
School of Computer Science

Carleton University

Name: A.M. Problem Set: 5

Course: COMP 3804 Week: 1-9

Consult [1, 2, 3]. The problem set consists of problems on Dynamic Programming.

Problem 1. Assume that a taxi driver doesn’t work for two consecutive days, i.e. after each working
day, the driver needs a break of at least one day. For the next n successive days, the driver is provided
with a chart showing the amount they can earn each day. Design an efficient algorithm to find this
driver’s optimal set of non-consecutive working days to maximize their earnings.

As an example, suppose that the amounts that the driver can make (working on that day) for nine

successive days are as follows:
Day # 1 2 3 4 5 6 7 8 9

Earning ($) 60 80 10 70 20 20 80 30 10

Below, we list four scenarios and the corresponding earnings the driver can make if they work on the
following sets of non-consecutive days.

Scenario Working days Total Earnings

A 1,3,5,7,9 60 + 10 + 20 + 80 + 10 = 180

B 2,4,6,8 80 + 70 + 20 + 30 = 200

C 1,4,7,9 60 + 70 + 80 + 10 = 220

D 2,4,7,9 80 + 70 + 80 + 10 = 240

Execute your algorithm on the above 9-day example to find an optimal schedule.

Problem 2. Assume that you have a chocolate bar of length n inches. You have a satisfaction chart
that indicates that if you eat a piece of length i inches, for 1 ≤ i ≤ n, then you get a satisfaction of
si. We can assume that all the quantities involved (n, i, s1, s2, . . . , sn, ...) are positive integers. Using
dynamic programming, find the best way to make pieces of the chocolate bar to get the maximum
possible satisfaction when we want to consume the whole bar. What is the time complexity of the
algorithm?
As an example, suppose that the bar is 5-inches long, with the following satisfaction chart:

Length of Piece in inches (i) 0 1 2 3 4 5

Satisfaction si 0 2 7 9 6 12

Possible ways to make pieces of the 5-inch bar with its satisfaction values are as follows:

Piece Sizes Satisfaction Value Piece Sizes Satisfaction value

I. (1, 1, 1, 1, 1) 5× 2 = 10 II. (2, 1, 1, 1) 7 + 4× 2 = 15

III. (2, 2, 1) 2× 7 + 2 = 16 IV. (3, 1, 1) 9 + 2× 2 = 13

V. (3, 2) 9 + 7 = 16 VI. (4, 1) 6 + 2 = 8

VII. (5) 12

Observe that the maximum satisfaction achieved is 16 with the pieces of sizes (2, 2, 1) or (3, 2).



REFERENCES 2

Problem 3. Given two strings X = x1x2 · · ·xn and Y = y1y2 · · · ym, what are the minimum number
of edit operations that are required to convert X to Y . The edit distance (also called the Levenshtein
distance) allows the insertion, deletion and substitution of symbols in the strings. Design a dynamic
programming algorithm to find the minimum number of insertions, deletions, and substitutions that
can be done to transform X to Y . Verify that three edit operations are sufficient to change X=SNOWY
to Y=SUNNY. How many edit operations can transform TORONTO into HURONTARIO?

Problem 4. In the class, we designed a dynamic programming algorithm running in O(Wn) time for
the knapsack problem with repetitions. That is given a set of n-items, where each item i has an integer
weight wi > 0 kilos and value vi > 0. We want to place items in a knapsack that can hold items
with total weight ≤ W . Our objective was to maximize the value of the items placed in the knapsack,
allowing us to use unlimited quantities of each item. Now design an algorithm to maximize the value
of the items placed in the knapsack when you can only use an item at most once.

Problem 5. Given a set of n positive integers X = {x1, · · · , xn}, and a positive number t. Design a
dynamic programming algorithm running in O(tn) time to find a subset S ⊆ X such that

∑
s∈S

s = t, or

report that such a set S does not exist?

Problem 6. Consider a queue Q of n people standing shoulder to shoulder. You are asked to pick a
subset S of these people so that
(a) No two people who are consecutive in Q are picked in S.
(b) The sum total of the heights of people in S is maximized.
Design a dynamic programming algorithm for finding an optimal set S.
Do you see a connection with the 1st Problem?

Problem 7. Let X be a sequence consisting of n elements, where each element is a letter of the
English alphabet. Find the longest subsequence of X that is a palindrome. For example, in “Was It A
Cat That I Saw”, a possible palindromic subsequence is “Was It A Cat I Saw”.

References

[1] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms. 3rd. ed., MIT
Press, 2009.

[2] S. DasGupta, C. Papadimitriou, V. Vazirani. Introduction to Algorithms. McGraw Hill.

[3] A. Maheshwari. Notes on Algorithm Design, Chapter 1, https://people.scs.carleton.ca/

~maheshwa/Notes/DAA/notes.pdf

2

https://people.scs.carleton.ca/~maheshwa/Notes/DAA/notes.pdf
https://people.scs.carleton.ca/~maheshwa/Notes/DAA/notes.pdf

