
 1 

Matthew S. Holden a, Alberto Portillo, Gerard Salame b 2 

 3 

a School of Computer Science, Carleton University, Ottawa, Canada 4 

b Denver Health Hospital, Denver, USA 5 

 6 

Correspondence Address: 7 

Matthew S. Holden 8 

School of Computer Science 9 

Carleton University 10 

1125 Colonel By Drive 11 

Ottawa, Ontario, Canada 12 

K1S 5B6 13 

Email: matthew.holden@carleton.ca 14 

Telephone: +1-613-520-2600 x3244 15 

  16 

Skills Classification in Cardiac Ultrasound 

with Temporal Convolution and Domain 

Knowledge Using a Low-Cost Probe Tracker 



 

 

1 

 

ABSTRACT 1 

As point of care ultrasound (POCUS) becomes more integrated into clinical practice, it is essential to 2 

address all aspects of ultrasound operator proficiency. Ultrasound proficiency requires the ability to acquire, 3 

interpret, and integrate bedside ultrasound images. The difference in image acquisition psychomotor skills 4 

between novice (trainee) and expert (instructor) ultrasonographer has not been described. We created an 5 

inexpensive system, called Probe Watch, to record probe motion and assess image acquisition in cardiac 6 

POCUS using an inertial measurement device and software for data recording based on open-source 7 

components. We designed a temporal convolutional network for skills classification from probe motion that 8 

integrates clinical domain knowledge. We further designed data augmentation methods to improve its 9 

generalization. Subsequently, we validated the setup and assessment method on a set of novice and expert 10 

sonographers performing cardiac ultrasound in a simulation-based training environment. The proposed 11 

methods classified participants as novice or expert with AUC 0.931 and 0.761 for snippets and trials, 12 

respectively. Integrating domain knowledge into the neural network had added value. Furthermore, we 13 

identified the most discriminative features for assessment. Probe Watch quantifies motion during cardiac 14 

ultrasound and provides insight into probe motion behavior. It may be deployed during cardiac ultrasound 15 

training to monitor learning curves objectively and automatically. 16 
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INTRODUCTION 1 

The advent of affordable and portable hand-held ultrasound devices has expedited the integration of 2 

point of care ultrasound (POCUS) into clinical practice.  Many residency programs and medical schools have 3 

implemented this new technology into their curriculum (Schnobrich et al. 2013). Competency in POCUS 4 

requires that users are able to: obtain and optimize the appropriate ultrasound images and use them to answer 5 

a specific clinical question (Kumar et al. 2019).  One important application for POCUS has been bedside 6 

cardiac ultrasonography which has been shown to enhance the detection of let ventricular systolic failure 7 

(Marbach et al. 2019). However, image acquisition in cardiac ultrasonography requires extensive hands-on 8 

training as demonstrated by Upadharsta et al. which showed that medical interns could only achieve a fair 9 

agreement for evaluating left ventricular systolic function when compared to trained attendings after several 10 

weeks of ultrasound education (Upadhrasta et al. 2019). In a recent statement in the Journal of Hospital 11 

Medicine, Soni et al. recommended creating high quality video portfolios with expert feedback (ideally given 12 

during image acquisition), with a minimum number of images based on the acquired view (Soni et al. 2019). 13 

This approach, however, does not account for variability in trainee learning curves and does not offer an 14 

objective method to assess image acquisition skill. Currently, ultrasound educators mostly rely on subjective 15 

assessments of a trainee's skill. Nielsen et al. noted that with this approach only 67% of the total observed 16 

score variance between different judges could be ascribed to differences in physician performance with an 17 

error variance exceeding 10% (Nielsen et al. 2015).  18 

Understanding the probe movement behavior of novice and expert point of care ultrasonographers can 19 

help guide training and assess proficiency in image acquisition. To do so, we have created a probe movement 20 

tracking device aptly named Probe Watch, that maps and records various aspects of probe movement during 21 

bedside cardiac ultrasonography. 22 
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Prior Work 1 

Over the last several decades, there has been considerable prior work on objective skills assessment 2 

from motion data (Reiley et al. 2011; Vedula et al. 2017). In particular, there has been notable prior work in 3 

point-of-care ultrasound for both diagnostic and interventional purposes (Holden 2019). 4 

Traditionally, automated skills assessment from motion or kinematic data has been based on 5 

performance metrics or summary statistics that are derived based on clinical experts’ understanding of the 6 

procedure. Summary statistics typically measure efficiency, errors, or outcomes. More recent approaches, 7 

however, also take advantage of highly informative abstract features, such as signal frequencies, symbolic 8 

representations, or entropy-based features. Time-series-based analysis approaches have also been used with 9 

success. Standard approaches include building class-wise Hidden Markov Models and using Dynamic Time 10 

Warping for alignment and comparison. 11 

Contemporary approaches to skills assessment from motion leverage modern deep neural networks.  12 

While several works use long short-term memory (LSTM) networks for skills assessment (Nguyen et al. 13 

2019; Oğul et al. 2019), most works used temporal convolutional networks (TCN) to assess skill. Wang et 14 

al., Fawaz et al., and Castro et al. have proposed variants on the standard TCN for skills assessment in robot-15 

assisted minimally invasive surgery (Castro et al. 2019; Ismail Fawaz et al. 2019; Wang and Majewicz Fey 16 

2018). These papers report skills classification accuracies exceeding 90% on the JIGSAWS dataset (Ahmidi 17 

et al. 2017). Kim et al. showed excellent performance for TCNs in skills classification from tooltip motion 18 

in cataract surgery (Kim et al. 2019). Most relevantly, Nguyen et al. proposed an approach for skills 19 

assessment from inertial measurement unit (IMU) data, but in the context of open surgery (Nguyen et al. 20 

2019). Their architecture combines a TCN branch with an LSTM branch, and achieves results exceeding 21 

95% accuracy for skill classification. Furthermore, recent work from Liu and Holden has shown that TCNs 22 
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outperform LSTMs for skills classification from instrument motion data in interventional ultrasound (Liu 1 

and Holden 2020). 2 

Several prior works have addressed skills assessment from hand or probe motion data in diagnostic 3 

ultrasound, focusing mainly on FAST ultrasound. Work from Ziesmann et al. and Zago et al. have 4 

demonstrated that efficiency-based summary statistics (i.e. time, hand or probe path lengths, number of hand 5 

or probe motions, and working volume) differ between experts and novices, and can be used for skills 6 

assessment in FAST ultrasound (Zago et al. 2019; Ziesmann et al. 2015). Bell et al. showed additionally that 7 

an outcome-based summary statistic (i.e. percentage of target points scanned) can also be incorporated into 8 

skills assessment for diagnostic ultrasound (Bell et al. 2017), and secondary analysis has shown its added 9 

value in skills assessment (Holden et al. 2017). 10 

To the best of our knowledge, no prior work has addressed image acquisition skills assessment from 11 

motion data in cardiac ultrasound. 12 

Objective 13 

This work develops a low-cost and easy-to-use sensor device and data collection software to record 14 

and analyze ultrasound probe motion during bedside cardiac ultrasound. We leverage modern machine 15 

learning approaches to analyze probe motion data with the goal of assessing operators’ skill in image 16 

acquisition. Our approach is validated on clinical trainees in a simulation-based training environment. 17 

MATERIALS AND METHODS 18 

Skills Classification Methods 19 

Summary Statistics 20 

In consultation with clinical experts in cardiac ultrasound, we identified a set of summary statistics that 21 

are believed to be indicative of proficiency. These summary statistics incorporate clinical domain knowledge. 22 
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We used the following summary statistics: total elapsed time (in seconds), total acceleration (in gravitational 1 

units), total rotation (in radians per second), translational movements (unitless), rotational movements 2 

(unitless), and motion smoothness (in gravitational units per second). Total acceleration and total rotation 3 

were calculated as the arc length of the acceleration and rotational velocity vectors over time. Translational 4 

and rotational movements were defined as the number of distinct periods of time where the magnitude of the 5 

acceleration and rotational velocity, respectively, exceeded a threshold value (McGraw et al. 2016). The 6 

threshold values were calibrated empirically to yield results consistent with experts’ interpretation of 7 

meaningful actions in cardiac ultrasound. Motion smoothness was computed as the root-mean-square 8 

translational jerk (Stylopoulos et al. 2004). Total acceleration, total rotation, translational actions, and 9 

rotational actions were computed over each axis independently and over all axes. In total, this yields 18 10 

summary statistics that are believed to correlate with skill in image acquisition. 11 

We use the following definitions for probe translation and rotation described by Bahner et al. (Bahner 12 

et al. 2016): x-axis and z-axis translation is sliding, y-axis translation is pressure (perpendicular motion to 13 

the patient’s chest), x-axis rotation is tilting, y-axis rotation is rotation, z-axis rotation is rocking (Figure 1).  14 

Network Architecture 15 

We propose a neural network architecture that incorporates both raw kinematic time series data and the 16 

summary statistics derived from consultation with experts. We conjecture that incorporating expert-defined 17 

summary statistics will improve the network’s ability to generalize in low-data situations, and we conjecture  18 

that the raw time series data will allow the network to learn aspects of motion that are captured by the 19 

summary statistics. We choose a simple architecture with fewer parameters to prevent overfitting the training 20 

data. 21 

The network’s architecture comprises a temporal convolutional component to map time series data to 22 

a feature vector and a feedforward component to map the feature vector and summary statistic data to a skill 23 
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label (Figure 2). We appended the relative timestamps and the view ID as additional channels to the time 1 

series data. We use aggressive dropout (p=0.80) and regularization (λ=10-5) throughout the network to 2 

prevent overfitting. 3 

The TCN component of the architecture treats the time series data as a signal where each dimension is 4 

treated like a separate channel in the temporal convolution, and convolution is performed one-dimensionally 5 

across time for each channel independently. We employ two convolutional layers, where each is followed by 6 

a batch normalization layer, ReLU activation, and a max pooling layer. An average pooling layer is employed 7 

as the last layer of this component. 8 

The multi-layer perceptron component of the architecture takes the flattened output from the TCN 9 

component and the summary statistics as input. These values are concatenated. We employ two dense linear 10 

layers, where each is followed by a batch normalization layer, and the first is followed by ReLU activation. 11 

We trained the network over 25 epochs using binary cross-entropy loss with a slow learning rate (10-12 

4) and batch size 64. We used the validation set to identify the epoch yielding the highest validation AUC 13 

(i.e. early stopping) provided the training AUC exceeded 0.85. We normalized the raw accelerometer and 14 

gyroscope data per channel for each sequence individually; we normalized the summary statistics across all 15 

samples in the training set. During training we employed significant data augmentation to improve 16 

generalization despite the small dataset. 17 

During testing, we used the model that achieved the best validation AUC on the validation set. The raw 18 

accelerometer and gyroscope data were normalized per channel for each sequence individually; the summary 19 

statistics were normalized according to the mean and standard deviations from the training set. No data 20 

augmentation was used during testing. 21 
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Data Augmentation 1 

Due to the small dataset size and sensor setup, we used data augmentation to facilitate generalization 2 

of our model. Data augmentation is intended to simulate transformations of the data that are expected to be 3 

present in our dataset but do not indicate a change in skill level. We employed four data augmentation 4 

methods: window slicing, window warping, white noise, and random rotation. Data augmentation was 5 

applied to the accelerometer and gyroscope data only. 6 

We randomly resampled 60 frame snippets from the time series data. Snippets were potentially 7 

overlapping. We chose to resample the same number of snippets from each skill level to get a balanced 8 

dataset. We chose large enough number of snippets (10000 per class) to ensure full coverage. This is based 9 

on the insight that sufficiently long snippets are indicative of skill, despite not capturing the entire procedure. 10 

We temporally warped each snippet by uniformly resampling timestamps between frames. We linearly 11 

interpolated the data between timestamps. This simulates instances where the procedure is performed at 12 

varying speeds. 13 

We added white noise to each snippet with zero mean and fixed standard deviation. White noise was 14 

independent across time. This simulates small errors in the readings from the accelerometer and gyroscope, 15 

within their error tolerances. 16 

We randomly rotated snippets by a fixed rotation across time. We calculated a random rotation by 17 

sampling a rotation axis from a 3D standard normal distribution and an angle of rotation from a 1D zero mean 18 

Gaussian. This simulates small rotational inconsistencies in where the Probe Watch is mounted to the 19 

ultrasound probe. 20 

Probe Watch System Setup 21 

We developed a low-cost tracking device, called Probe Watch, to monitor ultrasound probe motion 22 

during cardiac ultrasound. The hardware consists of a 9 degree-of-freedom inertial measurement unit (IMU) 23 
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with accelerometer, magnetometer, and gyroscope components, to record the 3 degree-of-freedom 1 

translational acceleration (in gravitational units), magnetic field (in microtesla), and rotational velocity (in 2 

radians per second), respectively. It uses TinyShield sensors and a TinyDuino Processor Board 3 

(www.tinyciruits.com). The hardware is contained within a 34 mm diameter by 23 mm thick cylindrical 4 

housing (Figure 3). The device connects via Micro USB cable and communicates by serial port. The device 5 

attaches to any ultrasound probe using an elastic strap or sticker and is placed 70 mm from the foot of the 6 

probe. 7 

Serial data from the hardware was captured using the PLUS Toolkit (www.plustoolkit.org) (Lasso et 8 

al. 2014), and was sent to 3D Slicer (www.slicer.org) via the OpenIGTLink network protocol. We developed 9 

a data recording, storage, and analysis interface within 3D Slicer (Figure 4), based on the SlicerIGT 10 

(www.slicerigt.org) (Ungi et al. 2016) and Perk Tutor (www.perktutor.org) (Ungi et al. 2012) platforms. 11 

The Probe Watch software facilitates user authentication, and it displays the appropriate interface 12 

depending on which group the user belongs to. The software collects and records data from the sensors, and 13 

it synchronizes with a CouchDB database (couchdb.apache.org) for storage and retrieval. The data may be 14 

visualized by graphing each component of the sensor information or through visual representation of the 15 

probe’s rotation. Finally, the software is responsible for computation of expert-defined summary statistics 16 

based on the sensor data. 17 

Study Population 18 

Volunteers were recruited during two separate ultrasound workshops: a cardiac ultrasound workshop 19 

organized by the university of Colorado for its internal medicine residents and during the Society of Hospital 20 

Medicine’s (SHM) Colorado Chapter ultrasound training workshop. Volunteers were divided into two groups 21 

based on their ultrasound expertise: trainees (novice ultrasonographers) and experts (instructors from the 22 

SHM yearly ultrasound training workshop). 23 

http://www.tinyciruits.com/
http://www.plustoolkit.org/
http://www.slicer.org/
http://www.slicerigt.org/
http://www.perktutor.org/
http://couchdb.apache.org/


 

 

9 

 

The SHM Colorado Chapter ultrasound focuses on the training of medical providers with various levels 1 

of ultrasound expertise in the art of point of care ultrasonography by incorporating a combination of hands-2 

on training and didactic lectures.  Topics include basic cardiac, lung, vascular and abdominal imaging among 3 

others. Participants of this two-day pre-course are assigned into groups with a three trainee to instructor ratio 4 

at each hands-on station. Each group follows a predetermined sequence of hands-on stations spending an 5 

average of 20 minutes in each station. Each station maintained one healthy volunteer on which trainees 6 

practiced image acquisition. The University of Colorado Internal Medicine residency organized a half day 7 

workshop for its internal medicine house staff, focused on bedside cardiac ultrasonography with a similar 8 

format as the one mentioned previously. At both workshops, during the course introductory lecture, attendees 9 

were given a brief description of the study in power point format, with instructions to obtain the best possible 10 

image for each view based on the didactics given during the course. Participants amenable to join the study 11 

were assigned a subject identification number. 12 

In each workshop one hands-on station was dedicated for data acquisition and manned by the study 13 

investigator. Participants rotated through this station and were blinded to each other’s performance. 14 

Volunteers were asked to acquire four basic cardiac images based on the recommendations from the point-15 

of-care ultrasound certification process set forth by SHM (Soni et al. 2019): Parasternal Long Axis, 16 

Parasternal Short Axis (at the level of the mitral valve papillary muscle insertions into the left Ventricle), 17 

Apical 4 Chamber and Subxyphoid views to the best of their abilities. Participants used the Butterfly iQ 18 

ultrasound system (Butterfly Network Inc.; www.butterflynetwork.com). The probe movements needed to 19 

achieve the final image for each view were recorded (Figure 5). 20 

This study was determined to be exempt from IRB approval by the Colorado Multiple Institute Review 21 

Board (COMIRB). All components of this study involving human participants were performed in accordance 22 

with the institution’s ethical standards. All participants provided informed consent to participate in this study.  23 

http://www.butterflynetwork.com/
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Validation Protocol 1 

To evaluate the performance of the proposed model for classifying experts versus novices, we used 2 

trial-out k-fold cross-validation (i.e. each trial appeared in exactly one fold). We used five folds, where each 3 

fold was iteratively chosen to be in the test set, and one remaining fold was randomly chosen to be in the 4 

validation set. This was repeated 10 times with different randomly chosen folds each time. This validation 5 

scheme evaluates how well the method generalizes to a new procedure. 6 

Due to the imbalance between the novice and expert datasets, we report the area under the curve (AUC) 7 

as the primary measure of performance. We report this measure for both each snippet (i.e. continuous segment 8 

from a trial) individually, and for each trial (i.e. single ultrasound scan of a single view) by taking a mean 9 

over all its snippets’ results. 10 

Ablation Study 11 

We performed an ablation study to determine the added value of each component of our approach. In 12 

particular, we tested the following conditions: the full network (“Full”), the full network without data 13 

augmentation (“NoAug”), the network using just the raw time series data with no summary statistics nor data 14 

augmentation (“RawData”), and the network using just the summary statistics as input with no raw times 15 

series data nor data augmentation (“SummStat”). We used the same validation protocol, cross-validation 16 

folds, and measures of performance to evaluate each condition. 17 

Feature Importance 18 

To determine how important each feature (i.e. raw data component or summary statistics) is for skills 19 

assessment in image acquisition, we performed a feature importance study (Molnar 2019). For each feature 20 

during test time, we replaced the feature value for each instance with a randomly resampled feature value 21 

from another instance. This was repeated 10 times for each instance. We report the absolute change in the 22 
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snippet test AUC as a measure of how important each feature is for skills assessment in image acquisition. 1 

We used the same validation protocol and cross-validation folds to evaluate the importance of each feature. 2 

Due to the inability of the proposed feature importance study to model feature interactions, we also 3 

compute the distance correlation between all features (Székely et al. 2007). For summary statistics, we 4 

compute the distance as the absolute value of the difference. For time series data, we compute the distance 5 

as the root-mean-square distance. 6 

Furthermore, as evidence that the proposed summary statistics are indicative of image acquisition skill, 7 

we compute: (1) the rank correlation between each summary statistic and skill and (2) the area under the 8 

receiver operating characteristic (AUC) for skills classification using each summary statistic individually. 9 

RESULTS 10 

In total, after removing corrupted recordings, we captured 63 instances from four experts and seven 11 

novices. 24 recordings came from experts; 39 recordings came from novices. There were 20 parasternal long 12 

axis recordings, 13 parasternal short axis recordings, 12 apical four chamber recordings, 12 subxyphoid 13 

recordings, 5 inferior vena cava recordings, and 1 recording of unknown view. 14 

By Shapiro-Wilk test, data was found to be non-normally distributed. Thus, we report non-parametric 15 

statistics. 16 

Main Results 17 

Overall, for classifying novices and experts, the proposed methods achieved a median test AUC of 18 

0.931 for snippets, and a median test AUC of 0.761 for trials over all folds. This contrasts to the reported 19 

validation AUCs of 0.902 and 0.789 over all folds, respectively. Full results are reported in Table 1. 20 
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Ablation Study 1 

By Kruskal-Wallis test, we found there to be a significant difference across ablation conditions for 2 

snippet test AUC. Posthoc pairwise comparisons via Dunn’s test revealed that results achieved using the time 3 

series data without the summary statistics nor data augmentation (i.e. “RawData”) were significantly lower 4 

than results under all other conditions. No significant differences were found for trial test AUC. Descriptive 5 

statistics indicate added value for the full approach using raw time series data, summary statistics, and data 6 

augmentation (Table 2). These differences, however, were not found to be significant. 7 

Feature Importance 8 

The feature with the largest computed feature importance was rotational actions in the y-axis. The most 9 

important time series component was the relative timestamp; the most important summary statistic was 10 

rotational actions in the y-axis. By ranksum test, we found that summary statistics had significantly greater 11 

feature importance than raw time series data (p < 0.001). Full feature importance results are reported in Table 12 

3. Distance correlations between features are illustrated in Figure 6. Rank correlation and AUC for skill class 13 

versus summary statistics are given in Table 4; visualizations of the five summary statistics with the greatest 14 

AUC are provided in Figure 7. 15 

DISCUSSION 16 

Using open-source software and affordable components, we were able to create a device that 17 

objectively classifies ultrasound operators into novice and expert groups. The proposed assessment method 18 

performs skills classification for image acquisition on motion snippets with median AUC of 0.931. 19 

Traditionally, automated assessment methods have been based upon expert-defined summary statistics; 20 

however, most modern approaches use deep neural networks for assessment. Our approach combines these. 21 

The raw time series data includes information not present in the summary statistics, while the summary 22 
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statistics allow for better generalization when the training set is small. The data augmentation further 1 

facilitates generalization. The ablation study demonstrates that this approach has added value. Furthermore, 2 

the feature importance study demonstrates which summary statistics are most important, providing insight 3 

for educational coaching settings. Although the approach does not capture complex feature interactions. 4 

Although prior literature has put forth reproducible and validated scores to assess the quality of the 5 

final image acquired (Skinner et al. 2016), there is a paucity of data to describe the image acquisition process 6 

itself. Ultrasound educators rely mostly on subjective methods to assess a trainee’s proficiency in image 7 

acquisition which, as stated earlier, is fraught with errors. Other researchers have relied on one aspect of the 8 

acquisition process such as time to image acquisition as a marker of proficiency (Smith et al. 2018). In 9 

contrast, Probe Watch offers insight into the various translational and rotational movements that make up an 10 

operator’s probe behavior and using that data to categorize their level of expertise. For example, based on 11 

the feature importance results, rotation along the y axis which represents the rotation motion in POCUS, was 12 

the most predictive in distinguishing novice versus expert sonographers suggesting that novices tend to rotate 13 

their probe much more than experts. In addition, the importance of total acceleration suggests that novices 14 

had more erratic movements than their expert counterparts. These insights can help ultrasound educators 15 

address and anticipate common errors among their trainees and identify patterns of probe behavior among 16 

students to create more individualized feedback. 17 

Although other studies have assessed hand movement of ultrasound operators to assess image 18 

acquisition skill (Bell et al. 2017; Zago et al. 2019; Ziesmann et al. 2015), these methods use expensive and 19 

cumbersome technologies that are not readily available to ultrasound educators. Our hardware costs 20 

approximately $225 USD to build, and it uses commercially available accelerometers and gyroscopes in a 21 

compact format that is placed directly onto the ultrasound probe. Furthermore, our software is built upon 22 

free, open-source components. Having access to this technology and using it in conjunction with image 23 
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quality assessments and objective structured clinical skills exams would allow evaluation of a trainee’s ability 1 

to: (1) obtain and optimize the image and (2) identify and integrate their findings into their clinical 2 

assessment. Thereby addressing all the facets of POCUS proficiency discussed earlier. 3 

While this work has demonstrated the effectiveness of the proposed methods in cardiac ultrasound, 4 

they could be readily extended to image acquisition assessment in other diagnostic ultrasound applications. 5 

This would only require modification of the summary statistics according to application-specific domain 6 

knowledge. 7 

Limitations  8 

Our study was done in a structured educational environment using healthy volunteer patients. This is a 9 

common approach to ultrasound training in these educational settings and is done to: (1) familiarize trainees 10 

to normal cardiac anatomy and (2) help trainees feel successful and promote further POCUS practice in their 11 

daily clinical work. It is unclear how the assessment performance of Probe Watch would change in a clinical 12 

setting given patient specific variables such as body habitus, underlying clinical illness, and comorbidities 13 

that can influence the process of image acquisition. In addition, our study focused on a dichotomous 14 

categorization of ultrasound operators into either novices or experts based solely on appointment status, 15 

without further subcategorization of skill level. Furthermore, our sample size of 11 operators and 63 total 16 

instances of image acquisition is small, and it is unclear how well the results will apply to a larger population. 17 

We trained the assessment method to maximize loss on training snippets. We compute the trial-wise 18 

measures of performance as a mean over all snippets within the trial. As a result, we find greater snippet-19 

wise performance metrics than trial-wise performance metrics. Using an appropriate consensus layer to 20 

compute trial-wise assessment and backpropagating over it would improve trial-wise performance (Funke et 21 

al. 2019). 22 
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Future Work 1 

More research is needed to understand the ability of the proposed approach to monitor changes in skill 2 

level during ultrasound training and if it can be used to help educators guide their trainees. This would 3 

facilitate its use in competency-based medical education programs. 4 

The focus of this work was on skills assessment in the image acquisition component of cardiac 5 

ultrasound. We also propose integrating complementary approaches to automated skills assessment. While 6 

our approach focuses on assessment from motion data, other works have shown automated assessment is 7 

feasible from ultrasound image data (Abdi et al. 2017; Mazomenos et al. 2018) or video data (Tyrrell and 8 

Holden 2020). These combined approaches may provide more robust and more wholistic skills assessment, 9 

without requiring additional hardware or expense. 10 

CONCLUSIONS 11 

We have developed a low-cost tool, Probe Watch, that is able to quantify the motion associated with 12 

image acquisition during cardiac ultrasound. This allows educators insight into a trainee’s probe motion 13 

behavior. The proposed approach combines summary statistics, raw time series data, and data augmentation 14 

to classify skill level in image acquisition. Despite the inexpensive setup and small dataset size, the approach 15 

accurately classified image acquisition skill level in a simulation-based training scenario. Probe Watch may 16 

be easily deployed in medical education settings and will allow changes in trainees’ image acquisition skill 17 

level to be tracked over time and create more personalized instructions for students. 18 
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FIGURE CAPTIONS LIST 1 

Figure 1. Definition of translational (top) and rotational (bottom) probe motion along each axis. 2 

Figure 2. Neural network architecture for binary classification of skill from raw time series data and 3 

summary statistics. Input raw time series data is indicated in blue; input summary statistics are indicated in 4 

orange. Temporal convolutional component is indicated in grey; fully connected component is indicated in 5 

green. Input size for each layer is indicated as number of channels @ number of frames. 6 

Figure 3. Photograph (left) and diagram (right) of Probe Watch hardware mounted to an ultrasound 7 

probe. 8 

Figure 4. Probe Watch software interface depicting recording (top) and assessment (bottom) 9 

functionality. The left frame provides the recording and analysis controls; middle frame provides a graphical 10 

display of acceleration and rotational velocity; the right frame provides a 3D visualization of rotation. 11 

Figure 5. Photograph of participant scanning a volunteer patient with Probe Watch attached to the 12 

ultrasound probe. 13 

Figure 6. Distance correlation between all input raw time series data and summary statistics. 14 

Figure 7. Rank correlation between individual summary statistics and ground-truth skill level for the 15 

summary statistics with the five largest areas under the receiver operating characteristic. Novices are 16 

indicated in blue; experts are indicated in red. 17 
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TABLES 1 

Table 1. Performance measures for classification of experts and novices. Reported as median (inter-quartile range). 2 

Snippet Validation AUC 0.902 

(0.722 – 0.983) 

Trial Validation AUC 0.789 

(0.675 – 0.889) 

Snippet Test AUC 0.931 

(0.776 – 0.971) 

Trial Test AUC 0.761 

(0.667 – 0.855) 

 3 

Table 2. Performance measures under different conditions of ablation for classification of experts and novices. Reported as median 4 

(inter-quartile range). Bold indicates condition with best performance. 5 

Condition Snippet Test AUC Trial Test AUC 

Full 0.931 

(0.776 – 0.971) 

0.761 

(0.667 – 0.855) 

NoAug 0.899 

(0.793 – 0.965) 

0.722 

(0.667 – 0.854) 

RawData 0.784 

(0.715 – 0.848) 

0.725 

(0.667 – 0.850) 

SummStat 0.907 

(0.774 – 0.957) 

0.745 

(0.606 – 0.839) 

 6 



 

 

23 

 

Table 3. Feature importance for each of the features used in skills classification. Blue indicates summary statistics; yellow indicates 1 

raw time series data. Reported as median (inter-quartile range). 2 

Feature Snippet Test AUC 

Rotational Actions Y 7.70E-02 (2.67E-02 - 1.32E-01) 

Total Acceleration Z 5.97E-02 (2.37E-02 - 2.40E-01) 

Total Acceleration 3.30E-02 (5.84E-03 - 1.27E-01) 

Elapsed Time 3.19E-02 (8.78E-03 - 8.45E-02) 

Translational Actions X 2.93E-02 (1.37E-02 - 6.64E-02) 

Total Acceleration X 2.74E-02 (1.11E-02 - 7.67E-02) 

Motion Smoothness 2.65E-02 (6.73E-03 - 5.48E-02) 

Translational Actions Z 2.62E-02 (6.15E-03 - 5.42E-02) 

Translational Actions Y 2.61E-02 (9.76E-03 - 6.29E-02) 

Total Rotation Y 2.51E-02 (1.05E-02 - 7.31E-02) 

Rotational Actions X 2.40E-02 (9.05E-03 - 6.50E-02) 

Total Rotation Z 1.47E-02 (5.99E-03 - 4.61E-02) 

Total Acceleration Y  1.43E-02 (3.41E-03 - 2.39E-02) 

Total Rotation X 1.38E-02 (5.25E-03 - 3.38E-02) 

Rotational Actions 1.35E-02 (3.67E-03 - 4.11E-02) 

Rotational Actions Z 1.30E-02 (2.94E-03 - 3.68E-02) 

Total Rotation 1.08E-02 (2.87E-03 - 3.13E-02) 

Relative Timestamp 2.77E-03 (7.12E-05 - 7.70E-03) 

Region ID 2.26E-04 (0.00E+00 - 4.67E-03) 

Accelerometer X 2.15E-06 (8.33E-17 - 7.19E-04) 
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Accelerometer Z 1.40E-06 (0.00E+00 - 1.02E-03) 

Gyroscope Y 9.34E-08 (0.00E+00 - 9.99E-05) 

Accelerometer Y 1.11E-16 (0.00E+00 - 2.38E-04) 

Gyroscope X 1.11E-16 (0.00E+00 - 1.43E-04) 

Gyroscope Z 1.11E-16 (0.00E+00 - 1.84E-04) 

Translational Actions 0.00E+00 (0.00E+00 - 0.00E+00) 

 1 

Table 4. Rank correlation and area under the curve (AUC) for individual summary statistics versus ground-truth skill level. 2 

Summary Statistic Rank Correlation AUC 

Elapsed Time -0.26 0.66 

Total Acceleration -0.44 0.77 

Total Rotation -0.40 0.75 

Total Acceleration X -0.47 0.79 

Total Acceleration Y -0.31 0.69 

Total Acceleration Z -0.39 0.74 

Total Rotation X -0.30 0.68 

Total Rotation Y -0.46 0.79 

Total Rotation Z -0.41 0.76 

Translational Actions 0.00 0.50 

Translational Actions X -0.32 0.69 

Translational Actions Y 0.08 0.45 

Translational Actions Z -0.29 0.65 
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Motion Smoothness -0.35 0.72 

Rotational Actions -0.34 0.71 

Rotational Actions X -0.16 0.60 

Rotational Actions Y -0.35 0.72 

Rotational Actions Z -0.26 0.66 

 1 


