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Abstract—Breast cancer continues to be a prominent con-
tributor to female mortality. Ultrasound imaging stands as a
widely utilized technique for detecting breast abnormalities. In
this paper, we introduce a novel two-stage neural network model
to classify breast cancer in ultrasound images. In the first stage,
we employ a fully convolutional network (FCN) to perform image
segmentation. The FCN learns to predict segmentation masks
from the breast ultrasound images, delineating tumor regions.
Subsequently, the second stage involves a convolutional neural
network (CNN) to classify tumor type, leveraging tumor masks
generated by the first stage and the original ultrasound images.
Results showcase the added value of the two-stage approach,
with our proposed model achieving a classification accuracy
of 92.41%, consistently surpassing the performance of baseline
models that rely solely on CNNs for breast ultrasound image
classification.

Index Terms—Breast ultrasound images, image classification,
image segmentation, two-stage learning.

I. INTRODUCTION

Breast cancer is one of the leading causes of death among
women worldwide. Early detection and diagnosis of breast
cancer are crucial for effective treatment, which could help
reduce the mortality rate through appropriate therapeutic in-
terventions at the right time [1]. One of the most widely used
imaging modalities for detecting breast cancer is ultrasound
imaging. It can detect suspicious areas or abnormalities in the
breast tissue, which may indicate the presence of a tumor.
The tumor imaging features, such as size and border shape,
can then be used to further classify tumors as normal (i.e., no
tumor), benign, or malignant [2].

In prior work on medical image analysis, Pei et al. [3]
presented a context-aware deep learning methodology to
address various brain tumor analysis tasks using structural
multimodal magnetic resonance images. This involved tumor
segmentation by a context-aware deep neural network (DNN)
model, subtype classification by a regular convolutional neural
network (CNN) [4], and prediction of overall survival by a
hybrid method of deep learning and machine learning. In a
similar context, Samee et al. [5] proposed a computer-aided
diagnosis (CAD) system targeting brain tumors in magnetic
resonance imaging. They streamlined a U-Net architecture [6]
to delineate regions of interest, coupled with a simplified CNN
to classify tumors as benign or malignant. Additionally, Anand
and colleagues [7] presented a fusion of U-Net and CNN
models for skin lesion classification using dermoscopy images.

Their technique entailed the multiplication of U-Net-derived
masks with preprocessed images to generate segmented im-
ages, which were subsequently utilized by the CNN model
for further classification. Sudharson and Kokil [8] proposed
a strategy to classify kidney ultrasound images by employing
an ensemble of pre-trained DNNs using transfer learning. This
approach led to performance improvements surpassing those
achieved by individual DNNs.

In the realm of breast cancer diagnosis, Xie et al. [9]
presented a CAD system for ultrasound images. The system
initially classified normal and cancerous samples using a pre-
trained ResNet [10] through transfer learning, then performed
accurate tumor segmentation via an enhanced mask region-
based CNN. Moreover, Mohamed et al. [11] presented an
automated system for breast cancer detection from thermo-
grams. It involved a step of segmenting the breast area from
the rest of the body, followed by binary classification using
a CNN model. Furthermore, a multistage transfer learning
approach was introduced by Ayana et al. [12] for breast
ultrasound image classification, incorporating medical images
during model pre-training.

This paper proposes a novel two-stage neural network model
for the classification of breast cancer based on ultrasound
images. In our approach, the initial stage employs a fully
convolutional network (FCN) [13] to predict segmented tumor
masks. The predicted segmentations are then combined with
the original ultrasound images in the second stage for tumor
classification by a CNN. Our objective is to explore the
potential value added by this two-stage model integrating
image segmentation and classification techniques from prior
research, compared to directly utilizing CNN classification
models on ultrasound images.

II. METHODS

In this section, we describe the data preprocessing method-
ology, present the detailed design of the two stages of our
model, and discuss the evaluation and validation strategies.

A. Data Preprocessing

The data preprocessing for our model involves resizing input
images and generating ground truth (GT) labels for categorical
classification. To accommodate GPU memory constraints and
ensure runtime efficiency, we resize the original input ultra-
sound images, which have an average size of 500×500 pixels,



to a smaller dimension of 128×128 pixels. The GT labels for
the final classification are derived from the file names of the
provided GT images.

B. Tumor Segmentation Using FCN

The ultrasound images contain a multitude of tumor fea-
tures. However, the presence of redundant information may
lead to tedious calculations that take a long computational
time, but without significant enhancement in the final classi-
fication performance [14]. To mitigate this problem, we opt
to extract the essential information that helps improve the
classification accuracy. Thus, the first stage of our model
employs an FCN for tumor segmentation within the ultrasound
images.

We build the FCN based on the U-Net architecture proposed
by Ronneberger et al. [6]. The U-Net architecture is renowned
as one of the most widespread image segmentation techniques
and is applied in various medical image modalities [15]. We
have tailored it to our specific task through adjustments in
layer structure and meticulous tuning of hyperparameters. The
U-Net consists of a contraction path that acts as an encoder
and an expansion path that acts as a decoder. Each layer
in the expansion path is concatenated with a layer from the
contraction path to preserve localization information [6]. In our
modified U-Net structure, there are 5 blocks in the contraction
path, each consisting of two convolutional layers with a kernel
size of 3 × 3 followed by a batch normalization layer and
rectified linear unit (ReLU) activation. Then, a 2 × 2 max-
pooling layer is applied, followed by a dropout layer. In
the expansion path, there are 4 blocks, each consisting of a
transposed convolutional layer with a kernel size of 3 × 3
concatenated with a corresponding layer from the contraction
path, and a dropout layer followed by two sequential 3 × 3
convolutions, which are then succeeded by a batch normaliza-
tion layer and ReLU activation. The final output layer in this
U-Net is a convolutional layer with kernel size 1×1 activated
by a sigmoid function that outputs single-channel grayscale
images representing the predicted tumor masks.

C. Tumor Classification Using CNN

After obtaining the tumor segmentation output from the first
stage, we progress to the second stage of our network: a CNN
classification model. However, building an accurate image
classification model from scratch can be challenging due to the
data scarcity problem and the limitation of time and hardware
resources [16]. An effective approach is to leverage transfer
learning, which has demonstrated the ability to overcome these
challenges and has significantly contributed to the field of
medical image analysis [16]. Therefore, we implement transfer
learning using a pre-trained DenseNet-201 [17] as the feature
extractor, followed by 3 trainable 64-unit fully connected (FC)
layers activated by ReLU layers and a dropout layer. The
output layer is a 3-unit FC layer that performs classification,
activated by a softmax function and each entry corresponding
to a tumor class.

The DenseNet-201 model is imported from Keras1. It is
initialized with the pre-trained weights trained on the Ima-
geNet dataset [18]. The convolutional layers are set to be
non-trainable. The DenseNet-201 model is originally built to
process images of 224× 224 pixels and 3 channels. However,
since we only use the convolutional layers, the model is able to
learn features from images of 128×128 pixels as well. Given
that the output from the prior stage consists of single-channel
grayscale images, we replicate each of these images twice
and concatenate them with the original ultrasound images to
create a 3-channel input that aligns with the expectation of the
DenseNet-201 model. This concatenated input is then fed into
the DenseNet-201 model and it outputs a 3D array representing
the extracted features from the input images.

D. Evaluation and Validation Strategies

Our two-stage model is evaluated on the experimental
dataset using the hold-out validation strategy. The dataset is
randomly shuffled and split into training, validation, and test
sets with the ratio 80 : 10 : 10. Each set of data contains the
same proportion of images from the 3 classes to obtain a fair
assessment of the model performance.

During training, the U-Net model is evaluated and opti-
mized using the binary cross-entropy loss function. In the
classification stage, the learning objective of the CNN model
is to minimize the categorical cross-entropy loss. We choose
the best-performing U-Net model based on the binary cross-
entropy loss on the validation set, and the best-performing
CNN model based on the classification accuracy on the
validation set.

III. EXPERIMENTAL SETUP

In this section, we explain the details of our experimental
methodology. The implementation of our model can be found
in our code2.

A. Experimental Data

We used the breast ultrasound images dataset [19] consisting
of 780 breast ultrasound images. All the images are in .png
format with an average size of 500 × 500 pixels and each
pixel contains a grayscale value on the range [0, 1]. The dataset
is categorized into 3 classes: normal, benign, and malignant,
which have 133, 437, and 210 images, respectively. Each
image has its corresponding GT segmentation mask. These
masks were hand-generated by Al-Dhabyani et al. [19] and
reviewed by radiologists from Baheya hospital. Annotations
were created and added to the file names of GT images, from
which we derived the GT labels.

B. Model Tuning and Configuration

During the tuning process of the U-Net model, we ex-
plored various hyperparameters and model structures. These
experimental components include the learning rate, number of
epochs, dropout rate, selection between bilinear upsampling

1https://keras.io/
2https://github.com/bininglong/Breast-Ultrasound-Image-Classification
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layers or transposed convolutional layers in the expansive path,
utilization of either L1 or L2 regularization for the parameters,
and incorporation of batch normalization layers. The tuning
process was conducted by iterating a tuning loop for 5 times.
Initially, a combination of the experimental components was
pre-defined. Within each iteration, we modified the choice of
each component and trained our model with each updated
combination for 100 epochs using the Adam optimizer [20].
Throughout this process, we monitored the validation loss.
When a lower validation loss is achieved, we update the choice
for the corresponding component, maintaining the selections
for the other components unchanged. In this manner, we
experimentally found an optimal configuration for the U-Net.
This configuration involves the following choices: setting a
dropout rate of 0.1 for each dropout layer, employing a learn-
ing rate of 0.001, integrating transposed convolutional layers
in the expansive path, excluding parameter regularization, and
incorporating batch normalization layers.

We tuned the CNN model of the second stage based on
the outputs of the best-performing U-Net model. Using a
similar tuning methodology, we found the following optimal
configuration for the CNN model: a learning rate of 0.001, a
dropout rate of 0.05, and the use of 3 FC layers, each having
64 neurons.

To find an optimal number of training epochs, we again
trained our models for the two stages with the aforementioned
configurations for 100 epochs. Observing the U-Net’s and
the CNN’s optimal validation performance typically occurring
around 50 epochs and 20 epochs, respectively, we chose to
train the two stages for these specific durations.

C. Machine Configuration and Timing

The experiments were carried out on the Ubuntu 18.04 LTS
operating system with an NVIDIA GeForce RTX 2080 Ti GPU
with 11GB of memory and CUDA version 10.1. Training our
U-Net model and CNN model requires on average 45.75 s and
371.90 s, respectively. The inference time of our two-stage
model is 4.98 s per image.

IV. RESULTS

In this section, we show the qualitative and quantitative
evaluations of our model.

A. Qualitative Results

We visually present in Fig. 1 several results of tumor
segmentation and classification achieved by our model, drawn
from a random selection of correctly classified cases for each
class, as well as misclassified cases. These results feature
the following components: the original ultrasound images
(Fig. 1a), the predicted masks with the corresponding predicted
labels (Fig. 1b), and the GT masks along with their GT labels
(Fig. 1c). We can see that the U-Net model, serving as the
first stage, is able to effectively mark the boundaries of tumor
regions in the original ultrasound images, aiding the second
stage of our model in performing an accurate classification.
Please note that, in certain rare instances, misclassifications

(a) Ultrasound images
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Malignant

Normal

Malignant

(b) Predicted masks

Benign

Malignant

Normal

Benign

(c) GT masks

Fig. 1: Examples of our model’s segmentation and classifica-
tion results, with predicted labels and GT labels shown below
corresponding masks.

may occur. For instance, as shown in Fig. 1, a benign tumor is
misclassified as malignant. This could potentially be attributed
to the tumor’s relatively large region.

B. Quantitative Results

Using the configuration as explained in Section III-B, we
conducted 10 rounds of training and evaluation for the pro-
posed two-stage model. Among all the training rounds, the
U-Net model achieved an average validation loss of 0.097
and the CNN model obtained an average validation accuracy
of 91.03%, with the best-performing instance achieving a
validation accuracy of 93.59%. To comprehensively assess the
model’s strengths and weaknesses, we present the confusion
matrices of our model in Fig. 2, derived from both the
validation and test sets. Notably, our model consistently avoids
misclassifying malignant tumors as normal, which is a positive
outcome.

To further evaluate our model’s performance, we conducted
an ablation analysis on the input of the classification stage.
We summarize this evaluation in Table I, where we compare
the classification performance on the test set based on 4 types
of inputs: the original ultrasound images, the predicted masks
derived from our first stage, the predicted masks concatenated
with the ultrasound images, and the GT masks concatenated



TABLE I: The overall classification accuracy and the class-wise precision, recall, and F1-score obtained on the test set across
various input types in the second stage of our model.

Accuracy
Precision Recall F1-score

Normal Benign Malignant Normal Benign Malignant Normal Benign Malignant

Ultrasound images 0.8734 0.8125 0.9070 0.8500 0.9286 0.8864 0.8095 0.8667 0.8966 0.8293
Predicted masks 0.8861 1.0000 0.8889 0.8000 1.0000 0.9091 0.7619 1.0000 0.8989 0.7805
Predicted masks + ultrasound images 0.9241 0.9333 0.9524 0.8636 1.0000 0.9091 0.9048 0.9655 0.9302 0.8837
GT masks + ultrasound images 0.9873 1.0000 0.9778 1.0000 1.0000 1.0000 0.9524 1.0000 0.9888 0.9756

Predicted
Normal Benign Malignant

G
T

Normal 12 0 1
Benign 1 41 2

Malignant 0 1 20

(a)

Predicted
Normal Benign Malignant

G
T

Normal 14 0 0
Benign 1 40 3

Malignant 0 2 19

(b)

Fig. 2: Confusion matrices of our model on (a) the validation
set and (b) the test set.

with the ultrasound images. We use the overall accuracy, as
well as the precision, recall, and F1-score on each tumor
class, as the evaluation metrics. We see that concatenating
correctly segmented tumor masks can significantly improve
the classification accuracy. When using only the original
ultrasound images as input, the model achieved an accuracy of
87.34%. With the GT masks added to the ultrasound images as
input, the accuracy was significantly improved to 98.73%. In
our study employing the two-stage model, we observed a per-
formance improvement when utilizing predicted masks. This
improvement was further augmented when these masks were
concatenated with the original ultrasound images. Specifically,
our approach led to a remarkable 5.07% increase in overall
classification accuracy compared to direct classification solely
using ultrasound images, elevating it from 87.34% to 92.41%.

Moreover, we conducted an extensive comparison between
our two-stage model and various CNN baseline models using
pre-trained weights on ImageNet. For each type of CNN,
we employed the variant with the highest reported perfor-
mance on ImageNet from Keras Applications3. To ensure
a controlled experiment, we applied the same configuration
and training process to every pre-trained CNN model as we
did to our model, involving adding FC layers and a dropout
layer. We summarize this comparison in Table II, where we
compare the test classification performance using multiple
metrics, including overall accuracy, and per-class precision,
recall, and F1-score. We observe that, our model, leveraging
the incorporation of predicted segmentation masks and the
original ultrasound images, achieves the highest classification
performance across all comparative baselines. It attains the

3https://keras.io/api/applications/

highest overall accuracy, the highest precision and F1-score on
all the classes, and the highest recall on normal and malignant
classes.

V. CONCLUSION, LIMITATIONS, AND FUTURE WORK

We have proposed a novel two-stage model for breast
ultrasound image classification. Our model has demonstrated
not only a high overall accuracy but also consistently high
F1-scores across all tumor classes. This robust performance
highlights our model’s proficiency in correctly classifying
tumors, even when confronted with an imbalanced dataset.
These findings provide substantial evidence that our model
can be considered reliable for use in clinical practice, offering
decision support for breast cancer detection and diagnosis.

Furthermore, our work has showcased the significance
of feature selection and the effectiveness of incorporating
a segmentation stage, which extracts and integrates crucial
features with the original inputs to enhance the classification
performance. These implications may be extended beyond
medical image classification, to a wider range of neural
network research scenarios.

The limitation and biases in our experiment stem from
the utilization of a relatively small and imbalanced dataset
and the randomness in the model tuning process, which may
produce slightly biased results, posing challenges in selecting
the optimal model structure. To mitigate these biases, dropout
layers were temporarily removed during specific tuning stages.

As a better segmentation stage can substantially boost the
classification performance, we suggest leveraging a U-Net
with attention gates [32] in future work. There is also room
for enhancing data preprocessing and refining the evaluation
metrics to fine-tune the model architecture. To address the
challenge posed by imbalanced data, it could be beneficial
to employ resampling techniques such as upsampling the
minority class and downsampling the majority class. If a
larger GPU memory becomes available, implementing a k-fold
cross-validation can help mitigate model overfitting, especially
when dealing with a limited dataset. Further potential lies in
exploring the applications of our model in real-world clinical
scenarios and adapting it for diverse tasks in medical image
analysis.
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