Problems

Consult [1 2 3]. The problem set consists of problems that have been asked in Test 2 and problems on SSSP and MST in graphs.

Problem 1. Let $G = (V, E)$ be a directed graph consisting of 7 vertices with the following adjacency list representation:

- $A \rightarrow C, D, F$
- $B \rightarrow A, F, G$
- $C \rightarrow D, G$
- $D \rightarrow E, F, G$
- $E \rightarrow F, G$
- $F \rightarrow G$
- $G \rightarrow$

Answer the following questions.

1. Perform a depth first search traversal of G and determine if G has a backedge.

2. Is G a directed acyclic graph? Justify your answer.

Problem 2. Using Dijkstra’s single source shortest path algorithm, compute the shortest path distances from vertex A to all the vertices in the following graph.

Problem 3. Let G be a connected weighted undirected graph $G = (V, E)$? Execute the following algorithm and answer whether the graph T returned by the algorithm is a minimum spanning tree of G. Justify your answer.
Input: A connected undirected graph \(G = (V, E) \), where each edge \(e \in E \) has a positive weight \(w(e) > 0 \). (You may assume that no two edges have the same weight.)

Output: A subgraph \(T \) of \(G \).

Step 1: Sort the edges of \(G \) with respect to decreasing weight.

Step 2: \(T := E \).

Step 3: For each edge \(e \) taken in the order of decreasing weight do:
 - if \(T - \{e\} \) is connected, discard \(e \) from \(T \).

Step 4: Return \(T \).

Note: For an edge \(e = (uv) \in E \), the operation \(T - \{e\} \) discards only the edge \(e \), but not the vertices \(u \) and \(v \), from \(T \).

Problem 4. Let \(G = (V, E) \) be a directed acyclic graph, where the weight of each edge \(e \in E \) is a real number. Note that some edges of \(G \) may have negative weight. Assume that \(G \) is represented in the adjacency list format, and there is a vertex \(s \in V \) such that every vertex \(v \in V - \{s\} \) can be reached from \(s \) by a directed path in \(G \). Design an algorithm that computes the shortest path distances (even when some of the edges may have negative weights) from \(s \) to all the vertices in \(G \) in \(O(|V| + |E|) \) time. Present the pseudocode of your algorithm. Show that the algorithm terminates, it is correct, and analyze its running time.

(Hint: Think of processing the vertices of \(G \) in the topological sorted order.)

Problem 5. Consider the same graph as in Problem 2. Ignore the directions on edges, and consider an undirected version of that graph. Execute Kruskal’s and Prim’s MST algorithm on this graph.

Problem 6. Given an undirected connected graph \(G = (V, E) \), in adjacency list representation, can it be decided within \(O(|V| + |E|) \) time whether there is a path between two specific vertices \(x \) and \(y \) consisting of at most 50 edges, where \(x, y \in V \)?

Problem 7. Can you devise a faster algorithm for computing single source shortest path distances from the source vertex \(s \) in an undirected graph \(G = (V, E) \) when all the edge weights are 1? (Think of an algorithm that runs in \(O(|V| + |E|) \) time on a graph \(G = (V, E) \).)

Problem 8. Let \(G = (V, E) \) be a weighted directed graph, where the weight of each edge is a positive integer and is bounded by a number \(X \). Show how shortest paths from a given source vertex \(s \) to all vertices of \(G \) can be computed in \(O(X|V| + |E|) \) time.

Problem 9. Let \(T \) and \(S \) be two minimum cost spanning tree of a graph \(G = (V, E) \) on \(n \) vertices. Let \(c_1 \leq c_2 \leq ... \leq c_{n-1} \) be the costs of the edges in \(T \), and let \(d_1 \leq d_2 \leq ... \leq d_{n-1} \) be the costs of the edges in \(S \). Show that that \(c_i = d_i \), for \(1 \leq i \leq n - 1 \).

Problem 10. Let \(A \) and \(B \) be two connected undirected weighted graphs. Let the minimum spanning trees of \(A \) and \(B \) be \(T_A \) and \(T_B \), respectively. Show that the weight of MST of \(A \cup B \) is same as the weight of MST of \(T_A \cup T_B \). If required, we can assume that edges have distinct weights.

References
