1 Guidelines

General guidelines are as follows:

1. Since we are only accepting assignments via CU-Learn, no late submissions will be entertained after the cut-off time & date.

2. Please write clearly and answer questions precisely. It is your responsibility to ensure that what is uploaded is clearly readable. If we can’t read, we can’t mark!

3. Please cite all the references (including web-sites, names of friends, etc.) which you used/consulted as the source of information for each of the questions.

4. All questions/problems carry equal marks.

5. When a question asks you to design an algorithm - it requires you to
 (a) Clearly spell out the steps of your algorithm in pseudo code.
 (b) Prove that your algorithm is correct
 (c) Analyze the running time.

6. You can assume that a graph \(G = (V, E) \) uses adjacency list representation.
2 Problems

1. Find strongly connected components of the graph in the Figure.

2. Let $G = (V, E)$ be a directed graph. We say that G is semi-connected if for every pair of distinct vertices $u, v \in V$, we have that there is a directed path from u to v or there is a directed path from v to u in G. Given G in the adjacency list representation, design an algorithm running in $O(|V| + |E|)$ time to determine whether G is semi-connected. Note that this is similar to the question which we had in the mid-term, where we needed to check whether a directed acyclic graph is semi-connected. As a hint, again design an algorithm for the directed acyclic graphs. Think of a general directed graph, in terms of directed acyclic graphs of its strongly connected components. [Consult Section 3.4 of the text-book.] Is the graph in the above Figure semi-connected?

3. This question is based on the cut lemma for minimum spanning trees. Let $G = (V, E)$ be a connected graph where each edge has a positive weight. If for any cut of G, there is a unique edge in the cut of minimum weight then show that minimum spanning tree of G is unique. Show that the converse may not be true using an example. I.e., construct a graph G that has a unique minimum spanning tree, but there are cut(s) in G containing multiple edges having the minimum weight.
4. Consider a connected graph $G = (V, E)$ where each edge has a non-zero positive weight. Furthermore, assume that all edge weights are distinct. Using the cut property, first show that for each vertex $v \in V$, the edge incident to v with minimum weight belongs to a Minimum Spanning Tree (MST). Can you use this to devise an algorithm for MST - the above step identifies at least $|V|/2$ edges in MST - you can collapse these edges, by identifying the vertices and then recursively apply the same technique - the graph in the next step has at most half of the vertices that you started with - and so on. What is the running time of your algorithm?

Note that for an edge $e = uv$ in the graph $G = (V, E)$, identifying vertex u with v or collapsing e is the following operation: Replace the vertices u and v by a new vertex, say u'. Remove the edge between u and v. If there was an edge from u (respectively, v) to any vertex w ($w \neq u$ and $w \neq v$), then we add an edge (with the same weight as of edge uw (respectively, vw)), between the vertices u' and w. This transforms graph G to a new graph $G' = (V', E')$, where $|V'| < |V|$ and $|E'| < |E|$. Note that G' may be a multigraph (i.e., between a pair of vertices, there may be more than one edge).

For example, if uv, uw, and vw are edges in G, then G' will have two edges between u' and w when we identify u with v. We can transform G' to a simple graph by keeping the edge with the lower weight among uw and vw, as the representative for $u'w$ for the computation of MST.

5. Suppose you are given a set S of n distinct points in the plane. Let A and B represents a partition of S, i.e. $A \subset S$, $B \subset S$, $S = A \cup B$, and $A \cap B = \emptyset$. Define the distance between A and B, denoted by $d(A, B)$, as the minimum among Euclidean distances between pair of points, where one point is from A and the other from B, i.e.

$$d(A, B) = \min_{a \in A, b \in B} |ab|$$

Our task here is to find a partition of S into two non-empty sets A and B that maximizes $d(A, B)$. For this, we define a complete graph $G = (V, E)$ on n vertices and $\binom{n}{2}$ edges on these points as follows. Each vertex in V represents a distinct point of S, and there is an edge between every pair of (distinct) vertices, where the weight of an edge $e = (u, v)$ is Euclidean distance between the points corresponding to u and v. Consider a minimum spanning tree T of G. Let e be the most expensive edge in T (i.e. e is the last edge added to T by Kruskal’s algorithm). Let V_1 and V_2 be the two sets of vertices in the connected components obtained after the removal of e from T. Show that the points corresponding to V_1 and V_2 forms the required partitioning of S. (Recall that Euclidean distance between two points $a = (3, 5)$ and $b = (4, 2)$ is $|ab| = \sqrt{(3-4)^2 + (5-2)^2} = \sqrt{10}$.)

6. Let $G = (V, E)$ be a connected simple graph, where each edge has a weight of 3. Devise an algorithm, running in $O(|V| + |E|)$ time, for computing shortest path distances from a specific vertex $s \in V$ to all other vertices of G.

3
7. Prove that the distance values extracted from the heap (priority queue) over the entire execution of Dijkstra’s single source shortest path algorithm, in a directed connected graph with positive edge weights, is a NON-Decreasing sequence. Where is this fact used in the correctness of the algorithm?

8. In the summer vacation, you decided to travel to various communities in Northern Canada by your favorite ATV (All-Terrain Vehicle). Each of the communities you want to visit is represented as a vertex in your travel graph (a total of $|V|$ communities). Moreover, you are provided with distances between all pairs of communities. Think of your input graph as a complete graph (i.e. every pair of vertices are joined by an edge), and the weight of an edge, say $e = (uv)$ is the distance between the community u and v. Since this is in far North, and the routes between communities are not used that often, the gas stations are only located in communities (there are absolutely no gas stations which are outside a community). Furthermore, we can assume that each community has at least one gas station. Once you completely fill up the tank of your ATV, it has an upper limit, say of Δ kilometers, which it can travel, and to travel any further it needs to fill up (which means at that point it needs to be in a community!). You need to answer the following two questions

(a) First design a method, running in $O(|V| + |E|)$ time, which can answer whether is there some path which your ATV can take, so that you can travel between two particular communities, say s and t. It is obvious that if the distance between s and t is at most Δ, then you can travel directly without refuelling. Otherwise, you can travel between s and t, provided there are communities where we can refuel and proceed. [For fun you may like to see whether you can travel from La Loche (in Sask.) to Mandorah (in Northern Territories), when your ATV with full tank can travel at most 100 Kms.]

(b) Design an algorithm running in $O(|E| \log |V|)$ time to determine the smallest value of Δ, which will enable you to travel from s to t. (Please present Pseudocode, correctness, analysis) and use the algorithms discussed in the class/book as black boxes).