Consult [H2 3]. The problem set consists of problems on complexity classes P and NP, polynomial time reducibility, and NP-Complete decision problems.

Problem 1. Formulate a decision problem corresponding to the following optimization problems:

1. *(Clique)* In an undirected graph $G = (V, E)$, find the largest size clique. A set of vertices $K \subseteq V$ is said to form a clique, if for every pair of vertices $u, v \in K$, $uv \in E$.

2. *(Independent Set)* In an undirected graph $G = (V, E)$, find the largest size independent set. A set of vertices $I \subseteq V$ is said to be independent, if for every pair of vertices $u, v \in I$, $uv \notin E$.

3. *(Vertex Cover)* In an undirected graph $G = (V, E)$, find the smallest size vertex cover. A set of vertices $C \subseteq V$ is said to form a cover, if for every edge $e = (u, v) \in E$, $u \in C$ or $v \in C$.

Problem 2. For the above three decision problems, state an equivalent formulation in terms of the language of the decision problem.

Problem 3. Let $k < n$ be a positive integer. Let us define the language $k-\text{COMP} = \{(G = (V, E), k) \mid G$ is a simple undirected graph on n vertices containing at most k components$\}$. Is $k-\text{COMP} \in \text{P}$? Is $k-\text{COMP} \in \text{NP}$?

Problem 4. Are the decision version of the problems stated in Problem 1 in NP?

Problem 5. Let $n = |V|$. Show that the decision problems stated in Problem 1 are equivalent with respect to the polynomial time reducibility. I.e., show that

1. $\text{Clique}(G, k) \leq_p \text{Independent-set}(\overline{G}, k)$

2. $\text{Independent-set}(\overline{G}, k) \leq_p \text{Vertex-Cover}(\overline{G}, n - k)$

3. $\text{Vertex-Cover}(\overline{G}, n - k) \leq_p \text{Clique}(G, k)$

Problem 6. Show that each of the decision problems stated in Problem 1 are NP-complete.

Problem 7. Given a graph $G = (V, E)$, a dominating set of G is a subset $V' \subseteq V$ such that every vertex of V is either in V' or adjacent to a vertex in V'. The DOMINATING-SET problem takes as input a graph G and an integer k and asks if G contains a dominating set of size k. Prove that DOMINATING-SET is NP-complete.

Hint: Try $3\text{CNF-SAT} \leq_p \text{DOMINATING-SET}$. Suppose ϕ consist of n variables and k clauses. Construct a graph G on $3n + k$ vertices as follows: for each Boolean variable x, create a clique of size 3, consisting of vertices x, \overline{x} and x'. For each clause c, create a vertex c and join it to the corresponding 3 literal vertices from three triangles. Argue that if ϕ has a satisfying assignment, G has a dominating set of size n. Suppose G has a dominating set of size n. Show that we need a vertex in the dominating set from each variable triangle. If it is x, set $x = \text{TRUE}$, otherwise set $x = \text{FALSE}$. Show that ϕ is satisfied with this assignment.

Alternatively, try to reduce the vertex cover problem. For each edge $e = xy$ in G for the vertex cover problem, add vertex v_{xy} and connect it to x and y to get a new graph G'. Show that G has a vertex cover of size k if and only if G' has a dominating set of size k. To keep it simple, you may assume G has no isolated vertex.
References

