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Abstract. Surgical workflow anticipation, including surgical instrument
and phase anticipation, is essential for an intra-operative decision-support
system. It deciphers the surgeon’s behaviors and the patient’s status to
forecast surgical instrument and phase occurrence before they appear,
providing support for instrument preparation and computer-assisted in-
tervention (CAI) systems. We investigate an unexplored surgical work-
flow anticipation problem by proposing an Instrument Interaction Aware
Anticipation Network (IIA-Net). Spatially, it utilizes rich visual features
about the context information around the instrument, i.e., instrument
interaction with their surroundings. Temporally, it allows for a large
receptive field to capture the long-term dependency in the long and
untrimmed surgical videos through a causal dilated multi-stage tempo-
ral convolutional network. Our model enforces an online inference with
reliable predictions even with severe noise and artifacts in the recorded
videos. Extensive experiments on Cholec80 dataset demonstrate the per-
formance of our proposed method exceeds the state-of-the-art method by
a large margin (1.40 v.s. 1.75 for inMAE and 2.14 v.s. 2.68 for eMAE).
The code is published on https://github.com/Flaick/Surgical-Workflow-
Anticipation

Keywords: Surgical Workflow Analysis · Anticipation · Temporal Con-
volutional Networks · Endoscopic Videos · Instrument Detection

1 Introduction

Context-aware assistance is integral for CAI systems, of which the most crucial
task is surgical workflow anticipation. It anticipates the occurrence of surgical
instruments and phases before they appear, enabling the efficient instrument
preparation and intelligent robot assistance system design [7, 23]. The benefit
of anticipation is three-fold [20]. Firstly, instrument anticipation offers a useful
reference for decision making in a robotic assistance system. It helps to iden-
tify instrument usage triggering so that a robotic system can decide when to
intervene. Also, for context-aware assistance, anticipating instruments such as
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irrigator can help early detection and prevention of potential complications, e.g.,
massive haemorrhage. Thirdly, it allows real-time instruction for automated sur-
gical coaching therefore increasing patient safety and reducing surgical errors.
The anticipation of surgical phases can also provide vital input for optimizing
communication in the operating room (OR).

Observed Unobserved

Dense Segmentation Prediction

Presence Non-presence

Remaining Time Prediction

? ? ? ? ?

T1 Tobs…..

Fig. 1. Anticipation frameworks. Given an observed sequence and current time instant,
Tobs, bottom part shows the conventional anticipation works that predicts dense seg-
mentations. The upper part shows our strategy handling anticipation task as a real-time
remaining time prediction task.

Recent models [23, 28] for surgical workflow anticipation possess spatial-
temporal limitations. Spatially, they use AlexNet [17], VGG [25] and similar
architectures to extract a feature vector, representing instrument/phase pres-
ence for each frame. However, they ignore the task-specific combinations present
in surgical anticipation applications, i.e., instrument-instrument and instrument-
surrounding interactions. This information precisely reflects the surgeon’s inten-
tion and patient’s anatomy status, helping models generalize to the low-quality
input materials [16] and variability of patient’s anatomy and surgeon style [8].
Novelly, our IIA-Net addresses instrument-instrument interaction in the form
of a correlation matrix and designed geometric relations among instruments.
Also, the instrument-surrounding interaction is included via the semantic seg-
mentation map. This makes our extracted feature to be representative enough
to identify the trigger event for the next instrument and phase occurrence.

Temporally, existing works have difficulty handling non-stationary time se-
ries. Especially for surgical workflow whose laparoscopic surgery transitions
among instruments and phases are ambiguous and various. This requires the
temporal modeling method to integrate recent observations with the long-range
context in a computationally efficient way. However, widely used RNNs [11] learn
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a pattern from shorts segments of time series and apply it to other parts to get
predictions, losing the distant observation information. Therefore, we opt for
dilated temporal convolutions to handle the full resolution of time series. This
aids temporal pattern modeling and does not require complex computational
resources.

Initial works [1,4,7,9,15,19] handle anticipation as a dense segmentation pre-
diction task, shown in the bottom of Fig. 1. They require a pre-loading process
before performing anticipation, limiting their usage in online surgical applica-
tions. Specifically, [1] needs to observe at least 10%/20% of the video before it
starts the prediction. Also, Fig. 1 shows an example where the predicted dense
segmentation usually contains the short segments, which are ambiguous to de-
termine the trending of the instrument’s presence.

Our contribution is four-fold: (1) Spatially, we propose a novel instrument
interaction module (IIM) for the feature extraction process. (2) Temporally, we
apply, for the first time, the causal dilated multi-stage temporal convolutional
network (MSTCN) structure to surgical workflow anticipation, with an accurate
and fast online inference. (3) We combine spatial and temporal information to
form a two-step IIA-Net for surgical workflow anticipation. (4) We propose a
multi-task learning schema to jointly anticipate instrument and phase occur-
rence, which are important challenges in surgical workflow anticipation.

2 Methodology

Our IIA-Net composes of two parts, a feature extractor with an Instrument In-
teraction Module (IIM) and a temporal model using MSTCN. Spatially, our IIA-
Net models the surgeon’s intention through extracting rich geometric features
of the instrument-instrument interactions and semantic features of instrument-
surrounding interactions. Motivated by the recognition methods [13, 14, 21, 27],
we introduce tool and phase signal to boost the feature extraction process. Tem-
porally, we utilize causal dilated MSTCN [5] to capture long-term patterns with
a large receptive field. Unlike the dense segmentation prediction, shown in Fig.
1, our IIA-Net follows [23] to handle anticipation as a real-time remaining time
regression problem without any latency or pre-loading process.

2.1 Task Formulation

We process the anticipation task as a regression problem both for instrument
and phase anticipation. Given a frame i from video x, we firstly extract semantic
map si and instrument bounding boxes bi. At the same time, we obtain the
instrument presence signal ti and phase signal pi from the manual annotations.
Given the observed sequence {(x1, s1, b1, t1, p1), ...(xTobs

, sTobs
, bTobs

, tTobs
, pTobs

)}
from time 1 to Tobs, our model predicts the remaining time until the occurrence
of τ/α for instrument/phase. The ground truth r(xTobs

, τ/α) for current time
instant Tobs ranges [0, h], where 0 denotes that the τ/α is currently happening
and h denotes that τ/α will not happen within next h minutes.



4 Kun Yuan et al.

2.2 Network Architecture
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Fig. 2. Overview of the proposed model. For each frame observed, its estimated se-
mantic map and tool detection are forwarded to instrument interaction module (IIM)
to extract interaction feature. The manual annotations for phase and tool signal are
fed into temporal model jointly with interaction and visual features.

Fig. 2 shows the overall network architecture of our IIA-Net. It is a two-step
model with a feature extractor and a temporal model. The feature extractor
takes five inputs xi, si, bi, ti, pi mentioned in Section. 2.1, of which the si
and bi are used for IIM to model instrument-instrument interactions and the
instrument-surrounding interactions. The frame xi is encoded by ResNet50 [10]
into visual features, and the tool signal ti, phase signal pi are provided by the
manual annotations from Cholec80 dataset. They are embedded into the feature
space and concatenated with interaction feature and visual feature jointly for
the input of the next temporal model.

For the temporal pattern modeling, we apply a multi-stage temporal convo-
lutional network firstly for phase anticipation. Then we concatenate the above
five feature vectors and the prediction of phase anticipation together as the input
for the instrument anticipation. In the rest of this section, we will introduce the
above modules in details.

2.3 Instrument Interaction Module

In this module, we model surgeons’ intention by analyzing the instrument-
instrument interaction and instrument-surrounding interaction, shown in Fig.
3. We assume each frame is processed to obtain the spatial coordinates and
bounding boxes of all instruments. Also, we extract the categorical prior for
each frame, which characterizes the semantic class of a region in an image. (e.g.,
liver, gallbladder).

Instrument-Instrument Encoder This encoder explicitly models the geo-
metric relation among instruments. Here we only consider the interaction be-
tween grasper and other instruments because the grasper is the most frequently
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Fig. 3. Instrument interaction module. Upper: instrument-surrounding modeling uses
pooled scene semantic features to encode features; Bottom: instrument-instrument
modeling extracts the spatial relations between the grasper and the other instruments.

used instrument. It provides the primary support for the other instruments dur-
ing the surgery.

We encode the geometric relation G ∈ RM×4 using Eq. 1 that is proven
effective in object detection [18]. Specifically, at any time instant, given the
bounding box of grasper (xg, yg, wg, hg) and M other instruments in the scene
{(xm, ym, wm, hm)|m ∈ [1,M ]}, we encode the geometric relation into G ∈
RM×4, the m-th row of which equals to:

Gm = [log(
|xg − xm|

wg
), log(

|yg − ym|
hg

), log(
wm

wg
), log(

hm
hg

)] (1)

This encoding computes the geometric relation in terms of the geometric distance
and the fraction box size. We then embed this geometric feature at each time
instant into RTobs×C1 where C1 is the embedding size.

Instrument-Surrounding Encoder To encode an instrument’s nearby anatom-
ical surroundings, we first extract pixel-level scene semantic classes for each
frame. Here, we use totally Ns = 7 scene classes (i.e., background, liver, fat,
abdominal wall, tool Shaft, tool tip, gallbladder). Then we transform the integer
semantic map into Ns binary masks of the size Tobs×h×w, where h, w are spatial
resolution. We apply two convolutional layers on the binary masks with a stride
of 2 to get the scene CNN features. We then average the scene feature along the
spatial dimensions and generate a feature vector as the encoder’s output.

The generated feature vector is in RTobs×C2 , where C2 is the number of
channels in the convolution layers. After combining the feature vectors from
instrument-instrument encoder and instrument-surrounding encoder, the final
feature vector outputed from IIM is in RTobs×(C1+C2)

2.4 Multi-Stage Temporal Convolutional Network

To model temporal patterns in the anticipation task, we modify the MSTCN [5]
to build a lightweight temporal network. The network is constructed fully with
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dilated temporal convolutions without neither pooling layers nor fully connected
layers. This design keeps the model processing the full resolution temporal se-
quence and reduces the number of parameters.

To apply our model in an online mode, we use causal convolutions in the
network. Instead of the acausal convolutions in [5] with predictions depend on
both n past and n future frames, the causal convolutions ensure the prediction
of current instant not relying on any n future frames but only depends on the
current and previous frames.

3 Experiment Setup

3.1 Datasets and Preprocessing

Anticipation Dataset We evaluate our method on publicly available surgi-
cal workflow intraoperative video dataset, Cholec80 [26], which contains laparo-
scopic cholecystectomy procedures for the resection of the gallbladder. Cholec80
dataset consists of 80 videos ranging from 15 minutes to 90 minutes. We follow
the same split as [23], separating the dataset to 60 videos for training and 20
for testing. We resize the videos spatial resolution to 224× 224 to dramatically
reduce the computational cost. Also, we resample the video from 25 fps to 1 fps.

Detection and Segmentation Dataset As mentioned above, we need to ex-
tract instrument bounding boxes and semantic maps for the Cholec80 dataset.
However, annotating such dataset is manually unfeasible. Therefore, we opt for
training the segmentation model [24] on a synthesized dataset [22], which uti-
lizes conditional GAN [12] to generate Cholec80 style laparoscopic images from
simulation images. Then, we apply the trained model to infer on the Cholec80
dataset. The segmentation result can be found in the supplementary materials.

To detect the surgical instrument bounding boxes on Cholec80, we leverage
the dataset from [13] to train a YOLO [2, 6] detector. The trained model is
proven to detect surgical instruments on Cholec80 dataset effectively [13].

3.2 Evaluation Metrics

Automatic instrument preparation is one of the primary tasks that benefits
from surgical workflow anticipation. It does not require tools or phases to be
anticipated too far in advance. Also, the preparation system should only react
to the signals that indicate tool/phase is anticipating. Therefore, we measure the
performance of ’anticipating’ frames (0 < r(xTobs

, τ/α) < h, using inMAE. Also,
we propose to use eMAE to evaluate intervals (0 < r(xTobs

, τ/α) < 0.1h) that
provides the most effective support to the computer-assistance system. Also, we
utilize the pMAE in [23] to measure the precision performance of our model.
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Table 1. Effect of IIM and MSTCN on different feature extraction models for instru-
ment anticipation. We report the inMAE/eMAE averaging over instrument types in
minutes per metric when h = 5 min. T: tool signal feature; P: phase signal feature;
IIM: interaction feature from instrument interaction module.

ResNet50 ResNet50+T+P ResNet50+T+P+IIM Baseline

No MSTCN 1.99/4.06 1.79/3.58 1.57/2.51

1.75/2.68
1 Stage 1.62/3.74 1.57/3.29 1.42/2.22
2 Stages 1.59/3.67 1.45/3.23 1.40/2.14
3 Stages 1.53/3.64 1.60/3.31 1.48/2.15

4 Results and Discussions

4.1 Effect of IIM and Stages in MSTCN

We conduct ablative testing to compare different feature extraction models,
ResNet50 [10], ResNet50 with instrument and phase features, ResNet50 with
all added features, to identify a suitable feature extractor for our model. Addi-
tionally, we conduct experiments with different numbers of MSTCN stages to
determine which architecture is best able to capture temporal patterns.

As shown in Tab. 1, the ResNet50 with all features outperforms ResNet50
across the board with improvements ranging from 1.99 to 1.57 in inMAE and 4.06
to 2.51 in pMAE. This increase can be attributed to the improved representation
by our designed features. Among the features that we added, the IIM makes more
contribution than the instrument and phase signals. This suggests that modeling
the interactions signifies the surgeon’s intention and the occurrence of the next
situation. Interestingly, ResNet50 with all added feature achieves a comparable
result with the baseline model [23] even without any temporal modeling.

Tab. 1 also highlights the substantial performance improvement achieved by
the MSTCN refinement stages. Those results demonstrate the ability of MSTCN
to improve the performance of any feature extractor. All feature extractors
achieve higher performance when only 1 stage is used. However, 2 stages model
outperforms 3 stages model. This could indicate that 3 stages of refinement lead
to overfitting on the training set for the limited amount of data.

4.2 Anticipation Results

We evaluate the model for instrument and phase anticipation on horizons of 2,
3, and 5 minutes. We remove the horizon setting of 7 minutes since anticipating
the surgical workflow too early is unnecessary for instrument preparation and
robot assistance. We re-implement methods from [23] and retrain them as the
baseline methods for phase anticipation.

Tab. 2 shows that IIA-Net achieves lower inMAE and pMAE error compared
to the previous methods. Regarding the pMAE error, the margin increases even
further. Even though [23] is trained in an end-to-end fashion, it is also outper-
formed by our IIA-Net, which is trained in a two-step process. Interestingly,
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Table 2. inMAE/pMAE comparison. We report the mean over instrument types in
minutes per metric. Ours 2D: our feature extractor without temporal training.

Instrument Phase

h = 2min h = 3min h = 5min h = 2min h = 3min h = 5min

MeanHist 1.09/0.93 1.62/1.34 2.64/2.14 – – –
OracleHist (offline) (0.92/0.83) (1.31/1.18) (2.01/1.73) – – –

Baseline [23] 0.77/0.64 1.13/0.92 1.80/1.49 0.63/0.62 0.86/0.85 1.17/1.37

Ours 2D 0.70/0.52 1.07/0.77 1.65/1.16 0.70/0.53 1.04/0.76 1.40/1.12
Ours 0.66/0.42 0.97/0.69 1.48/1.28 0.62/0.49 0.81/0.73 1.08/1.22

Table 3. eMAE comparison. We report the mean over instrument types in minutes.

Instrument Phase

h = 2min h = 3min h = 5min h = 2min h = 3min h = 5min

MeanHist 1.85 2.72 4.35 – – –
OracleHist (offline) (1.36) (1.93) (2.96) – – –

Baseline [23] 1.12 1.65 2.68 1.02 1.47 1.54

Ours 2D 1.07 1.65 2.51 1.38 1.85 2.42
Ours 1.01 1.46 2.14 1.18 1.42 1.09

our model trained without temporal context (Ours 2D) achieved a lower pMAE
when h = 5. This is because the 2D model has difficulty foreseeing long-horizon
occurrence and easily predicts the value that is close to 0/h, making its predic-
tion unsmooth. Also, our model achieves the lowest eMAE error, seen from Tab.
3. This suggests that our model can effectively identify instrument or phase oc-
currence a few seconds ahead. In real-world scenarios, this is typically the most
critical time for accurate anticipation.

To further verify the feasibility of our model in the real-world surgical sce-
nario, we test our model’s running time performance given the online video
stream. Based on the Pytorch 1.4 framework and single RTX 2080 ti, our model
is able to process each frame within 0.0293s when deploying the spatial feature
extractor and temporal model parallely. The running time is 10% faster than [23]
taking 0.0328s, indicating our model is applicable in a real-world setup.

4.3 Limitations

The primary limitation of our current experimental setup is the incorporation
of tool and phase signals. Specifically, we train the network using the signals
from human annotation instead of recognition models. In real-world scenarios
where this ground-truth is not available, the model’s performance will likely be
reduced. We conjecture, however, the degradation will be minimal using recent
models which show superior performance for tool and phase recognition (95%
and 88% of accuracy for tool and phase recognition). Also, [3] shows that the
predicted phase signal is consistent and smooth not only within one phase, but
also for the often ambiguous phase transitions. This means our IIA-Net will
likely make a reliable prediction even with predicted tool and phase signals.
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5 Conclusion

In this paper, we propose the IIA-Net, which incorporates existing surgical work-
flow analysis methods, i.e., tool detection, phase recognition, laparoscopic image
segmentation, and outperforms previous works. It shows that the interaction re-
lationship during spatial feature extraction is effective to resolve surgical work-
flow anticipation. Without temporal training, our model is a strong baseline for
the following 2D works. Furthermore, temporal modelling using a MSTCN with
causal and dilated convolution handles full temporal resolution of time series,
fitting extreme long laparoscopic workflow well. Its large receptive field captures
distant as well recent observations. Our multi-task learning schema provides a
potential direction to jointly perform instrument and phase anticipation. Future
work includes evaluation of our method on real-world phase and tool signals.
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