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Ultrasound Video Analysis for Skill Level Assessment in FAST Ultrasound 

Abstract 

FAST ultrasound is a medical procedure to assess for free fluid following physical trauma. 

FAST images can often be difficult to interpret and requires operators to be properly 

trained. Traditionally, skill is assessed by direct observation from experts, which is 

expensive and error prone. This project aims to use deep learning to provide automated 

skills assessment for FAST exams. 

Modified I3D networks, a type of modern neural network with a focus on action-based 

items, were retrained for this purpose. First, a network to identify the skill level of the users 

from all the ultrasound videos was trained using FAST videos of each vital region divided 

by novice, intermediate and expert users. Following this, 4 networks corresponding to skill 

level identification in each region were trained using the previously constructed model. The 

model’s performance was evaluated using k-fold cross-validation. 

Results found a testing accuracy of 82.6% for skills assessment using the modified I3D 

networks. 

These results are an improvement over the previous results for skill level evaluation, 

implying potential use of an I3D network for evaluating skill level from ultrasound video 

in the future with the proper finetuning. 

Keywords: diagnostic ultrasound, skills assessment, deep learning 

1. Introduction 

Focused assessment with sonography in trauma (FAST) ultrasound plays a crucial role in 

diagnosis of free fluids within vital regions of the body due to trauma. This is because FAST is 

safe, with a lack of radiation exposure, allowing for more extensive use than other diagnostic 

methods. FAST is also inexpensive and can give accurate results within real time, with general 



Page 3 of 15 

 

sensitivities ranging between 85% and 95% (Bloom & Gibbons, 2019). 

The ultrasound images generated by FAST, however, can be difficult to read (AIUM, 

2014). As such, operators must be properly trained for this purpose. This can be a very lengthy 

and costly process due to the time required for checklist-based assessment by expert preceptors 

(Ann Emerg Med, 2017). Thus, methods for automated assessment of skill in FAST ultrasound 

could have added value in training. 

Prior works have investigated the use of kinematic data to assess skill level automatically 

in diagnostic ultrasound. One study found that experts had shorter ultrasound probe path lengths 

and fewer discreet movements than novices (Ziesmann et al, 2015). Another showed 

intermediate level users with some prior training scanned more points of interest that novice 

users, in addition to having shorter path lengths and taking less time (Bell et al, 2017). Recent 

work confirms that experienced users exhibit shorter times, smaller path lengths, fewer hand 

motions, and a smaller working volume than beginners (Zago et al, 2019). Overall, prior work 

shows that skill level can be determined based on summary statistics derived from motion data.  

There has also been considerable prior work on deep learning in medical image 

processing for skills assessment. One such work investigated the utility of retraining 

Convolutional Neural Networks (CNNs) for Transoesophageal Echocardiography (TEE) graded 

by experts on a criteria-based checklist for skills assessment (Mazomenos et al, 2018). This was 

found to have high accuracy in predicting the evaluators’ scores. Other work has addressed using 

a specific type of 3D ConvNet, Inflated 3D ConvNets, in surgical skill assessment (Funke et al, 

2019) from videos of minimally invasive surgeries on the open-source JIGSAWS dataset (Gao et 

al 2017). The retrained network showed high accuracies for predicting skill levels, at 

approximately 95-100%. 



Page 4 of 15 

 

Based on its success, we investigated Two-Stream Inflated 3D ConvNets (I3D), a modern 

3D ConvNet incorporating RGB and optical flow information from video, for skills assessment 

in FAST (Carreira & Zisserman, 2017). The optical flow component of the network is intended 

to provide greater benefit for classifying action-based items involving movement. This method 

has been shown to provide superior results in task identification on the open-source UCF-101, 

HMDB-51, and Kinetics datasets (Carreira & Zisserman, 2017). It is hypothesized that the I3D 

network might provide an effective method for assessing skill in FAST ultrasound examinations. 

The purpose of this study is to develop a method for assessment of skill level in FAST 

ultrasound examinations from ultrasound videos using the I3D network. We hypothesize that an 

automated method based solely on ultrasound video will reduce the burden on experts’ time, 

increase standardization across evaluations, and be easy to deploy. 

2. Methodology 

2.1 Architecture 

We used the I3D model proposed by Carreira and Zisserman (Carreira & Zisserman, 2017). This 

model consists of two separate 3D ConvNets: one trained on RGB data and one trained on 

optical flow data (FIGURE 1). 

The idea is that the optical flow data itself is invaluable in helping to identify the 

movements taken in a video, thereby providing indication of what is occurring within the video. 

In this specific case, it is hypothesized that flow data is a boon in determining skill level involved 

in FAST, as skill level is largely defined by each user’s actions. For classification, the videos 

would then be passed through both the RGB and flow sub-networks and the results averaged to 

increase accuracy in predictions. 
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FIGURE 1 - Model of the I3D network’s architecture. The original model can be found at: 

https://arxiv.org/pdf/1705.07750.pdf (Carreira & Zisserman, 2017). 

The I3D network is pretrained on the Kinetics dataset. We retrained an initial I3D 

network for skills assessment using FAST ultrasound videos from all regions of the scan (i.e. 

Right Upper Quadrant, Left Upper Quadrant, Heart, and Pelvis). Subsequently, we recreated four 

region-specific versions of this network (each with an RGB and flow subnetwork) and finetuned 

each one using FAST ultrasound videos specific to each region of the scan. At test time, the 

appropriate region-specific network is chosen to classify the operator’s skill level from a FAST 

ultrasound video.  

2.2 Dataset 

The dataset used in this experiment is the same as the FAST ultrasound dataset described above 

(Bell et al, 2017), and consists of multiple ultrasound video scans of each of the vital regions 

from a FAST ultrasound exam: right upper quadrant (RUQ), left upper quadrant (LUQ), heart, 

pelvis (FIGURE 2). The scans were performed by Novices, Intermediates, and Experts on a 

single healthy volunteer in a simulation-based training environment. Novices are users with little 

experience in FAST ultrasound but who have completed a structured didactic curriculum within 

https://arxiv.org/pdf/1705.07750.pdf


Page 6 of 15 

 

their education. Intermediates are users who have performed at least 50 supervised FAST 

examinations according to Canadian Point of Care Ultrasound Society guidelines. Experts are 

attending physicians who have previously completed a fellowship in point-of-care ultrasound. 

 

FIGURE 2 - Clockwise from the top left images, the Right Upper Quadrant, Left Upper 

Quadrant, Pelvis and Heart Region. 

This dataset contains 14 novices, 15 intermediates, and 3 experts. For each user in this 

dataset, there are at least four videos, one pertaining to each region of the FAST examination, 

with several additional scans for specific regions also existing. This meant there was a grand 

total of 132 full videos of FAST scans of varying length.  

2.3 Experimental Setup 

This dataset was then divided up into 3 folds with no repeated entries for training, validation, and 

testing using the user-out method of k-fold cross-validation (Ahmidi et al, 2019). A maximum of 

3 folds could be used, as there were only 3 expert users to divide amongst the folds. Two folds 

contained 5 novices, 5 intermediates, and 1 expert; one contained only 4 novices, 5 

intermediates, and 1 expert This cross-validation protocol ensures every possible combination of 
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the 3 folds serves as the training, validation and testing sets. 

In this case, the validation set only served as a tool for determining which set of 

checkpoints to use for testing in the end (i.e. early stopping). That is to say, the validation set was 

used to determine the checkpoints yielding the highest accuracy, provided an accuracy of 85% 

could be surpassed within the training set. 

The main network was trained using scans from all regions. Subsequently, the dataset 

was divided into 4 smaller datasets, each corresponding to a specific region, and the region-

specific networks were finetuned separately. This was done to maximize accuracy in skill level 

identification for each region.  

2.4 Data Pre-Processing 

Each video was cropped to remove additional information found along the edges of each video 

(e.g. scan date, ultrasound parameters, etc.) and to a size of 224x224. RGB videos were created 

from the greyscale ultrasound videos by taking each RGB component to be equal to the 

greyscale intensity. Optical flow videos were created for each scan by the TV-L1 optical flow 

algorithm in OpenCV (Zach, Pock & Bischof, 2007).  

2.5 Data Augmentation 

Data augmentation primarily took the form of window slicing. This was done to remedy the 

small size of the dataset in use, providing additional input for more accurate training, and 

reducing training time by greatly reducing video size. Towards this end, each video was split into 

up to 10 non-overlapping segments of minimum 25 frames in length. Videos with fewer than 250 

frames were split into fewer non-overlapping segments. One snippet of 25 consecutive frames 

was taken randomly from each of these segments for end use, such that overlap was impossible. 
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2.6 Systems Used 

We used a pretrained version of the I3D network from DeepMind (DeepMind, 2019). For 

finetuning, we used the I3D Finetune repository of USTC Video Understanding’s GitHub 

account was employed (Hu & Zhou, 2018). The networks were trained and tested on Compute 

Canada’s Graham cluster 

3. Results 

TABLE 1 depicts the accuracies, skill level-specific sensitivities, macro-sensitivities, and 

macro-sensitivities without the expert class for each region and for all regions combined. As can 

be seen, the average accuracy of every region with regards to skill level identification as run 

through the test set is approximately 82.6%. The other performance measures are included to 

offer insight into the effectiveness with regards to specific regions, skill level evaluations, and to 

highlight the negative effect the poor expert sensitivities had on macro-sensitivity. 

 All RUQ LUQ Heart Pelvis 

Accuracy 0.826 0.797 0.891 0.813 0.803 

Novice Sensitivity 0.866 0.821 0.964 0.821 0.857 

Intermediate Sensitivity 0.967 0.933 1.000 0.967 0.967 

Expert Sensitivity 0.000 0.000 0.000 0.000 0.000 

Macro-Sensitivity 0.611 0.585 0.655 0.596 0.608 

Macro-Sensitivity w/o Experts 0.916 0.877 0.982 0.894 0.912 

TABLE 1 - Performance Measures for skill level classification in each region of FAST using the 

main and region-specific networks. 

FIGURE 3 shows the confusion matrices for each region and the combined results when 

all are tallied. Under the 3-fold cross-validation protocol, each video appears in the test fold 

twice; thus, the reported classification for each video is an average classification over all times 

the video appears in the test fold.  
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FIGURE 3 - Confusion matrices for skill level classification in each region of FAST. 

Rows correspond to the true class labels; columns correspond to the predicted class labels. 

Results are averaged across folds. 

The above results in FIGURE 3 and TABLE 1 were computed using a plurality vote run 

over all the snippets for a video following testing. That is to say that the skill level predicted by 

the largest number of snippets within a video was decided as the overall prediction of said video.  

4. Discussion 

The results of this experiment are promising. Skill level evaluation accuracies of 79.7%, 89.1%, 

81.3%, 80.3% were found for right upper quadrant, left upper quadrant, heart, and pelvis regions 

respectively. A combined accuracy of predicting skill level across all videos regardless of region, 

however, was found to be 82.6%. We observe a considerably lower macro-sensitivity for each 

region, with the macro-sensitivity for all video predictions being 61.1%. This is likely because 

only one expert is in the training set at any time. We have thus also reported the macro-

sensitivities of the novice and intermediate predictions alone, which was 91.6% for all video 

predictions. This shows the negative effect the lack of expert predictions had on macro-
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sensitivity. 

These results compare favourably to a separate experiment performed on the same 

original data to determine skill level using expert-defined summary statistics from motion data 

(Holden et al., 2015) and a random forest classifier with the same cross-validation scheme. The 

performance measures as well as a confusion matrix of these results can be found below in 

TABLE 2. 

 Skill Level 

Identification 

Accuracy 0.700 
Novice Sensitivity 0.696 

Intermediate Sensitivity 0.767 
Expert Sensitivity 0.417 
Macro-Sensitivity 0.627 

Macro-Sensitivity w/o Experts 0.732 

TABLE 2  - Performance measures and confusion matrix of the same data using a random forest 

classifier on expert-defined summary statistics.   

For further comparisons, we also report results from just the flow and RGB sub-networks 

on their own rather than the combined I3D network. This showcases the added value that the full 

I3D architecture had in prediction. 

RGB 
All RUQ LUQ Heart Pelvis Flow All RUQ LUQ Heart Pelvis 

Accuracy 0.717 0.781 0.734 0.641 0.712 Accuracy 0.616 0.641 0.719 0.531 0.594 

Novice 

Sensitivity 

0.839 0.821 0.786 0.821 0.929 Novice 

Sensitivity 

0.464 0.429 0.679 0.357 0.393 

Intermediate 

Sensitivity 

0.725 0.867 0.767 0.567 0.700 Intermediate 

Sensitivity 

0.883 0.933 0.900 0.800 0.900 

Expert 

Sensitivity 

0.154 0.167 0.333 0.167 0.000 Expert 

Sensitivity 

0.039 0.167 0.000 0.000 0.000 

Macro- 
Sensitivity 

0.606 0.618 0.629 0.518 0.543 Macro- 
Sensitivity 

0.462 0.510 0.562 0.386 0.431 

Macro- 
Sensitivity 

w/o Experts 

0.782 0.844 0.776 0.694 0.814 Macro- 
Sensitivity 

w/o Experts 

0.674 0.681 0.843 0.579 0.647 

TABLE 3  – RGB and flow performance measures for skill level classification in each region. 

Full video performance measures were computed via use of a plurality vote. 

One important limitation to this work is overfitting of the training data. We found 0% 

sensitivity for expert identification within the I3D network. The underrepresentation of expert 
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data prevents generalization across expert users within the I3D network, with predictions being 

skewed in favour of the more likely outcomes. However, it is worth noting that differentiation 

between novices and intermediates is a more difficult task than novices and experts due to more 

closely related skill levels, and itself has value in providing trainees feedback.  The imbalance is 

made worse using snippets considering that the expert videos tend to be shorter. The mean 

duration for novices, intermediates and experts was 766 frames, 516 frames, 154 frames 

respectively. Thus, while novice and intermediate videos can typically be split into 10 segments, 

expert videos on average produce only 6 segments. This furthers the class imbalance between the 

three, an issue that can only be corrected by increasing the number of expert snippets in use. This 

would require overlap of expert snippets or reducing the size of expert snippets which we 

hypothesize would reduce the accuracy of the flow subnetworks.  

Another limitation lies in the use of a plurality vote at the end of testing for the purpose 

of predicting skill level of full videos using snippets. This could be less accurate than using a 

consensus layer (e.g. Wang et al. 2018, Funke et al, 2019), which incorporates the aggregation 

over snippets of the same video into the network. A plurality vote was nonetheless chosen as it 

allowed considerably reduced training time. There is also notably, the issue of the limited use of 

the validation set to tune hyperparameters for creating the optimal network. As such, 

hyperparameters have largely been left intact from their original state, making it more likely that 

issues such as overtraining have occurred. For example, epoch size and training time are rather 

large for a dataset so small, and dropout, momentum, and learning rate remain untouched. There 

is also the issue pertaining to the low accuracy of the flow networks in comparison to the RGB 

networks. This itself likely stems from the small snippet size of 25 frames, which makes it 

difficult to judge the actions being taken in such a short amount of time. 
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From a clinical perspective, there remain two primary limitations. First, it is unclear how 

skills assessment within the simulated environment of our dataset will translate into a clinical 

setting. In particular, the experiments were performed on a single healthy volunteer. 

Furthermore, we used appointment status and previous training as our ground-truth for skill. It 

may be more appropriate to used checklist-based assessment (Ann Emerg Med, 2017) as our 

ground-truth, due to fluctuation in individuals’ performances. 

We propose several avenues of future work to overcome these limitations and generalize 

this experiment to a real setting. It is suggested that a larger dataset, with more expert scans 

included, be used in order to better train the network to recognize all levels of skill. It is also 

suggested that larger snippets be used in order to improve the flow prediction accuracy. We also 

propose that integrating a consensus layer in our network (Wang et al. 2018), rather than a 

plurality vote, to classify videos based on snippets could improve performance at the cost of 

additional training time. Finally, it is suggested that further experimentation with the finetuning 

of hyperparameters be done to prevent over-correction thanks to a lack of alterations in that 

regards within this current experiment. 

The outlook for skills assessment in FAST ultrasound remains positive. Notably, the 

accuracy of the I3D networks surpasses not only those presented by the Random Forest 

classifier, but those of the both the flow and RGB sub-networks that make up each network. This 

fact implies the possible benefits of using the I3D framework as a machine learning tool for 

identification of skill level with regards to FAST Ultrasound examinations.  

5. Conclusion 

This work shows promise for the use of the I3D framework in evaluating the skill level of 

trainees in FAST ultrasound. The reported results outperform those from previous attempts, 
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including those of the used 3D sub-networks. In fact, the primary issue displayed with these 

results existed in the form of a skew of predictions away from the expert class. Future work 

includes proper hyperparameter finetuning and using a larger dataset with a greater balance 

between classes. Overall, the I3D framework has a potential future in skill level evaluation for 

FAST ultrasound scans, and results are favourable enough to warrant further investigation into 

the issue. 
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