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Abstract. Ultrasound-guided needle insertion is a difficult skill to learn and, in 

the context of competency-based medical education, requires continual monitor-

ing of trainees’ performance. This work investigates two standard neural network 

architectures, temporal convolutional networks and long short-term memory net-

works, for automated classification of skill level based on kinematics data. It ex-

amines which data representations are optimal for skills assessment using the 

proposed architectures in low data scenarios. The data representation had signif-

icant effect on the computed results. But given the optimal data representation, 

the proposed architectures achieve skills classification on two simulated ultra-

sound-guided needle insertion tasks with better performance than summary sta-

tistics. Thus, neural networks can be an effective tool for skills assessment in 

ultrasound-guided interventions; however, it is recommended to search over the 

space of data representations when limited data is available. 

Keywords: surgical skills assessment, machine learning, ultrasound-guided in-

terventions 

1 Introduction 

1.1 Motivation 

Ultrasound-guided interventions are difficult to learn because the operator must simul-

taneously manipulate the ultrasound probe and one or more instruments, interpret the 

noisy ultrasound image in a rotated frame of reference, and guide the instrument to the 

target location. Mastering this skill takes considerable practice. This requires continual 

skills assessment and monitoring of learning curves, to ensure that trainees achieve a 

minimum level of proficiency prior to graduating to the next phase of training or prac-

tice.  

As an alternative to direct observation of procedural skills or video-based skills as-

sessment, automated skills assessment has been a growing field of study. This has held 

true for both surgeries and ultrasound-guided interventions, in particular. Automated 

skills assessment reduces time commitment and costs of human preceptors, improves 

standardization of assessment, and increases scalability of assessment. 

 Recently, approaches for skills assessment have been undergoing a shift from using 

classical machine learning to using deep neural networks, following the ongoing trend 
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of machine learning. While this obviates the need to extract domain-specific features, 

it has effectively replaced the problem with architecture engineering. The issue of ar-

chitecture engineering is especially crucial in low-data scenarios. In particular, the way 

in which input data is represented becomes important. 

The objective of this work is to identify the optimal representations for kinematics 

data for skills assessment in ultrasound-guided needle insertions. This work primarily 

seeks to understand which representations have the greatest added value when coupled 

with standard sequence modeling approaches (i.e. temporal convolution networks and 

long short-term memory networks). To our knowledge this is the first work that has 

used deep neural networks to assess skills in interventional ultrasound from kinematics 

data. 

1.2 Previous Work 

Traditionally, computer-assisted training for ultrasound-guided interventions has used 

performance metrics or summary statistics for skills assessment [1, 2]. This involves 

six degree-of-freedom tracking of the hands or instrument and the anatomy. From these 

trackers, performance metrics or summary statistics may be computed based upon clin-

ically relevant quantities. 

Previous work in skills assessment in ultrasound-guided interventions has explored 

spinal anesthesia [3, 4], peripheral nerve blockade [5], lumbar puncture [6], central ve-

nous catheterization [7], and generics targeting tasks [8, 9]. This prior work has focused 

on skills assessment in ultrasound-guided interventions in simulation-based training 

environments, rather than clinical environments [10]. 

Current work on skills assessment from kinematics or motion data uses modern deep 

neural network architectures. Indeed, most approaches using deep neural networks for 

skills assessment use temporal convolutional networks (TCN) or long short-term 

memory networks (LSTM). Wang et al. [11] proposed a TCN for skills assessment in 

robot-assisted minimally invasive surgery (RAMIS). Fawaz et al. [12] proposed a var-

iant on a TCN by grouping channels into clusters for RAMIS; Castro et al. [13] pro-

posed a variant on a TCN which uses quaternion convolution for RAMIS. Recent work 

from Kim et al. [14] has demonstrated the utility of standard TCNs in skills assessment 

from tool tip motion using different representations in a cataract surgery dataset. Ogul 

et al. [15] have investigated an LSTM architecture for pairwise ranking of surgical skills 

in an activity. Nguyen et al. [16] have demonstrated that a combined CNN+LSTM ar-

chitecture with squeeze and excitation blocks accurately identifies skill in opens sur-

gery using IMU data. 

Many of these previous works have focused primarily on RAMIS and used the open-

source JIGSAWS dataset [17]. These works report high performance, with accuracies, 

F1-scores, and AUCs up to and exceeding 0.90. Although, these previous works have 

all used a leave-one-trial-out validation protocol, rather than a leave-one-out-user pro-

tocol to determine how well their methods works on previously unseen operators. 
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2 Methods 

2.1 Dataset 

We use the ultrasound-guided needle insertion dataset originally presentation by Xia et 

al. [9] (Error! Reference source not found.). This dataset contains ultrasound-guided 

vascular access performed on a silicone model in a simulation-based training environ-

ment. There are 8 in-plane procedures and 7 out-of-plane procedures performed by 5 

expert participants. There are 120 in-plane procedures performed by 20 novices and 

114 out-of-plane procedures performed by 19 novices. Novices were medical students 

with no prior ultrasound-guided needle insertion experience; experts were attending 

emergency medicine physicians. 

 

Fig. 1. Photograph, ultrasound image, and 3D visualization of participant performing ultrasound-

guided needle insertion with electromagnetic trackers attached. 

Kinematic data is collected through electromagnetic pose sensors (Ascension 

trakStar with Model 800 sensors, Northern Digital Inc., Waterloo, ON) rigidly attached 

to the needle, ultrasound probe, and phantom model (Error! Reference source not 

found.). Needle calibration was performed to find the needle tip’s position using pivot 

and spin calibrations. Ultrasound calibration was performed to find the image’s pose 

using the point-based method. Further details on the dataset may be found in the paper 

by Xia et al. [9]. 

2.2 Data Representations & Augmentation 

We investigate skills assessment using four different transforms: (1) the Needle to Ref-

erence transform, (2) the Probe to Reference transform, (3) the Needle to Probe trans-

form, and (4) the Needle Tip to Image transform. The former three transforms provide 

information about the needle’s motion relative to the anatomy, the probe’s motion rel-

ative to the anatomy, and the needle’s motion relative to the probe, respectively. The 

latter transform, computed using the needle and probe calibration, provides information 

on how well the needle is visualized in ultrasound. 

We investigate on four standard ways to represent the rotation of a transform. We 

consider (1) the Euler angle representation, (2) the axis-angle or rotation vector repre-

sentation, (3) the quaternion representation, and (4) the rotation matrix representation. 

The Euler angle representation is a three-element vector, where we use the ZYX intrin-

sic rotation convention. The axis-angle or rotation vector representation is a three-ele-

ment vector, where the vector’s magnitude is the angle of rotation in radians. The qua-

ternion representation is a four-element vector. The rotation matrix representation is a 
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six-element vector, where we use the flattened first two columns of the rotation matrix 

[18]. 

We also investigate the value of the translation and rotation information. We simu-

late a scenario where we only have access to the translation information (e.g. single 

marker infrared tracker). We simulate a scenario where we only have access to the ro-

tation information (e.g. inertial measurement unit). This is compared to using both the 

translation and rotation information. 

Due to the small dataset size, we employ window slicing to cut each procedure into 

overlapping 60 frame snippets (approximately 8 seconds). Subsequently, we randomly 

resample snippets to ensure an equal number of novice and expert snippets (i.e. 10000 

snippets for each class). We approximate that each snippet is representative of the 

whole trial, and thus, focus on classifying snippets of fixed length. 

2.3 Assessment Methods 

As a testbed for our data representations, we use two neural network architectures that 

are common across prior work on skills assessment from kinematic data: TCN and 

LSTM. In both architectures, we employed aggressive dropout (p=0.80) and L2 regu-

larization (λ=0.01) to prevent overfitting on our dataset; each model was trained for 100 

epochs. These values were determined empirically on a small validation set. 

The TCN architecture we use treats the input time series data as a signal where each 

dimension (i.e. translation components and rotation components) is treated as a chan-

nel. Convolution is performed one-dimensionally across time. We employ two convo-

lutional layers, followed by an average pooling layer, and several dense layers. The 

network’s architecture is illustrated in Error! Reference source not found.. 

 

Fig. 2. Illustration of TCN architecture used for skills assessment. Top values indicate data size 

at each layer; bottom values indicate layer type. Input size is indicated as “number of channels 

@ number of frames” for each layer. 

The LSTM architecture we use treats each translation component and rotation com-

ponent as a feature. Recurrence is employed over time. We employ one LSTM layer, 

where the hidden output is used as the input to several dense layers. The network’s 

architecture is shown in Error! Reference source not found.. 
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Fig. 3. Illustration of LSTM architecture used for skills assessment. Top values indicate data size 

at each layer; bottom values indicate layer type. Input size is indicated as “number of channels 

@ number of frames” for each layer. 

2.4 Experimental Setup and Evaluation 

To measure the performance of the assessment methods under different data represen-

tations, we performed user-out five-fold cross-validation for binary classification of 

novices vs. experts. We iterated over all five folds using each fold as the testing set, 

and randomly chose one fold from the training set as a validation set. Given there are 

only five expert users in the dataset, each fold contained data from exactly one expert. 

This cross-validation scheme best evaluates the proposed representations’ generaliza-

bility to previously unseen users. Because there is class imbalance between the datasets, 

we report area under the curve (AUC) as the primary measure of performance. Net-

works for in-plane and out-of-plane data were trained separately. 

3 Results 

Results demonstrate that the highest performing data representation using the TCN is 

the NeedleTipToImage translation for in-plane insertions, with AUC of 0.83; the high-

est performing data representation is NeedleToReference translation for out-of-plane 

insertions, with AUC of 0.98. The highest performing data representation using the 

LSTM is the NeedleToProbe rotation matrix and translation for in-plane insertions, 

with AUC of 0.83; the highest performing data representation is ProbeToReference ro-

tation matrix for out-of-plane insertions, with AUC of 0.70.  Full results for all repre-

sentations are reported using the TCN architecture (Error! Reference source not 

found.) and the LSTM architecture (Error! Reference source not found.). 
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By paired t-test, we found the skills assessment performance using the TCN was 

significantly better than using the LSTM for both in-plane (p=0.03; mean 0.62 vs. 0.55, 

respectively) and out-of-plane (p<0.01; mean 0.73 vs. 0.54, respectively) interventions. 

By ANOVA we did not find a significant difference in skills assessment perfor-

mance using any specific representation (mean AUC 0.62 for Euler & translation, 0.62 

for axis-angle & translation, 0.61 for quaternion & translation, 0.64 for matrix & trans-

lation, 0.60 for Euler only, 0.58 for axis-angle only, 0.54 for quaternion only, 0.65 for 

matrix only, 0.64 for translation only). Nor was there any significant difference for ro-

tation and translation, rotation only, and translation only (mean AUC 0.62, 0.59, 0.64, 

respectively). Likewise, we did not find a significant difference in skills assessment 

performance using the NeedleToReference, ProbeToReference, NeedleToProbe, or 

NeedleTipToImage transforms (mean AUC 0.62, 0.62, 0.61, 0.59, respectively).  

Table 1. Area under the curve for skills classification using TCN architecture. For each cell, the 

top and bottom values indication performance for in-plane and out-of-plane insertions. Bolded 

results indicate best performance for each approach; underlined results indicate best performance 

for each transform per approach. 

Rep. 
Rotation 

Rep. 

Transform 

NeedleTo 

Reference 

ProbeTo 

Reference 

NeedleTo 

Probe 

NeedleTip 

ToImage 

Rotation + 

Translation 

Euler 
0.53 ± 0.13 

0.77 ± 0.12 

0.64 ± 0.15 

0.74 ± 0.10 

0.64 ± 0.13 

0.83 ± 0.08 

0.68 ± 0.09 

0.81 ± 0.13 

Axis-Angle 
0.71 ± 0.07 

0.94 ± 0.02 

0.76 ± 0.07 

0.60 ± 0.11 

0.43 ± 0.08 

0.56 ± 0.12 

0.70 ± 0.07 

0.86 ± 0.11 

Quaternion 
0.40 ± 0.14 

0.49 ± 0.12 

0.65 ± 0.14 

0.78 ± 0.12 

0.73 ± 0.12 

0.76 ± 0.16 

0.64 ± 0.13 

0.73 ± 0.09 

Matrix 
0.70 ± 0.13 

0.76 ± 0.11 

0.56 ± 0.14 

0.73 ± 0.15 

0.78 ± 0.10 

0.50 ± 0.14 

0.60 ± 0.08 

0.69 ± 0.18 

Rotation 

Euler 
0.66 ± 0.17 

0.77 ± 0.07 

0.51 ± 0.12 

0.74 ± 0.10 

0.43 ± 0.12 

0.70 ± 0.10 

0.66 ± 0.10 

0.69 ± 0.09 

Axis-Angle 
0.72 ± 0.07 

0.59 ± 0.09 

0.82 ± 0.05 

0.43 ± 0.14 

0.35 ± 0.10 

0.73 ± 0.10 

0.30 ± 0.09 

0.82 ± 0.09 

Quaternion 
0.51 ± 0.17 

0.53 ± 0.13 

0.55 ± 0.17 

0.60 ± 0.11 

0.69 ± 0.13 

0.81 ± 0.10 

0.55 ± 0.05 

0.59 ± 0.17 

Matrix 
0.79 ± 0.08 

0.64 ± 0.11 

0.74 ± 0.09 

0.89 ± 0.06 

0.60 ± 0.11 

0.91 ± 0.05 

0.44 ± 0.07 

0.82 ± 0.12 

Translation - 
0.56 ± 0.11 

0.98 ± 0.01 

0.64 ± 0.18 

0.82 ± 0.09 

0.81 ± 0.10 

0.79 ± 0.13 

0.83 ± 0.07 

0.75 ± 0.12 

Table 2. Area under the curve for skills classification using LSTM architecture. For each cell, 

the top and bottom values indication performance for in-plane and out-of-plane insertions. 

Bolded results indicate best performance for each approach; underlined results indicate best per-

formance for each transform per approach. 

Rep. 
Rotation 

Rep. 

Transform 

NeedleTo ProbeTo NeedleTo NeedleTip 
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Reference Reference Probe ToImage 

Rotation + 

Translation 

Euler 
0.62 ± 0.14 

0.42 ± 0.10 

0.64 ± 0.09 

0.40 ± 0.13 

0.59 ± 0.15 

0.54 ± 0.15 

0.55 ± 0.10 

0.48 ± 0.13 

Axis-Angle 
0.61 ± 0.06 

0.60 ± 0.04 

0.51 ± 0.13 

0.48 ± 0.06 

0.69 ± 0.07 

0.60 ± 0.05 

0.48 ± 0.12 

0.35 ± 0.16 

Quaternion 
0.60 ± 0.04 

0.61 ± 0.14 

0.59 ± 0.11 

0.67 ± 0.08 

0.52 ± 0.09 

0.56 ± 0.12 

0.38 ± 0.11 

0.58 ± 0.12 

Matrix 
0.65 ± 0.07 

0.62 ± 0.13 

0.65 ± 0.09 

0.68 ± 0.12 

0.83 ± 0.03 

0.51 ± 0.10 

0.41 ± 0.05 

0.63 ± 0.13 

Rotation 

Euler 
0.58 ± 0.12 

0.66 ± 0.06 

0.58 ± 0.08 

0.65 ± 0.17 

0.41 ± 0.15 

0.64 ± 0.07 

0.45 ± 0.07 

0.42 ± 0.14 

Axis-Angle 
0.53 ± 0.09 

0.63 ± 0.06 

0.56 ± 0.15 

0.56 ± 0.09 

0.58 ± 0.10 

0.55 ± 0.14 

0.58 ± 0.07 

0.52 ± 0.15 

Quaternion 
0.53 ± 0.10 

0.41 ± 0.12 

0.59 ± 0.09 

0.48 ± 0.09 

0.48 ± 0.12 

0.34 ± 0.12 

0.35 ± 0.09 

0.66 ± 0.09 

Matrix 
0.60 ± 0.07 

0.56 ± 0.12 

0.60 ± 0.13 

0.70 ± 0.05 

0.50 ± 0.08 

0.49 ± 0.15 

0.64 ± 0.11 

0.50 ± 0.08 

Translation - 
0.60 ± 0.12 

0.52 ± 0.03 

0.49 ± 0.07 

0.45 ± 0.13 

0.47 ± 0.06 

0.56 ± 0.15 

0.53 ± 0.08 

0.43 ± 0.12 

4 Discussion 

Performance varies considerably due to representation, and the optimal representation 

varies depending on network architecture and task. Thus, we do not recommend an 

optimal data representation in general, but rather, searching over the space of data rep-

resentations to find the optimal representation for a given task. This is crucial in tasks 

with small datasets, where deep neural networks do not generalize well. 

The results show the proposed TCN outperforms the proposed LSTM across most 

data representations, although their results are not directly comparable due to different 

numbers of parameters used. Furthermore, assessment performance for the out-of-plane 

dataset exceeds assessment performance for the in-plane dataset. 

This study has several limitations. Primarily, the sample size is small; thus, the un-

certainty associated with the calculated measures of performance are high. This study 

also is limited by using operators’ self-proclaimed appointment status (i.e. emergency 

medicine physicians or medical student). Ideally the ground-truth skill level should be 

determined by an expert rater using a scale with evidence of validity. This would ac-

count for variation in performance due to extraneous factors. Finally, the dataset comes 

from a simulation-based training situation, and therefore may not be directly applicable 

to a skills assessment in a clinical scenario. 

The results shown here are consistent with the work from Kim et al. [14] which 

demonstrate that data representation of kinematics data for skills assessment important. 

Their work identifies that using tooltip velocities has benefit over using tooltip posi-

tions. The performance achieved for binary skills classification exceeds the results from 

Holden et al. [19] (0.83 vs. 0.82 AUC for in-plane insertions; 0.98 vs. 0.94 AUC for 

out-of-plane insertions), when the appropriate data representation is used. We highlight, 
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however, that the numeric results reported in this comparison are not indicative of per-

formance on a new dataset. These numeric results should be seen more like perfor-

mance on a validation set, as the representation has been tuned on the testing set. 

In many applications, it is desirable to use less expensive and less obtrusive hardware 

for data collection. For example, using an inertial measurement unit to determine rota-

tion information or using a single marker optical tracker to determine translation infor-

mation reduce the hardware needs. Results indicate that these setups may be possible 

in some cases without affecting skills assessment performance. 

Future work involves using further data augmentation strategies (e.g. white noise, 

window warping, etc.) and representation strategies (e.g. multiple transforms with mul-

tiple representations) to determine their added value in skills assessment in scenarios 

with limited data. We also intend to collect a larger dataset so that we may get a more 

precise measure of performance for different representations. Finally, we wish to try 

more modern neural network architectures. 

5 Conclusion 

In this work, we have demonstrated that standard neural network architectures can be 

used for skills assessment in ultrasound-guided needle insertion. The proposed TCN 

outperforms previous work using machine learning on summary statistics for skills as-

sessment [19], when the appropriate data representation is used. On the other hand, this 

work has found that data representation can significantly affect skills assessment per-

formance. We found that the optimal representation can vary depending on the task and 

network architecture. Thus, it is recommended to search over the space of data repre-

sentations when choosing a neural network architecture for skills assessment in inter-

ventional ultrasound when limited data is available. 
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