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Abstract

Let s be a point source of light inside a polygon P of n vertices. A polygonal path from
s to some point t inside P is called a diffuse reflection path if the turning points of the path
lie on polygonal edges of P . We present three different algorithms for computing diffuse
reflection paths from s to t inside P . For constructing such a path, the first algorithm uses
a greedy method, the second algorithm uses a transformation of a minimum link path,
and the third algorithm uses the edge-edge visibility graph of P . The first two algorithms
are for polygons without holes, and they run in O(n + k log n) time, where k denotes
the number of reflections in the path. The third algorithm is for both polygons with or
without holes, and it runs in O(n2) time. The number of reflections in the path produced
by this algorithm can be at most 3 times that of an optimal diffuse reflection path. The
problem of computing a diffuse reflection path between two points inside a polygon has
not been considered in the past.

1 Introduction

In the last four decades, the problems of direct visibility have been investigated extensively [8].
Two points inside a polygon P are called visible (directly) if the line segment joining them lie
totally inside P . The region of P directly visible from a point light source s inside P is called
the visibility polygon of P from s (see Figure 1). Several efficient algorithms exist for computing
visibility polygons under different conditions [8]. Here, we consider a problem of computing
indirect visibility in P of n vertices, that arises due to multiple reflections inside P .

Assume that all edges of P reflect light like mirrors. It can be seen that some points of P ,
that are not directly visible or illuminated from s, may still become visible due to one or more
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Figure 1: The region R is directly visible from s. A ray from s reaches u after one specular
reflection. A ray from s reaches v after two diffuse reflections.

reflections on the edges of P (see Figure 1). As per the standard law of reflection, reflection
of a light ray at a point is called specular if the angle of incidence is the same as the angle of
reflection. There is another type of reflection of light called diffuse reflection, where a light ray
incident at a point is reflected in all possible interior directions. We assume that the light ray
incident at a vertex is absorbed and not reflected.

Visibility with multiple reflections arises naturally in three dimensional scenarios where
pixels of a screen are rendered to generate a realistic image. This is achieved by tracing the
path of light backwards from each pixel through multiple reflections until a source of light is
reached [6]. Clearly, light sources that can be reached through a smaller number of reflections
would contribute more intensely, thereby making paths reachable by the minimum number of
reflections is more important in illumination modeling. It is therefore worthwhile computing
paths through which light arrives from a light source by the minimum number of reflections.
Our concern in this paper is the computation of such a path between two points s and t within
a polygon P with the minimum number of diffuse reflections. Whether this is an NP-hard
problem remains an open question.

Let us mention the previous results on visibility with multiple reflections. In [2], Aronov et
al. investigated the region visible from a point source in a simple n-vertex polygon bounded
by edges reflecting inwards, when at most one specular (or diffuse) reflection is permitted. For
both specular as well as diffuse reflections, they established a tight Θ(n2) worst-case geometric
complexity bound and also designed an O(n2 log2 n) time algorithm for computing the region
visible after at most one reflection. In [1], Aronov et al. addressed the more general problem
where at most k ≥ 2 specular reflections are permitted. They derived an O(n2k) upper bound
and an Ω((n/k)2k) worst-case lower bound on the geometric complexity of the region visible
after at most a constant number k of specular reflections. They also designed an algorithm with
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O(n2k log n) running time, for k > 1.

In contrast to the result of [1], Prasad et al. showed in [17], that the upper bound on
the number of edges and vertices of the region visible due to at most k reflections improves to
O(n2⌈(k+1)/2⌉+1) when specular reflections are replaced by diffuse reflections. They also designed
an O(n2⌈(k+1)/2⌉+1 log n) time algorithm for computing the visible region. They conjectured
in [17] that the complexity of the region visible by at most k diffuse reflections is Θ(n2). Note
that this region contains blind spots or holes as shown in [16]. Recently, Aronov et al. [3]
showed that the complexity of this region visible has an upper bound as low as O(n9). Bridging
the gap between the O(n9) upper bound of Aronov at el. [3], and the Ω(n2) lower bound in [17]
remains an outstanding open problem.

In this paper, we present three different algorithms for computing diffuse reflection paths
from s to t inside P . For constructing such a path, the first algorithm uses a greedy method,
the second algorithm uses a transformation of a minimum link path, and the third algorithm
uses the edge-edge visibility graph of P . The first two algorithms are for polygons without
holes, and they run in O(n + k log n) time, where k denotes the number of reflections in the
path. The third algorithm is for both polygons with or without holes, and it runs in O(n2)
time. The number of turns in the path produced by this algorithm can be at most 3 times
that of an optimal path, where an optimal path is a diffuse reflection path between s and t
having the minimum number of turning points. In the next three sections, we present these
algorithms. In Section 5, we conclude the paper with a few remarks.

2 Computing the greedy diffuse reflection path

In this section, we present an algorithm for computing a diffuse reflection path from s to t
(denoted as drp(s, t)) inside a simple polygon P using greedy method. The algorithm runs in
O(n + k log n) time, where k is the number of turning points in drp(s, t).

Let SP (u, v) denote the Euclidean shortest path between two points u and v inside P . Let
SP (s, t) = (u0, u1, . . . , uj), where s = u0 and t = uj. Extend the first edge u0u1 from u1 till it
meets the boundary of P at some point w1 (see Figure 2). If w1 is directly visible from t, then
the diffuse reflection path from s to t consists of two links sw1 and w1t. Otherwise, treating
w1 as s, compute the next link w1w2 of drp(s, t) by extending the first edge of SP (w1, t) to the
boundary of P . Repeat this process till wk is computed such that wk is directly visible from t.
It can be seen that the greedy path (sw1, w1w2, . . . , wk−1wk, wkt) is drp(s, t). The correctness
of the algorithm follows from the following lemma.

Lemma 2.1 The greedy diffuse reflection path (sw1, w1w2, . . . , wk−1wk, wkt) is a simple path.

Proof: Observe that (i) every link wi−1wi of the greedy path intersects SP (s, t) at some point
zi, (ii) wi−1wi passes through a distinct vertex vi of P , where wivi is the first edge of SP (wi, t),
and (iii) for every zi, the next intersection point zi+1 lies on SP (zi, t) (see Figure 2). Hence,
the greedy path is simple and the number of links in the path can be at most n.
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Figure 2: The greedy diffuse path from
s to t inside P .
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Figure 3: The next vertex vi of wi−1 on
SP (wi−1, t) belongs to the triangle con-
taining wi−1 in the shortest path map.

Let us analyze the time complexity of the algorithm. In order to compute wi−1wi, the
algorithm finds the next vertex vi of wi−1 in SP (wi−1, t) and then extends wi−1vi from vi meeting
the boundary of P at a point wi. The vertex vi can be located by computing SP (wi−1, t), which
can be done in O(n) time by the algorithm of Lee and Preparata [13]. Then the point wi can
also be located in O(n) time by traversing through the triangles in the triangulation of P [4].
Since each link wi−1wi can be computed in O(n) time and there can be at most n links, the
entire greedy path can be computed in O(n2) time.

Instead of computing shortest paths repeatedly for locating the next vertex, the algorithm
computes the shortest path tree rooted at t (denoted as SPT (t)) in O(n) time by the algorithm
of Hershberger [11], and then constructs the shortest path map by extending the edges of
SPT (t). It can be seen that the next vertex vi of wi−1 is a vertex of the triangle in the shortest
path map which contains wi−1 (see Figure 3). Once the triangle containing wi−1 is located, the
next vertex vi is also located. Hence, the next vertex vi can be located for each wi−1 in O(log n)
time. Then the point wi can be located by shooting a ray from wi−1 along wi−1vi, which takes
O(log n) time after O(n) time preprocessing [5]. Since the number of rays is bounded by the
number of links in drp(s, t), the greedy path can be computed in O(n + k log n) time.

Let us calculate the bound on the number of links of the greedy diffuse reflection path from
s to t. Figure 4 shows that except the last two links wk−1wk and wkt, every link wiwi+1 of
the greedy path passes through a vertex of P . Note that a diffuse reflection path by definition
cannot take wit as the last link if both wi and t lie on the same polygonal edge. Since the
greedy path does not pass through three vertices of P and the last two links do not pass
through vertices of P , the number of links in the greedy path can be at most n − 1. On the
other hand, the optimal path takes two links sz and zt to reach from s to t. Hence, the number
of links in the greedy path can be at most (n − 1)/2 times that of an optimal path. We state
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Figure 5: The minimum link path (sw1,
w1w2, w2w3, w3w4, w4w5, w5t) is also a
diffuse reflection path as w1, w2, w3, w4

are boundary points.

the result in the following theorem.

Theorem 2.2 The greedy diffuse reflection path from s to t can be computed in O(n+k log n)
time, where k is the number of turning points in the path. The number of links in the path
can be at most (n − 1)/2 times that of an optimal path.

3 Computing a diffuse reflection path using a minimum link path

In this section, we present an algorithm for transforming a minimum link path from s to t inside
a simple polygon P into a diffuse reflection path (sw1, w1w2, . . . , wk−1wk, wkt) in O(n+ k log n)
time. A minimum link path between two points s and t (denoted as mlp(s, t)) is a path inside
P having the minimum number of segments or links. We have the following observations.

Lemma 3.1 Between s and t, the number of reflections k in any diffuse reflection path in P
cannot be smaller than the number of turns m in any minimum link path.

Lemma 3.2 By Lemma 3.1, any diffuse reflection path between s and t can be at most k/m
times the optimal diffuse reflection path.

The algorithm first constructs mlp(s, t) in O(n) time using the algorithm of Ghosh [7]. If all
turning points of mlp(s, t) lie on edges of P , then mlp(s, t) is drp(s, t) (see Figure 5). Moreover,
drp(s, t) is an optimal path as it has the minimum number of turns or reflections. We have the
following lemma.
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Figure 6: Two links zi−1zi and zizi+1
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ai
ci

zi+1

mlp(s, t)

zi

t

zi−1

s

P

SP (s, t)

Figure 7: The points ai and ci are con-
nected by the greedy diffuse reflection
path.

Lemma 3.3 If all turning points of a minimum link path lie on edges of P , then the path is an
optimal diffuse reflection path.

Let (sz1, z1z2, . . . , zm−1zm, zmt) be a minimum link path, where z1, z2, . . . , zm are turning
points. Consider the case when at least one turning point (say, zi) is not lying on any edge
of P (see Figure 6). Extend zizi+1 from zi to the boundary of P meeting it at a point ai.
Similarly, extend zizi−1 from zi to the boundary of P meeting it at a point ci. If the segment
aici lies inside P , then (sz1, z1z2, . . . , zi−1ci, ciai, aizi+1, . . . , zm−1zm, zmt) is drp(s, t). Otherwise,
ai and ci are connected by a greedy link path as stated in the previous section to construct a
diffuse reflection path (see Figure 7). If the minimum link path has turning points that are not
lying on edges of P , then the above method is used for each such turning point to transform a
minimum link path into a diffuse reflection path. Note that the greedy diffuse reflection paths
are computed into disjoint regions of P , and are bounded by the links of the minimum link
path [7, 8].

Let us calculate the bound on the number of links in drp(s, t). Let ui and ul be the next
and previous vertices of s and t respectively on SP (s, t) (see Figure 8). Let vi and vl be the
next clockwise and counterclockwise vertices of ui and ul respectively on the boundary of P .
Note that if s (or, t) is a vertex of P , then s (respectively, t) is denoted as vi (respectively, vl).
It can be seen that all turning points of the greedy diffuse reflection path connecting ci with
ai, for all i, lie on the clockwise boundary of P from vi to vl. As shown in Figure 8, all links in
the greedy path from ci to ai, except the last two links, can pass through vertices of polygonal
edges containing its turning points. These observations help us in calculating the bound for
drp(s, t) as follows.
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Figure 9: A sequence of links has
been constructed connecting pairs of
weakly visible edges of P .

Let m′ be the number of turning points of mlp(s, t) not lying on the boundary of P . Observe
that the number of links in the greedy path can be at most n−2m′+2m′−m−1 because (i) the
greedy link path from ci to ai does not pass through one vertex of the edge containing ci and
another vertex of the edge containing ai, (ii) the last two links for each of the m′ greedy paths
do not pass through vertices of P , and (iii) the number of vertices in the clockwise boundary
of P from vi to vl (including vi and vl) must be at least 2 + m − 1 as m − 1 links of mlp(s, t)
pass through distinct vertices of SP (s, t) (see Figure 8). Therefore, drp(s, t) can have at most
n − m − 1 + m = n − 1 links. On the other hand, since the optimal drp(s, t) must take at
least one additional link cibi to cross mlp(ai, t) for every turning point of mlp(s, t) not on the
boundary of P , the optimal path must have at least m + m′ links. So, the number of links in
drp(s, t) can be at most (n − 1)/(m + m′) times that of an optimal path. We state the result
in the following theorem.

Theorem 3.4 A minimum link path between s and t can be transformed into a diffuse reflec-
tion path from s to t in O(n+k log n) time, and the number of links in the path can be at most
(n− 1)/(m + m′) times that of an optimal path, where (i) k is the number of reflections in the
diffuse reflection path, (ii) m is the number of links in the minimum link path, and (iii) m′ is
the number of turning points of the minimum link path not lying on the boundary of P .
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diffuse reflection path.

4 Computing a diffuse reflection path using the visibility graph

In this section, we present an O(n2) time algorithm for computing a diffuse reflection path from
s to t inside a polygon P with or without holes using the edge-edge visibility graph of P . The
number of reflections in the path produced by the algorithm can be at most 3 times than that
of an optimal drp(s, t). The algorithm first finds a sequence of edges of P using BFS and then
constructs a diffuse reflection path which reflects on these edges.

Let Ve denote the set of all edges of P . Two edges of P are said to be weakly visible if some
internal point of one edge is visible from an internal point of the other edge. The edge-edge
visibility graph Ge of P is a graph with nodes Ve and arcs between nodes that correspond to
a weakly visible pair of edges in P [8, 15]. The algorithm starts by constructing the edge-edge
visibility graph Ge of P . Then two nodes representing s and t are added in Ve. The node s (or,
t) is connected by arcs in Ge to those nodes in Ve whose corresponding edges in P are partially
or totally visible from s (respectively, t). We have the following observation.

Lemma 4.1 Between s and t, the number of reflections in any diffuse reflection path in P
cannot be smaller than the number of edges of P in the shortest path between s and t in Ge.

Compute the shortest path from s to t in Ge using BFS. Let g1, g2, . . . , gk−1 be the sequence
of edges of P corresponding to the nodes of Ve in the shortest path from s to t in Ge. Since gi

is weakly visible from gi+1, for all i (see Figure 9), locate a pair of internal points zi ∈ gi and
ui ∈ gi+1, for all i, such that the segment ziui lies inside P . Let u0 be a point in g1 visible from
s. Let zk−1 be a point in gk−1 visible from t. So, a sequence of links su0, z1u1, . . . , zk−2uk2

, zk−1t
has been constructed. If zi = ui−1, for all i (see Figure 10), then we have a diffuse reflection path
sz1, z1z2, . . . , zk−1t with the minimum number of reflections. Otherwise, for every zi 6= ui−1,
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in I1 due to one hole, and six sub-
intervals in I2 due to two holes.

locate a point z′i on an edge ei of P such that all points of gi are visible from z′i, and then add
two links ui−1z

′
i and z′izi to connect ui−1 with zi (see Figure 11). The point z′i can be located by

extending the edge gi to the nearest polygonal edge ei and then choosing a point arbitrary close
to the intersection point. Hence, (su0, u0z

′
1, z

′
1z1, z1u1, . . . , uk−2z

′
k−1, z

′
k−1zk−1, zk−1t) is drp(s, t).

Observe that since the path can have at most 3k links and any optimal diffusion reflection
path from s to t must have at least k links by Lemma 4.1, the number of reflections in the path
can be at most 3 times than that of an optimal path.

Let us analyze the time complexity of the algorithm. The algorithm locates all pairs of
weakly visible edges in P as follows. Using the algorithm of Ghosh and Mount [9], the algorithm
first computes all visible pairs of vertices (say, E) of P in O(n log n + E) time. During the
process of computation, the algorithm also constructs funnel sequences with edges as bases of
the funnels. By traversing these funnel sequences, all pairs of weakly visible edges of P can be
located. In addition, links connecting pairs of weakly visible edges of P can also be constructed
using funnel sequences. The entire computation takes O(n2) time. By traversing through the
funnel sequences again, edges g1, g2, . . . , gk−1 can be extended to the respective nearest edges
in P to locate points z′1, z

′
2, . . . , z

′
k−1 respectively. These points can be located in O(n2) time.

Hence, the entire diffusion reflection path can be computed in O(n2) time. We summarize the
result in the following theorem.

Theorem 4.2 Using the edge-edge visibility graph of P , a diffuse reflection path from s to t
can be computed in O(n2) time, and the number of reflections in the path can be at most three
times than that of an optimal diffusion reflection path.

Let us discuss the problem of choosing an appropriate point zi ∈ gi on edges g1, g2, . . . ,
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gk−1 such that the segments sz1, z1z2, . . . , zk−1t lie inside P . Consider the case when P is a
polygon without holes. Let I1 be the set of all points of g1 that are visible from s (see Figure
12). Similarly, let I2 be the set of all points of g2 that are visible from some point of I1 . If the
interval I2 is not empty, then the next interval I3 is again defined to be the set of all points
of g3 that are weakly visible from I2. If all intervals I1, I2, . . . , Ik−1 are non-empty, and there
exists a point zk−1 ∈ Ik−1 such that zk−1 is visible from t, then for all i, there exists a point
zi ∈ Ii that is visible from zi+1. Therefore, locate a point zi ∈ Ii from zi+1, for all i, such that
zizi+1 is a segment lying inside P . By Lemma 4.1, the path (sz1, z1z2, . . . , zk−1t) is an optimal
diffuse reflection path from s to t. It can be seen that Ii+1 can be computed from Ii in O(n)
time by computing the hourglass between gi and gi+1 [8, 10]. Therefore, all intervals can be
computed in O(n2) time. Hence, (sz1, z1z2, . . . , zk−1t) can be computed in O(n2) time. We have
the following theorem.

Theorem 4.3 Given a sequence of k edges of a polygon P without holes such that (i) the first
and last edges are partially or totally visible from points s and t respectively, and (ii) every pair
of consecutive edges in the sequence are weakly visible, a diffuse reflection path of k reflections
using this sequence of edges from s to t can be computed, if such a path exists, in O(n2) time.

Corollary 4.4 If k is the smallest such sequence of edges in P , then the diffuse reflection
path computed by the algorithm is optimal.

Let us consider the other case when P is a polygon containing holes. Let I1 be the set of
all points of g1 that are visible from s (see Figure 13). Since P contains holes, I1 may consist
of two or more disjoint sub-intervals. Again, let I2 be the set of all points of g2 that are visible
from some point of sub-intervals of I1. Observe that the number of sub-intervals in I2 can be
more than the number of sub-intervals in I1 as P contains holes (see Figure 13). If I2 has at
least one sub-interval, compute sub-intervals of I3. This process is repeated till sub-intervals of
Ik−1 on gk−1 are computed. Let b1, b2, . . . , bk−1 be a sequence of sub-intervals such that bi ∈ Ii,
for all i, and every point of bi is visible from some point of bi−1. So, a diffuse reflection path
(sz1, z1z2, . . . , zk−1t), where zi ∈ bi for all i, can be computed as stated earlier. However, the
total number of sub-intervals on all edges in the sequence computed by the algorithm can be
exponential. Therefore, the method of computing sub-intervals explicitly on all edges of a given
sequence does not lead to any polynomial time algorithm for polygons with holes. Even after
the union of overlapping sub-intervals is taken for every edge in the sequence, the total number
of disjoint sub-intervals on all edges may still become exponential.

5 Concluding remarks

We have presented algorithms for computing diffuse reflection paths from a light source s to
a target point t inside P . As stated in the introduction, there are two types of reflections of
light: diffuse and specular. So, it is natural to ask for a specular reflection path from s to t
inside P . There is no known algorithm for this problem. Note that unlike diffuse reflection, it
has been shown that a path of specular reflections may not always exist for all polygons and
for all positions of s inside a polygon [12, 18].
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Let g1, g2, . . . , gk−1 be a sequence of edges of P without holes such that gi is weakly visible
from gi+1, for all i, and g1 and gk−1 are visible from s and t respectively. Given a sequence
of such edges, it is possible to find a specular reflection path (if it exists) from s to t passing
through these edges in the given order as follows. Compute the interval I1 ⊆ g1 visible from
s. Let s1 be the position of the virtual source of s with respect to g1. Let I2 be the set of all
points of g2 such that for any point z ∈ I2, (i) the line segment zs1 intersects I1, and (ii) zs1

does not intersect the sides of the hourglass in P between g1 and g2. If the interval I2 is empty,
then there is no specular reflection path from s to t passing through the given sequence of
edges. So, we assume that I2 is not empty. Analogously, compute the corresponding intervals
I3 of g3, I4 of g4,..., Ik−1 of gk−1. Then compute the interval I ′

k−1 ⊆ Ik−1 visible from t. Now a
specular reflection path can be computed from s to t using these intervals in the reverse order.
The algorithm runs in O(n2) time as all hourglasses can be computed in O(n2) time by the
algorithm of Ghosh and Mount [9]. It can be seen that this result on specular reflections is
analogous to Theorem 4.3.

Let us consider the problem of computing a minimum link path between two given points s
and t inside a polygon P with holes [8, 14]. It can be seen from the last section that if segments
connecting zi with ui−1 are added, for all i, then the path (su0, u0z1, z1u1, . . . , uk−2zk−1, zk−1t)
becomes a link path. Note that this sub-optimal algorithm is simpler than the optimal algorithm
given by Mitchell et al. [14] which involves computing arrangements of line segments.
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