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ABSTRACT  

PURPOSE: Automated skills assessment of ultrasound-guided needle insertions has previously been explored through 3D 

motion tracking data. The purpose of this study was to determine the viability of 2D motion tracking data in distinguishing 

between novice and expert subjects. METHODS: Perspective projection was applied to needle and ultrasound probe time 

series data. The resulting time series data of 2D points were used to calculate various performance metrics. Using these 

metrics, classifications between novice and expert were performed by random forest. This procedure was repeated with 

different camera positions all pointing at the reference point to examine systematically the effect of camera position on 

assessment. RESULTS: For in-plane needle insertions, mean AUC obtained through 3D data and mean AUC obtained 

through 2D data were well-matched (0.68 vs. 0.69). For out-of-plane insertions, mean AUC values from 3D and 2D data 

were more distant (0.86 vs. 0.77), but AUC from the optimal camera angle matched up well (0.85). CONCLUSION: 2D 

data is comparable to 3D data when used to perform skills assessment of ultrasound-guided needle insertions, and camera 

placement level with the instruments is optimal. We conclude that videos of needle insertions may be feasible for skills 

assessment. 
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1. INTRODUCTION  

The skill level of a surgeon can be determined by cognitive capabilities, judgement and decision-making, and manual 

dexterity1. Unlike the other two categories, manual dexterity cannot be tested in traditional written and oral examinations. 

Skill level in technical interventions is difficult to quantify, and standardized classification has yet to be deployed for any 

intervention. A time-based model – one that evaluates trainees after training for a fixed amount of time – is widely used 

in the education of technical interventions. Time-based models are gradually being abandoned in favour of competency-

based models due to its learner-centredness2. A competency-based approach requires trainees to practice until they are 

deemed competent. The drawback to this approach is that it requires continual monitoring of the trainee’s skill progression. 

Using human experts to perform continual one-on-one monitoring of trainees is time and resource consuming. On top of 

that, the usage of human supervision introduces subjectivity to the skills assessment process. Research by Reznick and 

MacRae3 suggests that efficient training and robust skills assessment of medical interventions is highly beneficial to 

healthcare. This warrants the use of computer-assisted skills assessment. A standardized and automated evaluation process 

should increase efficiency and quality in education of technical medical interventions.  

 

Instrument tracking in ultrasound-guided needle insertion procedures is typically done with 3D motion trackers (e.g. 

electromagnetic or optical trackers). Holden et al. have shown that automated skills assessment of ultrasound-guided 

needle insertions can be done with high accuracy using data gathered from an electromagnetic pose tracker4. The methods 

used were based upon decision trees and fuzzy inference systems, so they were transparent and configurable. Additionally, 

they were able to provide useful feedback to the subjects. A tracker-based approach was also used in skills assessment of 

cardiac ultrasound5. Combining domain knowledge and temporal convolutional network allowed data from this tracking 

system to classify subjects correctly. The Imperial College Surgical Assessment Device, which uses an electromagnetic 

tracking system, has been validated as a reliable skills assessment tool for procedures such as labour epidural placement, 

spinal anesthesia, and ultrasound-guided needle insertions6–8. The proposed models could consistently distinguish between 

operators of different skill level. Tracker-based skills assessment methods have seen success in ultrasound-guided  
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interventions and other procedures, but it does come with limitations. 

Using motion electromagnetic trackers may not be ideal in a surgical environment. The accuracy of magnetic trackers is 

greatly affected by nearby metal objects and electronic equipment, so magnetic field distortion is almost completely 

unavoidable9.  Reiley et al. suggest that data collection systems should be minimal and nonobstructive1. Electromagnetic 

pose tracking systems require an active tracker attached to the base of the ultrasound probe and the base of the needle, 

which may affect the ease of use of the equipment.  

 

As an alternative to obtrusive electromagnetic or optical trackers, video-based tracking may be used as a convenient and 

inexpensive technology for skills assessment. There have been many studies that successfully automate skills assessment 

in accordance with the Objective Structured Assessment of Technical Skills grading system using video data10–12. Zia et 

al. required participants to wear colored fingerless gloves10, but using motion texture analysis12 or computer vision11 

eliminates that requirement. O’Driscoll et al. had considerable success with automated tool identification and performance 

monitoring in central venous catheterization using webcam13. Similar success has also been achieved in assessment of 

laparoscopic skills using two webcams placed in orthogonal configuration14. This study used colored tapes to assist in 

image segmentation.  

 

Studies like the ones mentioned above demonstrate skills assessment with video data using different techniques. They 

show that video recording can be reliable in skills assessment of its respective procedures, so it is reasonable to believe 

that similar results can be achieved for ultrasound-guided needle insertions. Furthermore, to our knowledge, most of the 

studies like these do not compare results from different data collection methods. 

 

The purpose of this study is to determine the feasibility of using 2D instrument tracking data compared to using 3D data 

from dedicated tracker for skills assessment of ultrasound-guided needle insertions. Time series of 2D data from simulated 

projections imitate the data that would be gathered from video recordings of needle insertions. The accuracy of predictions 

with our 2D data will demonstrate the usefulness of video data with the assumption that object detection is perfect. 

Determining the viability of video data is important for assessing the future accessibility of computer-assisted skills 

assessment. 

 

2. METHODS 

Our 3D dataset consists of time series data of homogeneous transformation matrices that contain the rotation and 

translation of the needle and the ultrasound probe relative to a reference sensor attached to a vascular access phantom15. 

To simulate 2D data collected from video-based tracking, two easily identifiable points on the needle and four easily 

identifiable points on the probe were projected into 2D. This allows us to infer some information about rotation of the 

tools in 2D. The needle tip and the needle base were used as points. Points used on the ultrasound probe are shown in 

Figure 1. 

 

 
     Figure 1. Ultrasound probe model (grey) and points used (red) 

 

To project the two points on the needle and four points on the probe onto a simulated video camera image, the transform 

hierarchies described in equations (1) and (2) were used, respectively. The coordinates of the points, in reference to the 



 

 
 

 

model of their respective instrument, were defined. TProbeModel→ProbeSensor and TNeedleTip→NeedleSensor were computed 

by fiducial registration and pivot calibration respectively. TProbeSensor→Reference and TNeedleSensor→Reference were provided 

by the tracking system. TReference→Camera was varied to determine the viability of different camera positions.  
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TReference→Camera was generated by placing 41 cameras 500 mm away from the reference sensor, arranged in a dome shape 

(Figure 2). In spherical coordinates with radial distance r, azimuthal angle θ, and polar angle φ, the cameras were placed 

on {(r, θ, φ) | r = 500 mm,  θ = 
𝑎𝜋

5
, 𝜑 =

𝑏𝜋

10
}, where a, b ∈ ℤ, 0 ≤ a  ≤ 9, and 0 ≤ b  ≤ 4. TReference→Camera instances have 

their z-axis pointing at the reference sensor, meaning the reference sensor will be in the center of the projected image.  
 

 

 

 
 

(a) Top-down view (b) Lateral view 

 

     Figure 2. TReference→Camera instances (yellow) and example probe (grey) and needle (cyan) from an out-of-plane insertion. 

 

Perspective transform was finally applied to the vector, with focal length f of the camera. A focal length of 50 mm was 

arbitrarily chosen for this study. 
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Consistent with Xia et al.15, for every trial, the following performance metrics were calculated for each of the six points: 

path length, motion smoothness, path inefficiency, root mean square. Other metrics that were computed for each trial were: 



 

 
 

 

distance between the base of the probe to the tip of the needle, rotation between needle tip and needle base, rotation 

between the two points on the base of the probe, and elapsed time. We evaluated path length, motion smoothness, path 

inefficiency, and root mean square on the value they each provide to skills assessment by following the methods of 

exploratory factor analysis performed in the paper by Holden et al.16 Both the 3D dataset and the 2D dataset were split by 

the approach style of the needle insertion (in-plane insertions and out-of-plane insertions) to be worked on separately. 

 

Random forest was used to classify data as novice or expert using feature vectors of performance metrics, since Holden et 

al. have shown that random forests perform well on skills assessment of ultrasound-guided interventions4. Stratified user-

out k-fold cross-validation was performed. Trials were grouped by subject, resulting in 19 novices and 5 experts for each 

approach. The dataset of each approach was divided into 5 folds, each containing 1 expert and either 3 or 4 novices. The 

folds were fed into the random forest using the method of cross-validation. Area under the ROC curve (AUC) was used 

as a measure of assessment performance. AUC was preferred over accuracy due to class imbalance in our dataset. Training 

the classifier for accuracy caused it to predict ‘novice’ almost exclusively. Feed-forward neural network with 

hyperparameter tuning has also been tested but was greatly outperformed by random forest. This may be because of the 

small dataset size (15 expert and 240 novice samples for both approaches combined).  

 

Data augmentation was used to balance the classes of our training sets and validation sets and to increase our sample size 

for each approach within the 2D and 3D datasets from 121 to 10000. For each metric, Gaussian white noise was added 

with standard deviation values gathered from the corresponding metric and skill level. A factor of 0.1 was applied to the 

standard deviation values since the distributions of expert and novice samples had overlaps. 

 

3D in-plane and 3D out-of-plane datasets were separately passed into a random forest through cross-validation as described 

above. This procedure was repeated 100 times, and mean and median AUC scores were calculated. For each camera angle, 

perspective projection and metrics calculations were applied to the 3D dataset to generate a 2D version. Each 2D dataset 

was passed into a random forest for cross-validation once.  

 

3. RESULTS 

3D in-plane and 3D out-of-plane datasets achieved 0.68 and 0.86 mean AUC respectively. 2D in-plane and out-of-plane 

datasets, generated from 41 different camera positions, achieved 0.69 and 0.77 mean AUC respectively. The highest 

AUC produced by the 2D in-plane and out-of-plane datasets were 0.83 and 0.85 respectively. 

 
     Table 1. AUC results from 3D dataset over 100 iterations of cross-validation 

 

 Mean Standard Deviation 

In-plane 0.68 0.03 

Out-of-plane 0.86 0.03 

 

 
     Table 2. AUC results from 2D dataset over 41 different camera positions, each with 1 iteration of cross-validation. 

 

 Mean Standard Deviation Maximum Minimum 

In-plane 0.69 0.06 0.83 0.59 

Out-of-plane 0.77 0.03 0.85 0.72 

 
     Figure 2. Top-down view. Cameras with low (blue) to high (green) AUC. Example probe points (black) and needle points (red). 

 



 

 
 

 

 

 

 

 

(a) In-plane insertion  (b) Out-of-plane insertion  
 
     Table 3. Mean AUC of cameras grouped by polar angle of the camera. 

 

Polar angle (φ) In-plane Out-of-plane 

0 0.59 0.75 

𝜋
10⁄  0.65 0.77 

2𝜋
10⁄  0.68 0.76 

3𝜋
10⁄  0.70 0.79 

4𝜋
10⁄  0.72 0.78 

 

4. DISCUSSION 

For in-plane insertions, mean AUC was similar for 2D and 3D data (Tables 1 and 2). For out-of-plane insertion, mean 

AUC from 3D data was higher than for 2D data. However, AUC scores were similar given optimal camera placement 

(Tables 1 and 2). For both insertion approaches, the best camera placements were level with the insertion target, but having 

a level camera placement did not guarantee high AUC, especially for in-plane insertions (Figure 2). 

 

For in-plane insertions, as the camera moves from directly above the reference to level to the insertion target, AUC 

generally increases (Figure 3). This might mean that measurement of the tilt of instruments towards and away from the 

subject is more impactful than left and right. Also, camera angles that are on the needle side of the probe generally 

performed better than those on the opposite side. Our result from factor analysis showed that path length of the needle is 

the most important metric, so camera angles that give more amplified needle path lengths was expected to perform better. 

The mean AUC for in-plane insertions is well matched with mean AUC from the 3D dataset. This result, along with the 

maximum AUC of 0.83 (Table 2), tells us that following the general guidelines for camera placement and fine tuning the 

classifier allows our 2D data to perform just as well as 3D data. 

 

Similar to in-plane insertions, AUC from out-of-plane insertions generally increase as the camera angle moves towards 

being level to the insertion target. For out-of-plane insertions, well-performing camera placements are clustered together 

easily identifiable from others in the graph (Figure 2.b). We can clearly see that camera angles that are laterally between 

the general angle of the needle and the general angle of the probe perform much better than others. This allows us to 



 

 
 

 

confidently provide the guideline of placing the camera in the said general area. Due to this, the performance of out-of-

plane insertions 2D data is better represented by the maximum AUC of 0.85 rather than the mean AUC of 0.77 (Table 2).  

 

According to the exploratory factor analysis, path length of the probe, path length of the needle, and path efficiency of the 

probe had the most added value in skills assessment. Root mean square position of the probe had added value only for in-

plane insertions. We observe that measuring multiple points on the same instrument did not have any value for skills 

assessment according to the exploratory factor analysis. On average, the non-parametric estimate of effect size of skill 

level on performance metrics is higher for out-of-plane insertions, which is consistent with the result of out-of-plane 

insertions having a higher mean AUC. Intuitively, classification of out-of-plane insertions should be easier since the 

distance between the needle tip and the ultrasound image plane is a good indicator of skill level. 

 

The results suggest that using videos of needle insertions for skills assessment may be possible without reducing 

performance. This study, however, has several limitations: (1) it does not model occlusions of the needle or probe, (2) it 

does not account for image segmentation errors, and (3) it uses appointment status as ground-truth skill level.  

 

In a real surgical assessment environment, there will always be some obstructions of the probe and the needle from the 

view of the camera. This is a major challenge of using a camera to gather positional data of the instruments. For in-plane 

insertions, there does not seem to be a specific section of camera placements that significantly outperforms others. This 

means that, in a real-world setup, it should be beneficial to prioritize the visibility of the instruments when choosing a 

camera placement.  

 

Another difficulty that may arise when processing video data from a camera is the possibility of image segmentation errors. 

Depending on the transparency of the phantom, it may be especially difficult to track the needle accurately. For in-plane 

insertions, one can use Hough transform on the ultrasound image for needle recognition17. This can provide additional 

information on the needle that otherwise may not be captured on video.  

 

Future work involves assessing the accuracy of these methods using point segmentation from video. This work has shown 

than video from camera has great potential in skills assessment of ultrasound-guided needle insertions, but the 

aforementioned limitations leave room for potential pitfalls. The next step is to attempt to use cameras to gather data and 

perform skills assessment. The establishment of ground-truth skill level by appointment status also leaves more to be 

desired. Determining ground-truth skill level by expert review would imitate the process of skills assessment that could 

happen in the real world. Another avenue for future work involves skills assessment directly from time series data using a 

temporal convolutional network. This might improve the results since calculating performance metrics takes away some 

information that might be useful to the classifiers. Aggregating samples from all camera angles could be another way to 

see classifiers interact with this dataset. Feeding aggregated data from all camera angles to classifiers will allow us to 

evaluate robustness to different camera angles and to obtain a better gauge of general accuracy.  

 

5. CONCLUSION 

Simulated 2D instrument tracking data is comparable to using 3D instrument tracking data when used to perform metrics-

based skills assessment of ultrasound-guided needle insertions. This suggests that video-based tool tracking could be 

comparable to traditional instrument tracking for skills assessment. Placement of camera influences accuracy of 

assessment; we found camera placement level with the instruments was optimal. 
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