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Abstract

Purpose: FAST is a point of care ultrasound (POCUS) study that eval-
uates for the presence free fluid, typically hemoperitoneum in trauma
patients. FAST is an essential skill for Emergency Physicians. Thus,
it requires objective evaluation tools that can reduce the necessity
of direct observation for proficiency assessment. In this work, we use
deep neural networks to automatically assess operators’ FAST skills.
Methods: We propose a deep convolutional neural network for FAST
proficiency assessment based on motion data. Prior work has shown that
operators demonstrate different domain-specific dexterity metrics that
can distinguish novices, intermediates, and experts. Therefore, we aug-
ment our dataset with this domain knowledge and employ fine-tuning to
improve the model’s classification capabilities. Our model, however, does
not require specific points-of-interest (POIs) to be defined for scanning.
Results: The results show that the proposed deep convolutional
neural network can classify FAST proficiency with 87.5% accuracy
and 0.884, 0.886, 0.247 sensitivity for Novices, Intermediates and
Experts, respectively. It demonstrates the potential of using kine-
matics data as an input in FAST skill assessment tasks. We also
show that the proposed domain-specific features and region fine-
tuning increase the model’s classification accuracy and sensitivity.
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Conclusion: Variations in probe motion at different learning stages
can be derived from kinematics data. These variations can be used for
automatic and objective skill assessment without prior identification
of clinical POIs. The proposed approach can improve the quality and
objectivity of FAST proficiency evaluation. Furthermore, skill assessment
combining ultrasound images and kinematics data can provide a more
rigorous and diversified evaluation than using ultrasound images alone.

Keywords: FAST Ultrasound, Skill assessment, Kinematics data, Surgical
Data Science

1 Introduction

1.1 Motivation

Point-of-care ultrasound (POCUS) is the real-time diagnostic or interventional
use of ultrasound by a clinician at the bedside, and is routinely performed in
the emergency department. One of the common examinations is the Focused
Assessment with Sonography in Trauma (FAST) [1]. FAST is a POCUS
study that rapidly establishes the presence or absence of free fluid, typi-
cally hemoperitoneum, bile, urine or stomach contents, after a traumatic
injury [2]. The protocol requires scanning four body regions: right upper quad-
rant (RUQ), left upper quadrant (LUQ), pericardial space (HEART), and
pelvic area (PELVIC) [2]. POCUS imaging has many benefits over other radio-
graphic imaging. It is portable, cost-effective and reduces patients’ exposure
to harmful radiation [3]. In particular illness presentations, including trauma,
POCUS has been demonstrated to shorten lengths of stay at the hospital,
streamline patient care and reduce complications [4].

FAST is a core POCUS competency that is included in medical undergrad-
uate and postgraduate curricula [1] (Fig. 1). Thus, it warrants the employment
of validated, objective assessment tools to ensure trainees’ evaluation consis-
tency [5, 6]. Most of the existing assessment tools rely on direct observation
by experts and are subject to human error [5]. However, with the help of
automated assessment, we can improve the education process by reducing the
necessity of direct expert observation with increased skill evaluation accuracy
and consistency [7, 8].

The main objective of this work is to propose a new approach to training
a convolutional neural network (CNN) to improve its performance in skill
evaluation. The model will train on kinematics data combined with domain-
specific features with further region specific fine-tuning. The kinematics data
was recorded from an ultrasound probe during a series of FAST procedures.
Furthermore, this work investigates a different perspective on POCUS skill
evaluation that focuses not on acquired images but on the operator’s hand and
probe motion. They can ensure the acquisition of high-quality images, which
leads to optimal interpretation and clinical integration [9].
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Fig. 1 Ultrasound images of the pericardial space. Left: (novice) right ventricle to septum
incompletely visualized, cardiac apex obscured by bowel gas. Middle: (intermediate) good
visualization of the pericardium and structures, more fatpad is visualized in the near screen.
Right: (expert) pericardium visualized with intraventricular towards apex

1.2 Previous work

At present, the prevailing method of POCUS competency assessment is based
on direct expert observation [5]. There are several FAST assessment tools with
a comprehensive list of scoring metrics, which include probe motion and posi-
tioning [8, 10] though none are in widespread use [5, 7]. Therefore, kinematics
data collected from the probe during FAST can be used to evaluate operators’
proficiency and track their progression [11].

Previous work on FAST kinematics data analysis for proficiency evaluation
is focused on summary statistics [7, 12–14]. [7, 13] demonstrate that trained
operators require less time and shorter path length with less probe motion to
complete FAST compared to operators with less experience.

Modern approaches to skill assessment from kinematics data employ deep
learning models. Primarily, surgical skill assessment from time-series data
with CNNs dominating the field [15–18]. CNNs are a type of deep learning
model used in different domains, from time-series analysis to video recognition
tasks [19]. One of the main advantages of CNNs is their ability to automat-
ically learn hierarchical representations of the input data, which can lead to
better performance than traditional machine learning models that rely on
handcrafted features [19]. CNN-based models demonstrated high performance
in skill assessment tasks on the open-source JIGSAW dataset [20]. Moreover,
it was shown that CNN skill assessment correlates with existing expert-based
proficiency assessment tools [21].

2 Methods

2.1 Dataset

Three groups of people (fourteen novices, fifteen intermediates, and three
experts) with self-reported proficiency participated in the data collection [7].
The novices had limited FAST experience obtained during their dedicated cur-
riculum. The intermediates completed the same curriculum with at least 50
supervised FAST diagnostics on patients. The experts were FAST instructors
who completed additional POCUS training.
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Fig. 2 Experiment setup for tracking and recording kinematics data

The data was collected in a simulated environment on a healthy volunteer
with a sensor attached to the ultrasound probe, a reference sensor placed under
the volunteer’s back and a tracking device (see Fig. 2). The participants were
asked to complete the FAST examination and scan all four regions of interest
separately. The recorded data contains sequences of transformation matrices
from the probe sensor to the reference sensor (Tprobe→ref ), with a timestamp
for each matrix. The motion data was recorded using the open-source software
SlicerIGT with the PLUS software library extension [22]. To our knowledge,
this is the only available dataset of this kind.

2.2 Data processing

To make the data robust to the reference position on the patient’s back, we
compute the transformations relative to the previous transformation as follows

T
′

probe→refi = T−1
probe→refi−1

· Tprobe→refi (1)

Additionally, we propose the use of domain knowledge by including expert-
defined summary statistics in the data as one of the contributions of this work.
Previous studies show that operators with better skills show more efficient
probe movements with less time to complete the procedure [7, 12–14]. Thus,
we augment each transformation matrix with path length Li defined as follows

Li = ∥xi − xi−1∥2, (2)

where xi and xi−1 are the current and previous position of the probe sensor
relative to the reference sensor. Also we add the relative time difference ∆ti as

∆ti = ti − ti−1, (3)

where ti and ti−1 are the timestamps of the current transformation and the
previous transformation. To further emphasize the importance of hand motion
in the dataset we compute angular and linear speed. The angular speed Ai is
computed as

Ai =

cos−1

(
Trace

(
Rprobe→refi

·R−1
probe→refi−1

)
−1

2

)
∆ti

, (4)



Springer Nature 2021 LATEX template

FAST skill assessment from kinematics data with CNN 5

Fig. 3 The proposed network architecture. The top values show number of filters @ kernel
size with dropout rate provided in the brackets

where Rprobe→refi and R−1
probe→refi−1

are rotation matrices of T
′

probe→refi

and T
′−1
probe→refi−1

, respectively. Finally, we add linear speed Si to the data as
follows

Si =
Li

∆ti
. (5)

The original dataset consists of homogeneous transformation matrices

T
′

probe→refi =


r11 r12 r13 dx
r21 r22 r23 dy
r31 r32 r33 dz
0 0 0 1

 (6)

where rij are rotation components and dx,y,z are translation components.
We flatten the first three rows of the matrix, append the previously calcu-
lated domain-specific values and reshape the resulting matrices into vectors
v⃗probe→refi ∈ R16×1 as follows

v⃗probe→refi =
(
r11 r12 r13 dx · · · Li Ai Si ∆ti

)T
(7)

We address the potential overfitting that is typical for CNNs by employing
a window slicing approach to augment time series data as was proposed in [23].
Since the original dataset has only 32 training instances of variable length time-
series, we use window slicing to increase the number of training samples and
get fixed length time-series samples. Each sample has 70 slices and preserves
the original class label.

2.3 Architecture

The proposed architecture (Fig. 3) is based on [15, 16] with kinematic input
vectors augmented with the domain features as described in Eq. 7. The network
has five convolutional blocks. Each block includes two convolutional layers and
a batch normalization layer with the ReLU activation function. As proposed
in [15], the last two layers in the network are a global average pooling layer
followed by a fully connected layer with a softmax activation function. We
apply cross-entropy loss to compute the probabilities for each class with batch
size 16. To regularize the model’s weights and reduce overfitting, we use L2
regularization with a factor 0.01 and dropout layers. The network uses Adam
optimizer with a learning rate 0.001.
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2.4 Training and testing

We propose several training and testing modifications to improve the model’s
generalization and performance. First, the model will follow a user-out 3-fold
cross-validation protocol during training and testing to ensure better general-
ization on unseen data. Since the dataset contains a different number of classes,
each fold has one expert sample, five intermediates and five novices (except
one fold with four novices). Second, we introduce fine-tuning on each region,
as it was shown that transfer learning helps improve performance in similar
tasks [24, 25].

In the first stage, the model trains on the data from all four regions for 80
epochs. The best set of hyperparameters is chosen based on the classification
accuracy that the model demonstrates on the validation set. In the second
stage of training, the network is fine-tuned on each region separately for 20
epochs. We compute the performance as the average between the fine-tuned
models for each region. This scheme provides the most reliable approach to
evaluate the generalization of the network on unseen data.

2.5 Ablation studies

We ablate our model on two contributions that we propose in this work. Firstly,
we test the added value that the incorporation of the domain-specific features
brings to the model. We record the model’s performance without features,
using only one feature, and with all proposed features together. Secondly, we
conduct an ablation study on fine-tuning to determine its effect on the model’s
performance.

3 Results

3.1 Classification results

Table 1 illustrates performance measures calculated after the fine-tuning
stage for time-series slices. We show that classification accuracy and macro-
sensitivity is consistent with prior work [24]. The proposed model achieves
80.1%, 94.9%, 93.6% and 81.3% accuracy for the RUQ, LUQ, HEART, and
PELVIC areas, respectively. The model shows 0.672 macro-sensitivity for all
scanned regions with experts and 0.885 with experts excluded.

Table 2 shows the performance comparison with other FAST proficiency
assessment models. In Table 3, we demonstrate confusion matrices using
majority vote on time-series slices. Namely, a participant’s time-series is
sliced into sub-sequences, and each sub-sequence receives a class label. The
participant receives the mode of labels assigned to sub-sequences.

3.2 Ablation results

In Table 4, we compare against ablations of the proposed domain specific fea-
tures. The highest accuracy and novice sensitivity scores are achieved by the
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Table 1 Performance of the proposed model on region specific data computed for
time-series. Novice (Nov.), Intermediate (Int.), Expert (Exp.)

Sensitivity
Region Accuracy, % Nov. Int. Exp. Macro

RUQ 80.1 0.752 0.869 0.416 0.679
LUQ 94.9 0.961 0.990 0.116 0.689
HEART 93.6 0.942 0.953 0.276 0.724
PELVIC 81.3 0.881 0.730 0.180 0.597
All 87.5 0.884 0.886 0.247 0.672

Table 2 Classification performance for different models in FAST proficiency assessment.
Best results for automated methods are in bold

Sensitivity
Baseline Accuracy, % Nov. Int. Exp. Macro

Ultrasound video [24] 82.6 0.866 0.967 0.00 0.611
Kinematics (Random forest) [13] 70.0 0.696 0.767 0.417 0.627
Kinematics (ours) 87.5 0.884 0.886 0.247 0.672

Table 3 Confusion matrices for FAST skill level for different models on the same dataset.
Best results are in bold

Predicted
Kinematics (ours) Ultrasound video [24] Random forest [13]

Nov. Int. Exp.

T
ru

e Nov. 54 2 0
Int. 5.5 54 0.5
Exp. 6.5 3 2.5

Nov. Int. Exp.
48.5 7.5 0

2 58 0
9 4 0

Nov. Int. Exp.
39 16 1
10 46 4
0 7 5

model that includes only time as an extra feature in the transformation matri-
ces. However, the model that includes all four domain features demonstrates
the highest macro-sensitivity score.

We also tested the benefits of the region fine-tuning. Table 5 shows that
after the fine-tuning, the model demonstrates better overall accuracy and
sensitivity scores.

4 Discussion

This study demonstrates that a CNN model can accurately assess FAST skills
from kinematics data. It provides a method of skill assessment when access to
expert supervision is limited, which can reinforce video-based expert review
with supplementary information from kinematics.

The proposed model shows that expert-defined points of interest on the
patient’s anatomy are not required for skills assessment. Furthermore, the
model is insensitive to the position of the reference sensor on the patient’s
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Table 4 Accuracy and sensitivity scores of the network for different extra features. The
sensitivity scores are computed for each class separately. Best results are in bold

Sensitivity
Feature Accuracy, % Nov. Int. Exp. Macro

No features 88.9 0.910 0.913 0.003 0.619
Time 89.5 0.917 0.883 0.170 0.657
Linear speed 87.2 0.883 0.877 0.163 0.641
Angular speed 88.8 0.896 0.900 0.102 0.633
Path length 86.6 0.886 0.851 0.149 0.629
All features 87.5 0.884 0.886 0.247 0.672

Table 5 Performance scores and confidence intervals. Left values - tuned model, right
values - non-tuned model. Best are in bold

Sensitivity
Region Accuracy, % Nov. Int. Exp. Macro

RUQ 80.1/80.0 0.752/0.764 0.869/0.848 0.416/0.242 0.679/0.618
LUQ 94.9/90.9 0.961/0.902 0.990/0.984 0.116/0.135 0.689/0.674
HEART 93.6/95.9 0.942/0.963 0.953/0.978 0.276/0.030 0.724/0.657
PELVIC 81.3/80.1 0.881/0.866 0.730/0.721 0.180/0.000 0.597/0.529
All 87.5/86.7 0.884/0.874 0.886/0.883 0.247/0.102 0.672/0.620

Accuracy 95% CI for All, % [87.3, 87.7]/[86.5, 86.9]
Macro-Sensitivity 95% CI for All [0.669, 0.675]/[0.617, 0.623]

body due to the use of relative transformations. Thus, the model provides both
a practical advancement and performance improvement over previous work,
which uses a random forest classifier based on summary statistics and requires
an expert to scan beforehand and manually delineate points-of-interest in order
to perform a proficiency assessment [7, 13] (see Table 2 and 3).

The model achieves equivalent accuracy and macro-sensitivity while per-
forming better in classifying experts compared to a CNN-based classifier which
uses ultrasound video data from the same dataset [24] (Table 2 and 3). Our
work demonstrates that correct probe motion during image acquisition pro-
vides essential information about FAST proficiency. It is consistent with prior
work in POCUS competency evaluation, which shows the process of image
acquisition as a critical facet of skill [11]. Therefore, using hand and probe
motion trackers for skills assessment in FAST will have added value. Sim-
ilarly, kinematics data with domain specific features was used successfully
for skills assessment on a different dataset but the results are not directly
comparable [14].

The use of automated assessment tools can bring several advantages to
medical education. It can (1) reduce the necessity of direct observation and
manual evaluation needed from instructors, (2) eliminate the biases from
human interaction, and (3) facilitate the learning process for students by
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providing more opportunities to hone their skills in a self-guided low-stakes set-
ting. Thus, it can improve learning outcomes in synergy with classical teaching
practices. The proposed model shows promise as a tool for incorporation into
POCUS training curricula as a standalone software or as a part of an existing
automatic assessment.

5 Limitations

The primary limitation of this work is that the dataset was collected from a
single healthy male model. The physiological differences and patient pathol-
ogy might affect the image acquisition techniques used by the operators and,
thus, the model’s performance on unseen data. Additionally, this dataset only
includes participants with typical movement patterns. However, the model has
the potential to accurately evaluate the skills of participants with non-typical
movement patterns, if such samples were included in the dataset.

The other limitation of this research is the size of the dataset. There are
only 32 samples with three expert instances. Therefore, with the 3-fold cross-
validation, the training set has one expert sample. The data augmentation
technique we use to increase the number of training instances brings even
more class imbalance to the data. As a result, most Experts are classified as
Novices since the imbalance pushes the model to overfit Novices, who have the
highest number of data slices in a fold. However, sensitivity for Novices and
Intermediates (excluding Experts) is 0.885, which indicates that the network
captures dexterity differences at a fine granularity. The differences between
Novices and Intermediates are more subtle and harder to detect compared to
the differences between Novices and Experts. Thus, we conjecture that given
more expert data our model will increase its performance on the expert class.
Our results are consistent with prior work (see Table 2), where the model
achieves zero expert class sensitivity on the same dataset due to the class
imbalance [24]. In contrast, a random forest classifier based on the summary
statistics showed better expert sensitivity (see Table 2) [13].

We also acknowledge that our model may incorrectly classify a series of effi-
cient probe motions that fail to capture clinically relevant images. However, in
this work, we focus on image acquisition proficiency which is an important part
of the POCUS skillset [11]. In addition, it is worth noting that the proposed
network relies on ground-truth class labels assigned based on the number of
completed training hours [7]. It may be beneficial to base these labels on an
existing assessment tool, such as QUICk or UCAT [8, 10], to achieve better
generalization and granularity.

6 Conclusion

In this study we establish that CNNs can distinguish trainees with differ-
ent skill levels based on their probe motion during FAST. We demonstrate
that (1) prior identification of points of clinical interest is not required for
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kinematics-based skill assessment, and (2) motion data could reinforce auto-
matic POCUS skill assessment from images to provide more accurate and
diversified proficiency evaluation. We demonstrated the improvement in the
network’s performance as the result of augmenting input vectors with expert-
defined domain features and region fine-tuning. Therefore, a CNN-based
automated assessment on kinematics data can become a useful tool for tracking
learners’ progress with high accuracy and objectivity.

We propose several ways to improve this study. In the future, more data
augmentation techniques should be explored to overcome the lack of expert
samples. Moreover, extending the model to predict UCAT score [10] can help
improve feedback granularity [21]. In addition, an ensemble model with skill
assessment from ultrasound video and kinematics data should be investigated
to increase performance [26].
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