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Abstract—Given the growing volume of surgical data and the
increasing demand for annotation, there is a pressing need to
streamline the annotation process for surgical videos. Previously,
annotation tools for object detection tasks have greatly evolved,
reducing time expense and enhancing ease. There are also many
initial frame selection approaches for Artificial Intelligence
(AI) assisted annotation tasks to further reduce human effort.
However, these methods have rarely been implemented and
reported in the context of surgical datasets, especially in cataract
surgery datasets. The identification of initial frames to annotate
prior to the use of any tools or algorithms determines annotation
efficiency. Therefore, in this paper, we chose to prioritize the
development of a method for selecting initial frames to facilitate
an automated annotation process. We propose a customized
initial frames selection method based on feature clustering and
compare it to commonly used temporal selection methods. In
each method, initial frames are selected to train an object
detection model. The model assists in the automated annotation
process by predicting bounding boxes for the remaining frames.
Evaluation matrices are built upon how many edits users need
to perform when annotating the initial frames and how many
edits users are expected to perform to correct all predictions.
Additionally, the total annotation cost for each method is
compared. Results indicate that on average the proposed cluster-
based approach requires the fewest total edits and exhibits
the lowest total cost compared to conventional methods. These
results underscore a promising direction for streamlining AI-
assisted annotation processes for surgical tool detection tasks.

Index Terms—Streamline Annotation, Frame Selection,
Surgical Video, Tool Detection

I. INTRODUCTION

With the increasing availability of surgical video data,
topics such as surgical instrument tracking, surgical skill
assessment, and computer-assisted surgery have gained
interest. Many researchers have practiced integrating machine
learning and AI algorithms for efficient video analysis
in these tasks. These types of analyses often require
annotated data. Specifically, tasks involving surgical tool

detection require numerous bounding box annotations and
class assignments for each tool in each frame. This heavy
workload poses considerable challenges for researchers, often
leading to delayed progress or reliance on a limited selection
of public annotation-ready datasets.

Researchers from various fields have made significant
strides in the development of annotation tools and techniques,
originating from basic frame-by-frame annotation which
laid the foundation for annotation practices. Over time,
the tool designs shifted towards leveraging AI and other
advanced algorithms to assist in video annotation tasks,
further reducing repetitive manual work by generating
labels by prediction. While acknowledging the merits and
applicability of these methods in natural video contexts, their
application to surgical data remains underreported, leading to
limited evidence to validate their performance in this domain.
Besides, surgical data tasks pose unique challenges compared
to natural video tasks.

For instance, because of confidentiality concerns
associated with surgical videos, it is crucial to avoid
indiscriminately outsourcing or uploading videos to online
platforms. Additionally, surgical videos may capture
instances of objects moving off the main viewing plane as
a result of the tools being rotated by the surgeons during
operations. This is a challenge not typically addressed by
common tools that rely on interpolation methods primarily
designed for handling in-plane translations. Moreover, for
research teams with limited personnel, a method is only
beneficial if it can still ensure a manageable workload.
These constraints significantly limit the choices of annotation
methods available for surgical tasks and highlight the need
for an efficient way to select frames to annotate. Therefore,
our goal is to develop a semi-automated annotation method
for tool detection tasks in surgical data. We start by



choosing initial frames selection methods to minimize the
initial annotation effort while also keeping the minimal
editing effort for the remaining frames. An exploration
of previous achievements in annotation tools and frame
selection techniques can give insights into our method
development.

A. Object Detection Annotation Tools: Then and Now

The evolution of image annotation tools has been notable.
Initially, static image labeling tools like Massachusetts
Institute of Technology’s LabelMe [1] model were employed.
However, the labor-intensive nature of labeling every frame
posed challenges, particularly for models like the Long short-
term memory (LSTM) [2], which require input from each
frame.

Efforts have also been made to automate annotation
processes using tools like Intel’s Computer Vision Annotation
Tool [3] , Visual Geometry Group Image Annotator [4], and
labelbox [5]. These tools leverage deep learning techniques
and utilize pre-trained models for annotation tasks. However,
in terms of ease of use, they may not always be ideal for
video annotation since some of them still rely on frame-by-
frame annotation methods.

Advancements by Gil-Jiménez et al. [6], introduced
geometric bounding box interpolation methods. They
proposed that automated annotating only requires a sparse
set of frames for moving objects in a video. By providing
the endpoints of the object and key intermediate frames,
interpolation methods can propagate the annotations to the
remaining frames.

This theory paved the way for the development of
another tool genre: video-level annotation tools. They
mitigate the need for extracting every individual frame
and leverage interpolation algorithms to require only a
few annotated frames to propagate the detection boxes to
other frames. Tools like Video Annotation Tool from Irvine
California (VATIC) [7] and its successor, BeaverDam [8],
[9], are pioneering examples using video-level bounding
box annotation methods. These tools have been used in
conjunction with platforms like Amazon Mechanical Turk
(crowd-sourcing marketplace) and have proven valuable
for various annotating tasks [10], [11]. As mentioned, the
interpolation method itself is challenged by non-linear, off-
plane object movements in surgical video.

Another algorithm, Kalman filters [12], has significantly
contributed to the field of object detection. Kalman filters
model an object’s state within a dynamic system, tracking the
object’s position, velocity, and acceleration over a sequence
of frames. By incorporating measurement updates based on
available information, the filter enhances its ability to predict
an object’s future state. Adapted Kalman filtering has been
implemented to track the bounding box center of a target
object, assisting in the annotation process. This has resulted
in improvements in both labeling speed and accuracy [13].

One of the state-of-the-art automated annotator tools, V7
[14], implements both interpolation and tracking algorithms.
This integration has led to promising annotation results on

both natural images and videos. This success is primarily
attributed to its advanced capability to account for object
motions using temporal context. Temporal context refers to
the sequential relationship and continuity of events over time,
allowing V7 to accurately interpret object motions in images
and videos by considering their past and future states. Fisher
et al. [15] practiced the tool in their annotation workflow
on pituitary tumor removal surgery videos. Unfortunately,
similar to many online tools, some of the advanced features of
V7 are only accessible through a paid version of the product.

Notably, despite the promising performance of these tools
in other fields, there is a lack of explicit reporting on the
annotation of any surgical dataset using the tools described
above. Also, most of the advanced tools require an upload of
the data, which raises confidentiality issues with proprietary
surgical data. Instead, a local version would make them more
suitable.

B. Frame Selection Techniques

AI-assisted annotation tools require a set of frames and
their annotations for training predictive object detection
models. The frame selection technique is crucial in
initiating the annotation process and significantly impacts
the performance of automated annotation [16]. Utilizing
different selection methods results in different training sets,
each representing the data differently. Training on these
diverse representations should yield varying performance
in predictive models, further influencing the efficiency
of automated annotation processes. Therefore, this paper
focuses on identifying the frame selection method that
can best streamline tool bounding box annotation tasks for
surgical data.

• Manual Selection - Originally, researchers relied on
manual annotation to select frames. In Krenzer et al.
[17], the researchers hoped to build an annotation tool
for polyp (a small growth in the gastrointestinal tract)
detection in Gastroenterology. They utilized a freeze-
frame detection algorithm. Because experts froze videos
when they detected a polyp to capture photos, they took
advantage of this to select relevant frames based on the
”frozen” part of the video. While effective for specific
annotation tasks, this method requires the recording to
have the ”frozen” parts as its first layer of manual
labels, making it bias-prone and impractical for different
datasets.

• Temporal Selection - Selection based on the temporal
order of frames is a straightforward method with one
frame chosen at every fixed interval. Many current
annotation tools employ this method, as it is easy
to implement and requires minimal computational
overhead. This approach provides a systematic and
evenly spaced representation of the video.

• Selection by Feature Clustering - Feature extractors are
used to convert frames into high-dimensional feature
vectors containing rich spatial and semantic information.
Through dimension reduction and clustering, each group
of frames has a representative centroid, capturing the



Fig. 1. Annotated Surgical Video Frame. Objects are labeled with bounding
boxes corresponding to their class, location, and size.

relationship among frames and the diversity of visual
content present in the video. This method has been
employed on various natural videos [12], [18], [19],
and laparoscopic surgery videos [20]; however, not
for cataract surgery videos. Furthermore, they often
report that due to the clustering methods requiring a
preset number of clusters, they encounter limitations
in summarizing or representing the entire dataset most
efficiently.

Various other techniques have been reported for selecting
representative frames. For instance, some attempts have
been made to minimize energy between consecutive frames
to capture significant changes [21]. Others have used
autoencoders to create thumbnails for movies [22], while
[16] have advanced sequential processing to extract temporal
features and identify significant events in surveillance camera
footage. While these methods are effective for video analysis,
not all the computational efforts are necessary for AI-assisted
annotation for a frame-by-frame tool detection task.

II. MATERIALS AND METHODS

In this study, cataract surgery videos were acquired
and annotated. While acknowledging the potential value of
interpolation methods and tracking filters in the initial frame
selection process, our primary objective was to establish a
baseline model that considers frame selection methods as the
only independent variable. To avoid the impracticality of the
manual selection method and computational inefficiencies,
we opted to use the temporal selection method as the
benchmark method given its widespread use. We then
compared it with a customized cluster-based method. Frames
were extracted from the acquired videos and subjected to
the selection methods. Selected frames were used to train
an object detection model and generate predictions for
the remaining frames. Each method’s predicted bounding
boxes will be compared to the ground truth bounding boxes
to evaluate the performance of each automated annotation
process. The goal is to assess whether a custom-designed
clustering approach outperforms a conventional temporal
selection method in the context of surgical data annotation.

TABLE I
ALL-FRAME SET VIDEOS: NUMBER OF FRAMES AND BOUNDING BOXES

Video ID Video Frames Bounding Box Instances

1 6301 24825
2 5601 24276
3 4301 16543
4 4401 17465
5 8001 21421
6 4001 17087
7 4901 22928
8 4201 16409
9 6111 22469
10 5301 21921
11 5301 18876
12 6401 24510

A. Data Preparation

The dataset used in this study comprises 12 cataract
surgery videos recorded in the operation room of Kingston
Health Sciences Centers. These videos were captured using
a binocular surgical microscope with monocular recording.
Each video is recorded a 30 frames per second and includes
the first four phases of the procedure. The videos were
divided into individual frames starting from the frame with
index 0, terminating after the 4th phase capsulorhexis (at
frame indexes that can be completely divided by 10).
Every frame was manually annotated with bounding box
locations for 8 object classes: iris, eye speculum, forceps,
diamond keratome straight, viscoelastic cannula, cystotome
needle, diamond keratome iso, and capsulorhexis forceps
(Figure 1). The data were organized into two sets: the set
only includes every 10th frame (preliminary set), serving
as a smaller representation of the videos to quickly test
the feasibility of the workflow; and the all-frame set,
encompassing every single frame, which is ideal for making
the most comprehensive result (Table I).

B. Frame Selection

The first method involves frame selection by feature
clustering. This method is customized to overcome the
limitation in other clustering methods where the number
of clusters must be predefined. The details are shown in
Figure 2. We utilized a base-sized Vision Transformer (ViT)
model pretrained on ImageNet-1k with mean absolute error
(MAE) to extract features from all frames. These features
were then dimensionally reduced using Principal Component
Analysis (PCA) to facilitate clustering. We employed the
affinity propagation method for clustering, which computes
matrices to evaluate the similarity between data points
and their suitability as exemplars for each other. Through
iterative updates of these message-passing matrices, the
affinity propagation method autonomously determines the
number of clusters (N). Without needing a preset N like other
clustering methods, the affinity propagation method has the
advantage of balancing the selection size and the retained



Fig. 2. Selection by Feature Clustering. In the Vision Transformer
model, each frame, ”F”, is divided into patches, and these patches are
encoded along with their positional information. The encoding process
involves normalization, multi-head attention mechanisms, and multiple layer
perceptrons (MLP). Instead of directly passing the encoded features to a
classification layer, they are exported to a Principal Component Analysis
for dimensionality reduction. The PCA threshold is set at 0.9, indicating
that components capturing 90% of the explained variance are retained. This
threshold is chosen with a full Singular Value Decomposition (SVD) to
ensure optimal reduction. Then the Affinity Propagation algorithm utilizes
similarity and responsibility matrices to select the most representative points
as centroids (shown as black cross marks in colored example clusters).

information size. The centroids, which serve as exemplars,
are chosen to minimize dissimilarity within their respective
clusters while representing the most distinct features. These
centroids are meaningful in the frame selection context, as
each one not only signifies a unique event but also efficiently
captures the most representative content within its cluster.
Subsequently, the frames corresponding to these centroids
were selected as the initial set for training.

The second method employs a common temporal selection
technique, which involves selecting every 10th frame from
the video sequence. This is to simulate the selection method
commonly practiced by existing video annotation tools. The
temporal every-10th-frame method offers the advantage of
allowing the model to have a larger training dataset while
seeing the full video as if it were operating at a lower frame
rate. This approach enables the model to capture more details
across various temporal locations within the video, enhancing
its learning ability.

The third method—temporal same-size method—selects
the same number of frames (N) as proposed by the first
method. It divides the whole data set by N intervals and
selects the first image of each interval to construct the initial
set for training. This approach allows for a direct comparison
with the feature clustering method because the training data
size matches that of the feature clustering method.

These three methods complete the first part of the
experiment workflow (Figure 3.A).

C. Training and Prediction

For both datasets (preliminary set and all-frame set) and
each method, the selected frames in the initial set, along

TABLE II
EDIT CALCULATION METRIC FOR DIFFERENT SCENARIOS

Scenarios Edit Count and Definition
Initial Addition Count of bounding boxes in initial set

Correct 0 for each predicted box passing IOU threshold and
with the correct class label

Deletion 1 each for predicted box not passing IOU threshold
and not matching any class in the remaining classes

Addition 1 for each true truth box not matched by any predicted
box

Renaming 1 for each predicted box passing IOU threshold but
having the wrong class label

Reposition & Resizing 2 for each predicted box not passing IOU threshold
but existing in the remaining classes

with their annotation files, are used to train a pretrained
small-sized You Only Look Once Version 8 object detection
network (YOLOv8) [23]. All three sets—training, validation,
and test—are the same as the initial set. This is to
intentionally encourage overfitting the model to the selected
representative frames of the current data, with the aim of
improving its predictive accuracy on the remaining frames.
This approach is based on the assumption that each method
considers the selected set to be representative of the entire
dataset.

The remaining frames and their annotations serve as
the evaluation set. The trained YOLOv8 model generates
predicted bounding boxes for the frames in the evaluation set.
This serves as the automated annotation process and prepares
predicted results for evaluation (Figure 3.B).

D. Evaluation

Our metric for evaluating annotation methods was inspired
by Shen et al. [8], where VATIC and BeaverDam were
compared. The concept originated from the notion of
minimizing user interactions, quantified by the number of
clicks, which served as their fundamental evaluation metric.
For instance, in their study, in a standard 15-second video
with 30 cars and 5 keyframes, annotating using BeaverDam
required 270 click-and-drag actions compared to VATICS,
which required 270 individual clicks plus 240 click-and-drag
actions. Notably, the click-and-drag action was observed to
take twice as long as a single click.

Our metric also considers the number of user interactions,
which is quantified by the number of edits. Firstly, it
considers the initial edits, which refer to the addition of
bounding boxes during the annotation of the initial frame set.
The number of initial edits is equal to the number of ground
truth bounding boxes. Creating initial annotations involves
one click for class selection and one click-and-drag to create
the box.

Then, the predicted bounding boxes were compared to the
ground truth bounding boxes, along with each box’s class.
The degree of overlap between bounding boxes is measured
by the intersection over union (IOU) metric, calculated as
the intersection area of the ground truth and predicted boxes
divided by their union area. To assess model performance
at different levels of strictness, IOU thresholds ranging from
50% to 90% were established at intervals of 5%.



Fig. 3. General Workflow. The ”F” squares denote frames, with orange squares indicating the selected frames and gray squares representing the remaining
frames. N is the number of frames determined by the feature clustering method. Selected frames with their labels will be used to train the object detection
model, whereas the remaining frames and their labels are responsible for prediction and final evaluation.

The edit classification workflow follows: first, identify
frames containing empty truth boxes and remove all predicted
boxes associated with those frames; next, identify correctly
matched boxes between the predicted and ground truth sets
and remove them; then find highly overlapping boxes that
required renaming of the predicted box and remove the
pair; following this, find boxes with matched class that
need repositioning and resizing to align and remove the
pair; finally, delete remaining unmatched predicted boxes and
perform addition for the remaining unmatched truth boxes.
This classifies the post-prediction edits in five scenarios:
correct, deletion, addition, renaming, reposition and resizing.
(see Table II)

While correctness does not add a count to edits or action
time, deletion adds one edit for each deletion click; addition,
similar to what was mentioned above, adds one edit for the
two actions; renaming requires one edit for each renaming
click; and repositioning and resizing together are two edits
for double click-and-drag actions.

In terms of the cost of labeling, we standardize the unit
as the unit of time. As previously reported [8], the cost of
click-and-drags is twice that of clicks. All action costs are
converted with the click time as the standard unit 1. The
summation of the total action cost for each method is then
quantified.

With this approach, we compute various metrics including
the number of correctly labeled boxes, the total number of
edits, performance on each type of edit, and the estimated
time in standardized units required for all editing actions.
Additionally, box accuracy is calculated using the number
of correctly predicted boxes divided by the total number of
boxes that need to be predicted. The average accuracy is a
more comprehensive way to evaluate the performance. These
metrics serve as the basis for evaluating the effectiveness of
the methods.

III. RESULTS

During the fast workflow testing using the preliminary
dataset, the temporal every-10th-frame selection method
generally outperformed the other two methods, with an
average of 50 fewer total edit counts and a prediction
accuracy of 90.3%. The feature clustering method and the
temporal same-size method showed similar performances,
achieving accuracies of approximately 88.5% and 89.1%,
respectively.

However, averaged results from 12 all-frame videos show
different outcomes (Table III). Except for manual labeling,
the every-10th-frame selection results in the largest number
of total edits. When also considering the edits during the
initial set annotation, the every-10th-frame selection fares
worse, resulting in a higher total action cost. Conversely,
the Feature Clustering method exhibited the lowest total edit
counts for all post-prediction criteria.

Notably, the feature clustering method demonstrated an
advantage in accuracy but not significantly higher than the
temporal same—size method. On the average threshold, the
feature clustering method costs only 6112 units of time,
saving 85.2% of time compared to manual labeling and being
9.9% faster than the temporal method with the same training
data size on average.

IV. DISCUSSION

This paper aims to streamline the annotation process
for surgical videos. Through research, we found that most
existing tools and methods have not been optimized or
tested for their efficacy on surgical data. We also found that
there are existing initial frames selection techniques that can
impact AI-assisted annotation performance, so we focused
on developing an approach that begins with the initial frame
selection step.



TABLE III
AVERAGED EVALUATION MATRICES ON AVERAGE 50%-90% IOU

RESULTS

Matirces
Feature

Clustering
Temporal

every-10th-frame
Temporal
same-size Manual

Initial Edit 1313 2725 1316 20727
Correct 17858 15138 17491 20727
Deletion 244 594 324 0
Addition 276 305 294 0

Renaming 2668 5309 3138 0
Reposition & Resizing 22 57 55 0

Accuracy 92.0% 84.1% 90.1% 100%
Total Edits 4523 6240 5124 20727
Action Cost 6112 11690 6786 41454

Throughout the experimentation, the feature clustering
method demonstrated advantages over common temporal
selection methods on the cataract surgical dataset when
performing AI-assisted object detection annotation tasks. One
key factor contributing to its success could be its ability to
extract semantic information from each frame using ViT. This
semantic representation enables more precise localization
of objects and reduces the occurrence of false negatives
(tool not labeled) or misclassifications (tool wrongly labeled)
demonstrated by the lowest counts for addition and renaming.

Feature clustering methods can reduce annotation efforts
compared to temporal selection approaches. While temporal
methods sample frames at fixed intervals, feature clustering
selects frames based on their distinctiveness and relevance
to the video content. Consequently, fewer frames need to be
annotated, resulting in a reduction in annotation effort and
overall labeling cost.

The higher accuracy of the temporal same-size method
compared to the temporal every-10th-frame method is likely
attributed to the latter’s susceptibility to overfitting. With
the temporal every-10th-frame method employing a larger
training set, it introduces more variance and noise, potentially
leading the model to overfit to these factors, thereby resulting
in the observed difference in performance.

One potential limitation to consider is the potential impact
of variables such as video length, frame rate, or the total
number of frames. This is observed through the comparison
between the test results on the preliminary set and the all-
frame set. The discrepancy could derive from the fact that in
scenarios with fewer frames, the feature clustering method
is constrained to selecting the most representative frames
from a limited pool of information. Consequently, this results
in fewer clusters, diminishing the informational richness of
the centroids compared to the selection by the every-10th-
frame method. Such variations could influence the choice of
selection method under different conditions, requiring further
investigation to determine the threshold or cutoff point for
method selection.

In future research, it would be beneficial to compare
the feature clustering method with all other frame selection
techniques to assess their performance in terms of labeling
cost, computational complexity, and user-friendliness. This
report can systematically review each method and better
inform researchers of the choices. It would also be interesting

to test the performance of this approach using data from other
types of surgery. This will provide an understanding of the
generalizability of such approach across all types of surgical
data. Additionally, this feature clustering method holds the
potential for integration into the development of task-specific
auto-annotation tools.

This research may help establish a standard methodology
for evaluating frame selection methods aimed at streamlining
the bounding box annotation processes. Introducing metrics
using edit counts and labeling costs could offer researchers
in this field a viable framework for comparing different
annotation strategies.

V. CONCLUSION

Overall, the feature clustering approach offers a promising
solution for surgical video object detection annotation tasks,
combining advanced feature engineering techniques with
adaptive clustering algorithms. Its ability to achieve high
prediction accuracy and reduce annotation effort makes it
a compelling choice for AI-assisted annotation for surgical
videos.
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