w € A, then in the state diagram of M, there exists a path from ¢ to ¢’, such that by
following this path, we read the string w. Observe that by traversing this path backwards,
we read the string w¥.

We obtain an NFA for the language A%, by

1. making a copy of M,

2. making ¢’ the start state,

3. making ¢ the accept state,

4. reversing all arrows in the state diagram of M.

Formally, we define N = (Q,%,4",¢', F'), where

10

@ is the set of states of M,
the start state ¢ of N is the accept state of M,
F'={q},

for every r € () and every a € X,

§(r,a)={r'"eQ:redi(r,a)}.

You should convince yourself that this construction also works if the language A is empty.

Question 9: Let X be a non-empty alphabet, and let L be a language over X, i.e., L C ¥*.
In Assignment 1, you have seen the following equivalence relation Ry on ¥* x ¥*: For any
two strings v and u' in ¥,

uRpu' if and only if (Vv e X*:uve Lo v'velL).

(9.1) Let L be a regular language, and let M = (Q, %, d,qo, F') be a DFA that accepts L.
Let u and v’ be strings in ¥*. Let ¢ be the state reached, when following the path in the
state diagram of M, that starts in gy and that is obtained by reading the string u. Similarly,
let ¢’ be the state reached, when following the path in the state diagram of M, that starts
in ¢y and that is obtained by reading the string u'.
Prove the following: If ¢ = ¢', then uRu'.

(9.2) Prove that Question (3.1) implies the following: If L is a regular language, then the
equivalence relation R; has a finite number of equivalence classes.

Solution First Part: We assume that ¢ = ¢’, and have to prove that uRpu’, i.e.,
VoeX ruwwelL s u'vel

Let v € ¥*, and assume that uv € L. We have to show that u'v € L.

Let P be the path in the state diagram of M that starts in ¢y and that is obtained by
reading the string uv. Since uv € L, this path ends in a state, say ¢”, of F. We can write P
as P P,, where

e P is the path that starts in gy and that is followed when reading v (this path ends in
the state ¢), and

e P, is the path that starts in ¢ and that is followed when reading v (this path ends in
the state ¢").

Let P| be the path that starts in gy and that is followed when reading u’. By our assumption,

this path ends in the state ¢’ = q. Let P’ be the path P' = P/P,. This path starts in gq, it

is obtained when reading the string u'v, and it ends in the accept state ¢”. Hence, u'v € L.
In a symmetric way, we can prove that u'v € L implies that uv € L.

11

Solution Second Part: We assume that L is a regular language. Then there exists a DFA
M =(Q,%,6,q, F) that accepts L.

For each state ¢ of (), we define L, to be the set of all strings w € ¥*, such that the path
in the state diagram of M that starts in ¢y and that is obtained by reading w, ends in the
state q.

By the first part, we have uRyu' for all strings v and u' in L,. In other words, all strings
in L, are in the same equivalence class of the relation R;. This means that the number of
equivalence classes is at most equal to the number of states in (). Since () is a finite set, this
implies that the number of equivalence classes is finite.

Question 10: Let L be the language defined by
L={uw®:ue{0,1}}.

In words, a string is in L if and only if its length is even, and the second half is the reverse
of the first half.

(10.1) Let m and n be two distinct positive integers, and consider the two strings u = 0™1
and u' = 0"1. Prove that ~(uRpu’').

(10.2) Use Questions (4.1) and (3.2) to prove that L is not a regular language.

Solution First Part: We consider the strings © = 0™1 and «' = 01, where m # n, and
have to prove that ~(uRpu'), i.e.,

“-(VWweX:welsuvel).

This means that we have to show that there exists a binary string v such that uv € L and
u'v & L.
Let v = 10™, i.e., v is the reverse of u. Since

uv = uu®,
the string wv is in L. Since
vw'v =0"110™

and since m # n, the string v'v is not in L.

Solution Second Part: For each integer m > 1, let C,, be the equivalence class of the
relation R, that contains the string 0™1.

By the first part, the equivalence classes C4,Cs, ..., are distinct. This means that R,
has an infinite number of equivalence classes. But then it follows from Question (3.2) that
L is not a regular language: If L were regular, R;, would have a finite number of equivalence
classes.

Question 11: Use the construction given in class (and described in the notes) to convert
the following NFA to an equivalent DFA.

12

Solution: Following the construction given in class, the DFA has the following eight states:

0,{1},{2}, {3}, {1,2},{1,3},{2,3},{1,2,3}.

The start state of the DFA is the set of all states of the NFA that can be reached from
the NFA’s start state 1 by making zero or more e-transitions. Hence, the start state of the
DFA is {1, 2}.

The set of accept states of the DFA consists of all states of the DFA that contain at least
one accept state of the NFA. That is, the set of accept states of the DFA consists of all states
of the DFA that contain 1 or 2. This gives the following six accept states:

{1},{2},{1,2},{1,3},{2,3},{1,2,3}.

The transition function of the DFA is specified in the following state diagram:
ERROR IN FIGURE: When in state 1,2 and reading b, you switch to state 2. After you
make this change, you will see that state 1 has no incoming edges and can be removed.

13

The NFA above is correct, but, since the state {1,3} cannot be reached from the start
state {1,2}, it can be removed. This gives the final DFA:

14

Question 12: Give regular expressions describing the following languages. In all cases,
the alphabet is {0,1}.
e {w: w contains at least five 1s}.
Solution:
0*10*10*10*10*1(0 U 1)*
or
(oun*(ou)rOU)*I(oOUT) I(OU)*1I(0OU L)
e {w : w contains at least two 1s and at most one 0}.
Solution:
111U 1*(011 U101 U 110)1*
e {w : w contains an even number of 1s or exactly two 0Os}.

Solution:
0* U (0*10*10*)" U 1*01*01*

Question 13: Use the construction given in class (and described in the notes) to convert
the regular expression

(((10)7(00)) U 10)*
to an NFA. The alphabet is {0, 1}.

Solution: We first consider how the regular expression is “built”:

e Take the regular expressions 1 and 0, and combine them into the regular expression

10.

e Take the regular expression 10, and turn it into the regular expression (10)*.

e Take the regular expressions 0 and 0, and combine them into the regular expression
00.

e Take the regular expressions (10)* and 00, and combine them into the regular expression
(10)*00.

e Take the regular expressions (10)*00 and 10, and combine them into the regular ex-
pression (10)*00 U 10.

e Take the regular expression (10)*00 U 10, and turn it into the regular expression

((10)*00 U 10)*.

First, we construct an NFA M; that accepts the language described by the regular ex-
pression 1:

15

le

Next, we construct an NFA M, that accepts the language described by the regular ex-

pression 0:
MQM

Next, we apply the concatenation construction to M; and Ms. This gives an NFA Mj;
that accepts the language described by the regular expression 10:

1 € 0
1 —O—+O——0—~O)
Next, we apply the star construction to Mjz. This gives an NFA M, that accepts the
language described by the regular expression (10)*:

Next, we apply the concatenation construction to My and Ms. This gives an NFA Mj
that accepts the language described by the regular expression 00:

My OO O—O)

Next, we apply the concatenation construction to My and Ms. This gives an NFA Mg
that accepts the language described by the regular expression (10)*00:

Msg

Next, we apply the union construction to Mg and Mj3. This gives an NFA M, that accepts
the language described by the regular expression (10)*00 U 10:

16

M7

Finally, we apply the star construction to M. This gives an NFA Mjy that accepts the
language described by the regular expression ((10)*00U 10)*:

€

Ms

Question 14: Use the construction given in class to convert the following DFA to a regular
expression.

Solution: For each state i = 1,2, 3, we define L; to be the set of all strings w in {a, b}* such
that the path in the state diagram that starts in state ¢ and that corresponds to w ends in

17

the accept state 1. We obtain the following set of equations:

L1 = eU CLLl U bL2 (11)
Ly = al3UbL, (12)
L3 = CLL3 U bLl (13)

Since 1 is the start state, we need a regular expression for L.
We use the following tool to solve these equations:

If L=BLUC and ¢ € B, then L = B*C.

We solve the equations (11), (12), and (13), in the following way: From (13), we obtain
L = a*bLy,
which we substitute into (12), giving
Lo = aa™bL; UbL,,

which we rewrite as
L2 = bLQ U aa*bLl,

which solves to
Ly =b*aa™bLy,

which we substitute into (11), giving

Li =eUaL; Ubb*aa*bL4,

which we rewrite as
Ly = (aUbb"aa*b) L, Ue,

which solves to
Ly = (aUbb*aa*d)" € = (a U bb*aa™b)" .

Hence, the regular expression describing the language accepted by the DFA is
(a U bb*aa*b)” .

By the way,
(aUbb*aa*b) e

is also correct.
Question 15: Using the pumping lemma, prove that the following languages are not
regular.

1. {a"b™c"t™ :n > 0,m > 0}.
2. {a™™a™ :n >0,m > 0}.

3. {a¥ :n > 0}. (Remark: a?" is the string consisting of 2" many a’s.)

18

Solution: First, we do
A={d"b"c""™ :n>0,m > 0}.

Assume the language A is regular. Let p be the pumping length, as given by the pumping
lemma. Let s = a?b?c*. Then s € A and |s| = 4p > p. Hence, by the pumping lemma, we
can write s = xyz, where

L y#e
2. |zy| < p, and
3. zy'z € A, for all i > 0.

Since |zy| < p, the string y contains only as. Since y # ¢, the string y contains at least
one a. Hence, the string zz contains (i) less than p many as, (ii) exactly p many bs, and
exactly 2p many cs. That is, in the string xz, the number of as plus the number of bs is less
than the number of ¢s. But this means that zz = x4°z is not in the language A. This is a
contradiction, because, by the pumping lemma, this string is an element of A. So we have a
contradiction, and we can conclude that A is not regular.

Next, we do
B ={ad"b"a" :n >0,m > 0}.

Assume the language B is regular. Let p be the pumping length, as given by the pumping
lemma. Let s = aPba?. Then s € B and |S| = 2p+ 1 > p. Hence, by the pumping lemma,
we can write s = xyz, where

L y#e
2. |zy| < p, and
3. zy'z € B, for all 1 > 0.

Since |zy| < p, the string y is contained in the leftmost a-block of the string s. We also
know that y is non-empty. Consider the string zz = xy°z. This string starts with an a-block
consisting of less than p many as, followed by one b, followed by an a-block consisting of
exactly p many as. Hence, xz is not an element of B. This is a contradiction, because, by
the pumping lemma, this string is an element of B. So we have a contradiction, and we can
conclude that B is not regular.

Finally, we do
C ={a®" :n>0}

Assume the language C is regular. Let p be the pumping length, as given by the pumping
lemma. Let s = a?". Then s € C and |S| = 2P > p. Hence, by the pumping lemma, we can
write s = zyz, where

L y#e,

2. [ay] < p, and

19

3. zy'z € C, for all i > 0.
Since y # € and |zy| < p, the string y has the form y = a*, for some integer k with 1 < k < p.

Consider the string

4
zy’z = zyyz = a® .

The length of this string is equal to 2P + k. Since k£ > 1, we have 2P + k > 2P. Since k < p,
we have 2P + k < 2P + p < 2P 4+ 2P = 2P*1, Hence,

2 < |wy?z| < 2°F

that is, the length of the string zy?z is strictly between two consecutive powers of 2. But this
means that zy2z is not in the language C. This is a contradiction, because, by the pumping
lemma, this string is an element of C'. So we have a contradiction, and we can conclude that
C is not regular.

Question 16: Give context-free grammars that generate the following languages. In all
cases, the set ¥ of terminals is equal to {0, 1}.

1. {w : w contains at least three 1s}.
2. {w : w starts and ends with the same symbol}.

3. {w: the length of w is odd and its middle symbol is 0}.

Solution: First, we do
{w : w contains at least three 1s}.

Observe that this language is regular. Here is a DFA that accepts it: There are four states
Ay, Ay, Ay, and Aj, where Ay is the start state and Az is the accept state.

e When in state Ay and read 0: go to state Ay
e When in state Ay and read 1: go to state A;
e When in state A; and read 0: go to state A;
e When in state A; and read 1: go to state A,
e When in state A; and read 0: go to state A,
e When in state A; and read 1: go to state A
e When in state A3 and read 0: go to state As
e When in state A; and read 1: go to state A
In class, it was shown how to convert a DFA to a context-free grammar:

e Set of variables: {4y, A1, Ag, A3}

20

e Start variable: A,
e Set of terminals: {0,1}

e Rules:
A() — OAO A() — 1A1
A1 — 0A1 A1 — 1A2
A2 — 0A2 A2 —].Ag
A3—>0A3 A3—)1A3 A3—>6

Here is another explanation that this grammar generates the language:
e From Ajs, we can generate all binary strings.
e From A,, we can generate all strings that contain at least one 1.
e From A;, we can generate all strings that contain at least two 1s.
e From Ay, we can generate all strings that contain at least three 1s.

By the way, here is another grammar that generates the same language (S is the start
variable):
S — T1T1T1T
T — €0T1T

From S, we can derive the string 7171717, whereas from 7', we can derive all binary strings.
Hence, from S, we can derive all strings of the form ulvlwlz, where u, v, w, and = are binary
strings. These are exactly the binary strings that contain at least three 1s.

Next, we do
{w : w starts and ends with the same symbol}.

This language is also regular. So one solution is to give a DFA that recognizes the language,
and then to convert it to a context-free grammar. Here is a direct solution:

e Variables: S and T

e Start variable: S

e Terminals: 0 and 1

e Rules:
S — 0]1]070/1T1
T — €|l0T 1T

Here is the explanation why this works: From 7', we can derive all binary strings. From S,
we can derive the strings 0, 1, 07°0, and 17'1. Hence, from S, we can derive the following
strings:

o 0,

21

.1,
e 0(0OU1)*0,
e 1(0U1)*1.
This is exactly the language we want.
Finally, we do
{w : the length of w is odd and its middle symbol is 0}.

Variable: S

Start variable: S

Terminals: 0 and 1

Rules: S — 0/050/051|150[151

Here is the explanation why this works: Without using the rule S — 0, we can derive from
S all strings of the form uSv, where u and v have the same length.

If we add the rule S — 0, then we can only replace, in the string uSwv, the symbol S by
0. So we can generate all strings of the form u0Ov, where v and v have the same length. This
is exactly the language we are supposed to generate.

Question 17: Let G = (V, %, R, S) be the context-free grammar, where V = {A, B, S},
¥ ={0,1}, S is the start variable, and R consists of the rules

S — 0S|1A4]e
A — 0B|1S
B — 0A|lB

Define the following language L:

L:={we€{0,1}*: w is the binary representation of a non-negative integer
that is divisible by three } U {e}

Prove that L = L(G). (Hint: The variables S, A, and B are used to remember the
remainder after division by three.)

Solution: By looking at the rules, you will notice that, from the start variable S, we can
derive the empty string €, and strings of the form wS, wA, and wB, where w is a non-empty
binary string.

For any non-empty binary string w, let n, be the non-negative integer whose binary
represenation is w. For example,

e if w =1011, then n,, =14+ 2+ 8 =11, and

22

e if w =0001011, then n,, =1+2+8 =11.
We claim the following: Let w be a non-empty binary string. Then the following holds:
1. S = wS if and only if n,, = 0 mod 3.
2. S = wA if and only if n,, = 1 mod 3.
3. S = wB if and only if n,, = 2 mod 3.

If a non-empty string is in the language L(G) of the grammar G, then, by definition,
S = w. Since w does not contain any variable, the last step in the derivation of w must use
the rule S — €. Therefore, the derivation has the form

S = wsS = w.

If we assume that the above claim is true, then we see that the following holds, for any
non-empty binary string w:

w € L(G) if and only if S = wS = w
if and only if S = wS
if and only if mn, =0 mod 3
if and only if w € L.

In other words, if we can prove the claim made above, then we have also shown that L =
L(G).

It remains to prove the claim. The proof is by induction on the length of the string w.
For the basis of the induction, we assume that |w| = 1. Then w =0 or w = 1.

e If w =0, then n, = 0. We have S = 0S = wS and n,, = 0 mod 3.
e If w=1, then n, = 1. We have S = 14 = wA and n,, = 1 mod 3.

Hence, for the base case, the claim is true.
Let w be a non-empty binary string. The induction hypothesis is that the claim is true
for w. What do we have to show?

e Let w' = w0, i.e., w' is the string obtained by adding 0 to the end of w. Then we have
to prove that the claim holds for the string w’. Observe that n, = 2n,,.

e Let w” = wl, i.e., w" is the string obtained by adding 1 to the end of w. Then we have
to prove that the claim holds for the string w”. Observe that n,» = 2n,, + 1.

We next observe that
e n, = 0 mod 3 if and only if n, = 0 mod 3,

e n, = 1 mod 3 if and only if n,» = 2 mod 3,

23

e n, = 2 mod 3 if and only if n,» =1 mod 3,

nyw = 0 mod 3 if and only if n,» =1 mod 3,

e n, = 1 mod 3 if and only if n,» = 0 mod 3,

e n, = 2 mod 3 if and only if n,» = 2 mod 3.

Using these observations, and using the induction hypothesis, if follows that

S = w'S

In a similar way, we obtain

S S w'A

if and only if
if and only if
if and only if

if and only if
if and only if
if and only if

S = wsS
Ny = 0 mod 3

N = 0 mod 3.

S = wB
Ny = 2 mod 3

Ny = 1 mod 3.

From these two examples, you can verify the remaining cases:
1. S = w'B if and only if n, = 2 mod 3,
2. S = w"S if and only if n,» = 0 mod 3,
3. S = w"A if and only if n,» =1 mod 3,

4. S8 = w"B if and only if n,» = 2 mod 3.

Question 18: Let A and B be context-free languages over the same alphabet X.
(18.1) Prove that the union AU B of A and B is also context-free.
(18.2) Prove that the concatenation AB of A and B is also context-free.
(18.3) Prove that the star A* of A is also context-free.

Solution: Since A is context-free, there is a context-free grammar G; = (V1,%, Ry, S1)
that generates A. Similarly, since B is context-free, there is a context-free grammar G, =

(Va, 3, Ry, So) that generates B. We assume that V3 NV, = (). (If this is not the case, then
we rename the variables of G.)

First, we show that A U B is context-free. Let G = (V,X, R,S) be the context-free
grammar, where

e V=ViUV,US, where S is a new variable, which is the start variable of G,
e R= R1 UR2 U {S — 51‘52}

24

From the start variable S, we can derive the strings S; and S5. From Sj, we can derive
all strings of A, whereas from S5, we can derive all strings of B. Hence, from S, we can
derive all strings of AU B. In other words, the grammar G generates the union of A and B.
Therefore, this union is context-free.

Next, we show that AB is context-free. Let G = (V, X, R, S) be the context-free grammar,
where

e V=V,UV,US, where S is a new variable, which is the start variable of G,
L] R:R1UR2U{S—)5152}.

From the start variable S, we can derive the string S;5;. From S;, we can derive all strings
of A, whereas from S5, we can derive all strings of B. Hence, from S, we can derive all
strings of the form wv, where u € A and v € B. In other words, the grammar G generates
the concatenation of A and B. Therefore, this concatenation is context-free.

Finally, we show that A* is context-free. Let G = (V,X, R, S;) be the context-free
grammar, where

o V=",
e S is the start variable (hence, we do not introduce a new start variable),
e R=R,U{S — €¢SS}.

From the start variable S, we can derive all strings S™, where n > 0. From S, we can derive
all strings of A. Hence, from S, we can derive all strings of the form u us . .. u,, where n > 0,
and each string u; (1 < i < n)isin A. In other words, the grammar G generates the star of
A. Therefore, A* is context-free.

Question 19: Define the following two languages A and B:
A={ad™"c" :m >0,n >0}

and
B={ad"b"c":m >0,n>0}.

(19.1) Prove that both A and B are context-free, by constructing two grammars, one
that generates A and one that generates B.
(19.2) We have seen in class that the language

{a™b"c" :n >0}

is not context-free. Explain why this implies that the intersection of two context-free lan-
guages is not necessarily context-free.

(19.3) Use De Morgan’s Law to conclude that the complement of a context-free language
is not necessarily context-free.

25

Solution: First, the first part of the question. Here is a context-free grammar that generates
A (S is the start variable):

Sl — a51|T1

T, — €|bTic

From S, we can derive all strings of the form a™7};, where m > 0. From T}, we can derive
all strings of the form b"c", where n > 0. Hence, from S;, we can derive all strings of the
form a™b"c", where m > 0 and n > 0. In other words, this grammar generates the language
A.

Here is a context-free grammar that generates B (S, is the start variable):

SQ — SQC|T2
T2 — C‘CLTQb

This grammar generates the language B.
By the way, you can also prove that A is context-free, by constructing a pushdown
automaton that accepts A:

e It reads the input string from left to right.

e As long as an q is read, the head moves one cell to the right on the input tape, and
the stack is not changed.

e When the first b is read, it changes to the state “now I am in the block of bs”. For every
b read, a symbol S is pushed onto the stack. If a is read in this state, the automaton
loops forever.

e When the first c is read, it changes to the state “now I am in the block of ¢’s”. For
every c read, the top symbol S is popped from the stack. If a or b is read in this state,
the automaton loops forever. If the top symbol of the stack is $ and c is read, then it
loops forever (because there are more cs than bs). If the top symbol of the stack is S
and O is read on the tape, then it loops forever (because there are more bs than cs).
If the top symbol of the stack is $§ and [is read on the tape, then we make the stack
empty (and, hence, accept).

You should be able to give a formal definition of this pushdown automaton. In a similar
way, you can define a pushdown automaton that accepts the language B.

Now we do the second part of the question. We know that A and B are both context-free.
The intersection of A and B is

C ={a"b"c" : n > 0}.

We have seen in class that C is not context-free. Therefore, the intersection of two context-
free languages is not necessarily context-free.

Now the last part of the question. We have to use De Morgan’s Law to show that the
complement of a context-free language is not necessarily context-free.

26

The proof is by contradiction. So we assume that the complement of every context-free
language is context-free.

Let A and B be as above. Both are context-free, so by our assumption, their complements
A and B are also context-free. Then, by question 4.1, A U B is context-free. Then, by our
assumption, the complement of AU B, i.e., AU B is context-free. But, the latter language
is equal to A N B, and we know from the second part in this question, that A N B is not
context-free. This is a contradiction.

Conclusion: The complement of a context-free language is not necessarily context-free.

Question 20: Give (deterministic or nondeterministic) pushdown automata that accept
the following languages.

1. {w € {0,1}* : w contains more 1s than Os}.

2. {w € {0,1}* : w is a palindrome}. (A string w is a palindrome if w = w¥, i.e., reading
w from left to right gives the same result as reading w from right to left.)

Solution: I will give two deterministic pushdown automata for the language
{w € {0,1}" : w contains more 1s than 0s}.

Here is the first solution. The idea is to walk along the input string from left to right, and
use the stack to keep track of the number of 1s minus the number of Os seen so far. (How do
we do this: for each 1, push a symbol S onto the stack; for each 0, pop the top symbol S.)
The problem is that even though if the input string is in the language, an initial segment
of the string may have more Os than 1s. In this case, the stack would become empty before
we have seen the entire string. So this doesn’t work. The next idea is to use the stack to
keep track of the number of Os minus the number of 1s seen so far. This leads to a similar
problem as above. The trick is to combine these two ideas.

e Tape alphabet ¥ = {0, 1}.
e Stack alphabet ' = {$, S}.
We use three states:
e ¢o: It is the start state. If we are in this state, then

— the number of Os seen is at least the number of 1s seen, and

— the number of S-symbols on the stack is equal to the number of Os seen minus
the number of 1s seen.

e ¢;: If we are in this state, then

— the number of 1s seen is at least the number of 0s seen, and

— the number of S-symbols on the stack is equal to the number of 1s seen minus
the number of Os seen.

27

go: If we are in this state, then we have read the entire input string (so the tape head
is on the blank symbol immediately to the right of the input string). If we are in this
state, then we know that the input string has more 1s than Os (so the string belongs
to the language). What remains to be done is to pop all symbols from the stack.

The instructions are as follows.

q00$ — qOR$S
qOOS — qORSS
q01$ — Q1R$S

qolS — qoRe
q0B% — @N$
— Explanation: We have read the entire string; since the stack does not contain any
S-symbols, the string contains as many 1s as it contains 0s. Therefore, the string
is not in the languge. In this instruction, we don’t make any changes, so we loop
forever and don’t accept the string.
qOBS — qONS
— Explanation: We have read the entire string; since we are in state gy and the stack
contains at least one S-symbol, the string contains more Os than 1s. Therefore,
the string is not in the languge. In this instruction, we don’t make any changes,
so we loop forever and don’t accept the string.
(]10$ — qOR$S

¢:10S — q1 Re
q11$ — Q1R$S
q115 — quSS

@08 — ¢ N$
— Explanation: We have read the entire string; since the stack does not contain any
S-symbols, the string contains as many 1s as it contains 0s. Therefore, the string
is not in the languge. In this instruction, we don’t make any changes, so we loop
forever and don’t accept the string.
qﬂ]S — QQNE

— Explanation: We have read the entire string; since we are in state ¢; and the stack
contains at least one S-symbol, the string contains more 1s than 0s. Therefore,
the string is in the languge. We switch to state g,.

28

o o[1S — ¢ Ne
e ¢,0% — ¢2Ne
— Explanation: Now the stack is empty, so we accept the string.

Here is the second solution. The idea is similar, but now we use only two states. In the
first solution, we used the S-symbol to keep track of the absolute value of the difference in
1s and Os seen so far. We used two states to indicate whether we had seen more 1s than Os,
or more Os than 1s.

In this second solution, the stack will store only Os (plus $ at the bottom), if we have
seen more Os than 1s. It will store only 1s (plus § at the bottom), if we have seen more 1s
than Os.

e Tape alphabet ¥ = {0, 1}
e Stack alphabet I = {$,0,1}.
We use two states:

e ¢: This is the start state. If we are in this state, then the following holds: Let a be the
number of 1s read so far, let b be the number of Os read so far.

If a > b, then the stack contains a — b many 1s (plus $ at the bottom); the stack does
not, contain any 0s.

If a < b, then the stack contains b — @ many Os (plus $ at the bottom); the stack does

not contain any 1s.

e ¢': If we are in this state, then we have read the entire input string w, and we know
that w has more 1s than 0s. The tape head is on the blank symbol immediately to the
right of w. The stack contains only 1s plus the $ at the bottom. The purpose of this
state is to make the stack empty (because we want to accept the string).

Here are the instructions:

e ¢0$ — qR$0

q00 — qRO00

q01 — qRe

ql$ — qR$1

q10 — qRe

qll — qR11

gB$ — ¢N$

— Explanation: The string contains equal number of 1s and 0s, so we loop forever.

29

g0 — gN$

— Explanation: The string contains more Os than 1s, so we loop forever.

g1 — ¢'Ne

¢'01 — ¢'Ne

¢0$ — ¢'Ne

— Explanation: The stack is empty now, so we terminate and accept.

Finally, we give a nondeterministic pushdown automaton for the language
{w € {0,1}" : w is a palindrome}.
We have to be careful:

e If a palindrome is of odd length, then it can be written as uOv or as ulv, where v is
the reverse of u.

e If a palindrome is of even length, then it can be written as uv, where v is the reverse
of u.

At the start, we “guess” whether the input string has odd or even length.

If we guessed for odd length, then we do the following: While walking along the string
from left to right, we “guess” that we have reached the middle symbol. All symbols to the
left of the middle are pushed onto the stack. After we have reached the middle, we check if
the contents of the stack is the same as the remaining part of the input string.

If we guessed for even length, then we do the following: While walking along the string
from left to right, we “guess” that we have just entered the second half of the input string.
All symbols in the first half are pushed onto the stack. After we have entered the second
half, we check if the contents of the stack is the same as the remaining part of the input
string.

e tape alphabet ¥ = {0,1} and
e stack alphabet I' = {$,0,1}.
We will use five states:

® (p: start state.

e ¢;: we have guessed that the input string has odd length; we have not guessed yet the
position of the middle symbol.

e ¢o: we have guessed that the input string has odd length; we have guessed already the
position of the middle symbol.

30

e ¢3: we have guessed that the input string has even length; we have not guessed yet
that we have entered the second half of the input string.

e g,: we have guessed that the input string has even length; we have guessed already
that we have entered the second half of the input string.

Here are the instructions:
e ¢0% — ¢ N$
e 0% — ¢sN$
e ¢l$ — ¢ N$
® l% — gsN$
e ¢0$ — goNe (input string is empty, therefore accept)

e ¢.0% — ¢ R$0

e ¢.0% — @RS

e ;1% — ¢ R$1

e 118 — ¢ RS

e ¢;00 — ¢ RO0

e 100 —» RO

o .01 — ¢, R10

e ¢101 — ¢ R1

e 110 —» ¢ RO1

e 110 —» RO

o 111 = qR11

) q111 — QQRl

e ;0% — ¢;N$ (loop forever)
e ¢[00 —» ¢;NO (loop forever)
e ;01 - ¢;N1 (loop forever)
e 320$ — ¢2oN$ (loop forever)
e ¢21$ — ¢N$ (loop forever)

31

200 — g2 Re
201 = ¢go N1
q210 — ¢goNO
q211 — go Re
0% — g2 Ne
210 — ¢ NO
g1 — ¢ N1
4308 — ¢z R$0
¢318 — gz R$1
q300 — ¢3RO0
300 — ¢4 NO
q301 — ¢z R10
q301 — ¢4 N1
q310 — g3 RO1
q310 — g4 NO
g3ll = ¢z R11
311 = ¢4 N1
0% — 3 N$
q31J0 — q3NO
301 — ¢3N1

Q40$ — Q4N$

(loop forever)

(loop forever)

(accept)
(loop forever)

(loop forever)

(loop forever)
(loop forever)
(loop forever)

(loop forever)

¢1$ — @ N$ (loop forever)

q400 — g4 Re
9101 — g4 N1
q410 — g4 NO
qu11 — g4 Re

0% — quNe

(loop forever)

(loop forever)

(accept)

32

e ¢[00 —» ¢, NO (loop forever)
e ¢4[01 — ¢ N1 (loop forever)

Question 21: Prove that the following languages are not context-free:
1. {a™"a"b"™ : n > 0}. The alphabet is {a, b}.

2. {w#z: w is a substring of z; and w,z € {a, b}*}.

The alphabet is {a, b, #}. The string aba#tabbababbb is in the language, whereas the
string aba#baabbaabb is not in the language.

Solution: First, we prove that the language
A={a"bt"a"b" : n > 0}

is not context-free.
Assume that A is context-free. By the pumping lemma, there is an integer p > 1, such
that for all strings s € A with |s| > p, the following holds: We can write s = uvxyz, where

1. vy is non-empty,
2. vzy has length at most p,
3. the string uv'zy’z is in A, for all i > 0.

Consider the pumping length p. We choose s = aPb?aPbP. Then s is a string in A, and
the length of s is 4p, which is at least p. So we can write s = uvxyz such that 1., 2., and 3.
above hold. Since |vzy| < p, there are three cases:

Case 1: vzy lives in the leftmost half of s, that is, it lives in aPbP.

Case 2: vry lives in the rightmost half of s, that is, it lives in aPb”.

Case 3: vzy lives in the two middle quarters of s, that is, it lives in 6”a?.

Since all these cases are very similar, I will only consider Case 1. (You should go through
the other cases yourself.)

So we assume that vzy lives in the leftmost half of s. Consider the string s’ = vvvzyyz.
By the pumping lemma, s’ is contained in A. The string s’ contains the rightmost half of s.
That is, s’ ends with a?b?. The part of s’ that is to the left of the rightmost half of s is not
equal to aPbP. Therefore, the string s’ is not in A. This is a contradiction. It follows that
the language A is not context-free.

Next we prove that the language
B = {w#x : w is a substring of x; and w,z € {a,b}*}

is not context-free. Remember that the alphabet for this language is equal to {a, b, #}.
Observe the following: if w and x are equal, then the string w#z is in the language B.
Assume the language B is context-free. By the pumping lemma, there is an integer p > 1,
such that for all strings s in B with |s| > p, the following holds: We can write s = uvzyz,
where

33

1. vy is non-empty,
2. vzy has length at most p,
3. the string uvizy’z is in B, for all 1 > 0.

Consider the pumping length p. We choose s = a?bP#aPb?. Then s is a string in B, and
the length of s is 4p+ 1, which is at least p. So we can write s = uvzyz such that 1., 2., and
3. above hold.

Case 1: vzy is completely to the left of the #-symbol.

Consider the string uvvzyyz. In this string, the part to the left of the #-symbol is longer
than the part to the right of the #-symbol. Hence, the left part cannot be a substring of
the right part. Therefore, uvvzyyz is not in B. But, by the pumping lemma, it must be in
B. This is a contradiction.

Case 2: vzy is completely to the right of the #-symbol.

Consider the string uzz. In this string, the part to the right of the #-symbol is shorter
than the part to the left of the #-symbol. Hence, the left part cannot be a substring of the
right part. Therefore, uzz is not in B. But, by the pumping lemma, it must be in B. This
is a contradiction.

Case 3: v or y contains the #-symbol.

Then the string uvvryyz contains two #-symbols, hence, it is not in B. But, by the
pumping lemma, it must be in B. This is a contradiction.

Alternatively, the string uxz contains no #-symbol, hence, it is not in B. But, by the
pumping lemma, it must be in B. This is a contradiction.

Case 4: z contains the #-symbol. (This is the remaining case.)

Since vry has length at most p, this implies that v contains only b’s, and y contains only

a’s. So we can write
v = b* for some k > 0

and
y = a* for some £ > 0.

Since vy is not empty, at least one of £ and ¢ must be strictly positive. Consider the string
uzz. This string is equal to
uzz = aPbPFHaP P

By the pumping lemma, this string is in B, so a?b*~* must be a substring of a?~¢b?. This
implies that £ = 0 (otherwise, there are more a’s in a?b?~* than there are a’s in a? b?).
Consider the string uvvzryyz. This string is equal to

wvvzyyz = aPbPEHaP TP

By the pumping lemma, this string is in B, so a?b?** must be a substring of a?**b?. This
implies that £ = 0 (otherwise, there are more b’s in a?b?** than there are b’s in aP*%bP).

So we have shown that both £ and ¢ are zero. This is a contradiction.

Conclusion: In each of the four cases, we get a contradiction. Therefore, the language B
is not context-free.

34

Question 22: Construct a Turing machine with one tape that decides the language
{w € {0,1}" : w contains twice as many 0’s as 1’s}.

Assume that, at the start of the computation, the tape head is on the leftmost symbol of
the input string. Explain the meaning of the states that you use.

First solution: The idea is to walk along the string from left to right and delete two 0’s and
one 1. Then walk back to the left, and repeat. If we delete a symbol (that means, replace
it by), then there are “holes” in the string, so it is not clear any more how to find the
leftmost and rightmost symbols of the string. One solution is to shift the piece to the right
of a [0 one position to the left. I will use a different approach: At the beginning, we write a
$ to the left and to the right of the string. Then we can use these $’s to find the start and
end of the string. So after deleting two 0’s and one 1, I will just leave the “holes” in the
string.

Here is an outline of the algorithm:
Stage 1: Write $ to the left of the leftmost symbol of the input string w.
Stage 2: Walk to the right and write $ to the right of the rightmost symbol of w.
Stage 3: Walk back to the leftmost $.
Stage 4: Walk to the right, find two 0’s and one 1, and delete them. Then walk to the
leftmost $ again.

Repeat stage 4 until the string is empty. If nothing “strange” happens, accept; otherwise,
reject.
We use the following states:

e (o: start state; make one step to the left.
e ¢;: we are at the first empty cell to the left of the bitstring.

e ¢y: the leftmost $ has been written; we walk to the first empty cell to the right of the
bitstring.

e ¢3: we walk to the leftmost $.
e ¢, start of stage 4; we walk to the right until we see a 0 or a 1.
e ¢": we are in stage 4; one 0 has been deleted.
e ¢%: we are in stage 4; two 0’s have been deleted.
e ¢': we are in stage 4; one 1 has been deleted.
01

e ¢ : we are in stage 4; one 0 and one 1 have been deleted.

e Comment: if two 0’s and one 1 have been deleted, we switch to state gs.

qaccept

35

® Qreject

Here are the instructions:

C]()O — q10L q1D — QQ$R QQO — q20R q30 — Q3OL
qu — qllL QQ]_ — q21R qg]_ — Q31L
QOD - qaccept q2|:| - Q3$L QS$ - q4$R
q:;‘:l — Q3DL

¢:0 — ¢°0O0R ¢°0 — ¢"°0OR ¢°°0 — ¢"°0R

@l — ¢'OR ¢°1 — ¢"'0OR q°1 — ¢300L

@ — @OR ¢°0 — ¢°0R ¢°°00 — ¢°0O0R

Q4$ — Gaccept (]0$ - Qreject (]00$ — Qreject

q'0 — ¢°'0O0R 0 — ¢s0O0L

¢'1 = ¢*'1R @1 — ¢"'1R
¢'0 — ¢'0OR 0 — ¢"'O0R
q1$ — Qreject q01$ — Qreject

Second solution: Rearrange the input string so that all 0’s are to the left of all 1’s.
Then test whether the new string is of the form 02*1".

Stage 1: Starting at the leftmost symbol, walk to the right until you see the first 1. Go to
Stage 2.

Stage 2: At the start of this stage, the head is on the cell containing the leftmost 1. Replace
this 1 by J. Then walk to the right until you see the first 0; replace this 0 by 1. Then walk
to the left until you see the first [, and replace it by 0.

Hence, in this second stage, we find a 1 and a 0, such that the 1 is to the left of the 0,
and we change their order. Of course, we repeat Stage 2 until we don’t find a 0 to the right
of the leftmost 1.

Stage 3: Repeatedly remove the two leftmost 0’s and the rightmost 1.

Question 23: Construct a Turing machine with one tape, that gets as input an integer
x > 1, and returns as output the integer x — 1. Integers are represented in binary.

Start of the computation: The tape contains the binary representation of the input z.
The tape head is on the leftmost bit of 2, and the Turing machine is in the start state.

End of the computation: The tape contains the binary representation of the number
x — 1. The tape head is on the leftmost bit of x — 1, and the Turing machine is in the final
state.

The Turing machine in this question does not have an accept state or a reject state;
instead, it has a final state. As soon as this final state is entered, the Turing machine
terminates. At termination, the contents of the tape is the output of the Turing machine.

Solution: The Turing machine will do the following:

36

Stage 1: Walk to the rightmost bit of the input string.
Stage 2: Walk to the left and replace each 0 by a 1. When the first 1 is reached, replace it
by a 0. At that moment, x — 1 has been computed. Then walk to the leftmost bit.

We use the following states:

® (y: start state; we are in stage 1.
e ¢: final state.
® ¢o: we are in stage 2. Until now, we have only encountered 0’s.

e ¢3: x — 1 has been computed; we walk to the leftmost bit.

Here are the instructions:

0 — qoRR 20 — go1L q30 — g30L
gl — qRR g21 — q30L g3l — g31L
g — g2 L g0 — ¢ 0OR

Question 24: Let n be a fixed positive integer, and let £ be the number of bits in the
binary representation of n. (Hence, K = 1+ [logn|.) Construct a Turing machine with one
tape, tape alphabet {0, 1,0}, and exactly k + 1 states qo, g1, - - - , gk, that does the following:

Start of the computation: The tape is empty, i.e., every cell of the tape contains [J, and
the Turing machine is in the start state gp.

End of the computation: The tape contains the binary representation of the integer n,
the tape head is on the rightmost bit of the binary representation of n, and the Turing
machine is in the final state g.

The Turing machine in this question does not have an accept state or a reject state;
instead, it has a final state g;. As soon as state ¢y is entered, the Turing machine terminates.

Solution: This Turing machine only works for this single integer n. Basically, we will encode
the binary representation of n in the states of this Turing machine.
Let the binary representation of the (fixed) integer n be aga; ...ax 1, so that

n=ag_1+ ar_22+ ak,322 + ak,423 + ...+ a12k_2 + a02k_1.

The instructions are as follows:

qo — qaogR
¢4 — @u R

k-2 — qroiap—oRR
g0 = qag_1 N

37

Question 25: Give an informal description (in plain English) of a Turing machine with
three tapes, that gets as input the binary representation of an arbitrary integer m > 1, and
returns as output the unary representation of m.

Start of the computation: The first tape contains the binary representation of the input
m. The other two tapes are empty (i.e., contain only OJs). The Turing machine is in the
start state.

End of the computation: The third tape contains the unary representation of m, i.e., a
string consisting of m many ones. The Turing machine is in the final state.

The Turing machine in this question does not have an accept state or a reject state;
instead, it has a final state. As soon as this final state is entered, the Turing machine
terminates.

Hint: Use the second tape to maintain a string of ones, whose length is a power of two.

Solution: Let the binary representation of m be by_1bx_ ... by, so that

m = by + b12 + 22 + 5323 + ...+ by_92F 7+ b, 28
Stage 1: On the first tape, walk to the rightmost bit (i.e., by). On the second tape, write 1.
Stage 2: In this stage, there is a loop, in which the following invariant is maintained:

1. The head of the first tape is at b;.
2. The second tape contains a string consisting of 2¢ many ones.

3. The third tape contains a string consisting of Z;;ll b;27 many ones.
At the start of Stage 2, this invariant holds for ¢ = 0. In one iteration, we do the following:

1. If b, = 1, then copy the contents of the second tape to the third tape.

2. Double the contents of the second tape (i.e., if initially, the second tape contains a
string consisting of / many ones, then afterwards, it contains a string consisting of 2/
many ones.)

3. On the first tape, move one cell to the left (this corresponds to the instruction i := i+1).

You should verify that the invariant is correctly maintained. The loop terminates as soon as
the head of the first tape reads [J; this means that ¢+ = &k, and Stage 2 is completed.

How do we do the “doubling” step on the second tape:

1. Start at the leftmost 1 on the second tape. Walk to the right until you see the first [,
and replace this [by the symbol «. Then walk back to the leftmost 1 of the string.

2. Replace the leftmost 1 by $, walk to the leftmost [J, and replace this [0 by 1. Then
walk back to the leftmost 1, and repeat.

3. If all 1s to the left of o are gone, the second tape contains the string $‘@1?. Now
replace all $s by 1s. This results in the string 1a1¢. Finally, delete the symbol o, and
shift the second string 1¢ one position to the left. This results in the string 1%.

38

