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A B S T R A C T

Surgical workflow anticipation is an essential task for computer-assisted intervention
(CAI) systems. It aims at predicting the future surgical phase and instrument occur-
rence, providing support for intra-operative decision-support system. Recent studies
have promoted the development of the anticipation task by transforming it into a re-
maining time prediction problem, but without factoring the surgeons’ behaviors and
the patient’s status in the network design. In this paper, we propose an Instrument In-
teraction Aware Anticipation Network (IIA-Net) to overcome the previous deficiency
while retaining the merits of two-stage models through using spatial feature extractor
and temporal model. Spatially, feature extractor utilizes tooltips’ movement to extracts
the instrument-instrument interaction, which helps model concentrate on the surgeon’s
actions. On the other hand, it introduces the segmentation map to capture the rich
instrument-surrounding features about the instrument surroundings. Temporally, the
temporal model applies the causal dilated multi-stage temporal convolutional network
to capture the long-term dependency in the long and untrimmed surgical videos with a
large receptive field. Our IIA-Net enforces an online inference with reliable predictions
even with severe noise and artifacts in the recorded videos and presence signals. Ex-
tensive experiments on Cholec80 dataset demonstrate the performance of our proposed
method exceeds the state-of-the-art method by a large margin (1.40 v.s. 1.75 for MAEin

and 2.14 v.s. 2.68 for MAEe). For reproduction purposes, all the original codes are
made public at https://github.com/Flaick/Surgical-Workflow-Anticipation.

© 2023 Elsevier B. V. All rights reserved.

1. Introduction

Context-aware assistance is essential to CAI systems, within
which the highly relevant task is surgical workflow anticipation.
It anticipates the occurrence of surgical instruments and phases
before they appear, enabling the efficient instrument prepara-
tion and intelligent robot assistance system design (Rivoir et al.,
2020; Forestier et al., 2017). Also, it can enhance patient safety,
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e-mail: kyuan033@uottawa.ca (Kun Yuan)

reduce surgical errors and facilitate communication in the oper-
ating room (OR) (Maier-Hein et al., 2017). For example, antic-
ipating the surgical instrument’s usage can provide vital input
to physicians in the form of early warning in cases of deviations
and anomalies. Anticipating the surgical phases can also help
a robotic system identify events, such as bleeding, beforehand
and decide when to intervene.

Recent models (Twinanda et al., 2018; Rivoir et al., 2020)
for surgical workflow anticipation possess spatial-temporal lim-
itations. Spatially, they use AlexNet(Krizhevsky et al., 2012),
VGG(Simonyan and Zisserman, 2014) and similar architec-
tures to extract a feature vector, representing instrument/phase
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Fig. 1. Anticipation frameworks. Given an observed sequence and current time instant, Tobs, bottom part shows the conventional anticipation works that
predicts dense segmentations. The upper part shows our strategy handling anticipation task as a real-time remaining time prediction task.

presence for each frame. However, they ignore the presence
of task-specific combinations (i.e., instrument-instrument and
instrument-surrounding interactions) in surgical anticipation
applications. This information precisely reflects the surgeon’s
intention and patient’s anatomy status, helping models general-
ize to the low-quality input materials (Klank et al., 2008) and
variability of patient’s anatomy and surgeon style (Funke et al.,
2019). Novelly, our IIA-Net addresses instrument-instrument
interaction in the form of a correlation matrix and designed
geometric relations among instruments. Also, the instrument-
surrounding interaction is included via the semantic segmenta-
tion map. This makes our extracted feature sufficiently repre-
sentative to identify the trigger event for the subsequent instru-
ment and phase occurrence.

Temporally, existing works have difficulty handling non-
stationary time series, especially for surgical workflow whose
laparoscopic surgery transitions among instruments and phases
are ambiguous and various. This requires the temporal model-
ing method to integrate recent observations with the long-range
context in a computationally efficient way. However, the widely
used RNNs(Hochreiter and Schmidhuber, 1997) learn a pattern
from shorts segments of time series and apply it to other parts
to get predictions, losing the distant observation information.
In this work, we opt for dilated temporal convolutions to han-
dle the full resolution of time series. This aids temporal pat-
tern modeling and does not require complex computational re-
sources.

For the anticipation formulation, initial works (Abu Farha
et al., 2018; Forestier et al., 2017; Du et al., 2016; Mahmud
et al., 2017) handle anticipation as a dense segmentation pre-
diction task, shown in the bottom of Fig. 1. They require a pre-
loading process before performing anticipation, limiting their
usage in online surgical applications. Specifically, (Abu Farha
et al., 2018) needs to observe at least 10%/20% of the video
before it starts the prediction. Also, Fig. 1 shows an exam-
ple where the predicted dense segmentation usually contains the
short segments, which are ambiguous to determine the trending

of the instrument’s presence.
Our contribution is four-fold: (1) Spatially, we propose a

novel instrument interaction module (IIM) for the feature ex-
traction process. (2) Temporally, we apply, for the first time,
the causal dilated multi-stage temporal convolutional network
(MS-TCN) structure to surgical workflow anticipation, with an
accurate and fast online inference. (3) We combine spatial and
temporal information to form a two-step IIA-Net for surgical
workflow anticipation. (4) We propose a multi-task learning
schema to jointly anticipate instrument and phase occurrence,
which are important challenges in surgical workflow anticipa-
tion.

2. Related Work

2.1. Online Action Anticipation
Online action anticipation starts from the early event detec-

tion, aiming at detecting the event as soon as possible after it
starts but before it ends. Also, it assumes that the target event is
known and the model has already observed partially the event.
(Ma et al., 2016) designed the model to jointly recognize the
category and detect the start point of an action after observing
only a fraction of the activity. (Sadegh Aliakbarian et al., 2017)
utilizes the multi-stage LSTM to leverages context-aware and
action-aware features, and introduces a novel loss function to
anticipate the action as early as possible. However, these early
attempts do not consider the online scenario and the formula-
tion of online action anticipation is not fully defined. Our task is
different from the early event detection as we aim to predict the
future before observing any frames of the activity. Therefore,
our work falls under the category of online action anticipation
problem.

Recently, the rise of deep learning methods starts to tackle
this problem to anticipate short-horizon of human actions. For
action anticipation, early work (Lan et al., 2014) was based on
traditional hand-crafted features. (Vondrick et al., 2016) pre-
dicts the feature vector of future frame and apply recognition
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algorithm to categorize it into actions. However, it only an-
ticipates for single fixed time which is not desirable to repre-
sent the full future. Also, the model only take a single past
frame as input instead a video clip, which is inaccurate to rec-
ognize the current status and make the prediction. Extending
from the previous works, (Gao et al., 2017) apply a sliding
window to anticipate a fixed sequence of future representations
based on the multiple frames in a real-time manner. Also, Vil-
legas et al. (2017) trains the network to learn a high-level pose
representation and predicts the low-level pixel representation,
which avoids the error propagation happening in recurrent net-
works. Different from predicting the sequence of visual repre-
sentation, the (Abu Farha et al., 2018) directly predict the future
sequential action labels either recursively with RNN or in one
single step with CNN. While CNN-based method is only fea-
sible when there is at least 10% of observed video, the RNN-
based method usually suffers from the error prorogation and can
not handle long-range videos. To handle the long-range video,
(Sener et al., 2020) presented a temporal aggregation block to
efficiently aggregate the representation from the spanning and
recent observations for the long-range video action anticipa-
tion. (Ke et al., 2019) proposes to predict the long-term ac-
tion anticipation in one shot by explicitly conditioning the net-
work on time and forming a coarse-to-fine structure. Although
these methods obtain good results in the natural video domain,
their methods still have many limitations when processing the
laparoscopic videos.

2.2. Surgical Workflow Anticipation
Surgical workflow anticipation, including surgical phase,

instrument and action anticipation are quite important for
computer-assisted intervention (CAI) applications of computer
vision. While the aforementioned methods on video action
anticipation have achieved state-of-the-art performance on the
benchmark video datasets, such as UCF101 (Soomro et al.,
2012), surgical video anticipation is rarely explored by cur-
rent works due to the incomplete definition and formulation
of this task. Traditional works on this problem have focused
on the phase anticipation by using the Surgical process models
(SPMs) to decompose the surgery into well-defined work steps
and Dynamic Time Warping (DTW) for calculating the simi-
larity between surgery procedures. For example, (Franke and
Neumuth, 2015) explores an adaptive state-transition model by
considering the difference between the ongoing procedure and
the training set procedure instance using DTW. It jointly rec-
ognizes the current phase and predict the next phase in surgery.
(Forestier et al., 2017) defined the problem as finding the op-
timal alignment between the partial sequence and the complete
reference sequence of surgical activities, by proposing the algo-
rithm to maximize the posteriori probability estimation. How-
ever, these are the template-based methods that are sensitive to
the choice of the reference surgery procedure. Also, the need
for SPMs limits the model’s ability to process the frame-based
laprascopic surgery. Hence, we propose to use CNN architec-
ture jointly with recognition model to include both visual fea-
ture and activity feature in our work.

Deep learning methods have enlightened this task by the
power of representational ability. For instance, (Rivoir et al.,

2020) bases on the raw surgical video and reformulates the
surgical instrument anticipation task into remaining time pre-
diction with uncertainty estimation, proving to be more appli-
cable to real-world applications with sparse tool usage. (Ban
et al., 2021) proposes and encoder-decoder predictor based on
a discrete generative adversarial network to jointly predict the
future surgical phase and the transitions. However, all above
methods only focus either the phase or instrument anticipa-
tion task. Also, the previous works extract the feature vector
for each frame solely from the raw RGB image, with little ef-
fort devoted to model surgeon’s intention and patient’s status
for anticipation task with few exceptions, such as prediction of
person behaviour under the surveillance camera (Liang et al.,
2019). Therefore, inspired by these previous studies, we pro-
pose the Instrument Interaction Aware Network (IIA-Net) with
multi-tasking strategy to enhance the representation ability of
our feature extractor and handle phase and instrument anticipa-
tion within one model.

2.3. Temporal Modeling

Video can be represented by a sequence of feature vectors,
requiring the temporal sequence modeling method to process
the current time’s prediction conditioned on the previous ob-
servations. Therefore, Hidden Markov Models (HMM) are
initially applied for the online predictions of surgical phases
(Padoy et al., 2012). As the rising of deep learning networks,
the combination of CNNs and Recurrent neural network (RNN)
has been widely used. For example, (Jin et al., 2020, 2017) pro-
pose to utilize the CNNs as feature extractors and the RNNs as
the temporal modeling methods to refine the temporal output.
Specifically, LSTMs are used due to its converging speed and
ability to learn long-term dependency. In recent years, Lea et al.
(2017) proved that CNN can be a valuable tool for sequence
modeling and forecasting, give the right modification. There-
fore, Temporal Convolutional Networks (TCNs) are applied and
achieve an exciting result for surgical video phase segmenta-
tion (Czempiel et al., 2020). Unlike the RNNs modeling the
sequence iteratively, the TCN takes the whole sequence as in-
put at once. Also, the TCN is fully implemented by convolution
layers, leading to a unified network structure when handling the
video classification task. Recently, the rise of transformer net-
works (Vaswani et al., 2017; Gao et al., 2021; Czempiel et al.,
2021) helps the deep learning methods overcome the challenges
in surgical workflow analysis, thanks to their vast potential for
sequential modeling in long-range sequences. Transformer can
calculate the temporal relationships between current and previ-
ous frames using self-attention layers. Also, self-attention en-
ables learning in long sequences without forgetting of previous
information which often hampers LSTM-based methods. For
example, (Czempiel et al., 2021) creates an attention regulariza-
tion loss to encourage the model to focus on high-quality frames
during training the transformer. For the time variance problem,
the Dynamic Time Warping (DTW) warps the sequences into
the same speed ratio and is useful for the sequence classification
tasks. Recently, Lohit et al. (2019) proposes to integrate warp-
ing mechanism to shrink the intra-classes difference and enlarge
the inter-classes difference. However, warping-based sequence
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Fig. 2. Overview of the proposed model. For each frame observed, its estimated semantic map and tool detection are forwarded to instrument interaction
module (IIM) to extract interaction feature. The recognized phase and tool signal are fed into temporal model jointly with interaction and visual features.

modeling needs the template sequence which is infeasible for
most of the cases.

3. Methodology

Our IIA-Net composes of two parts, a feature extractor
with an Instrument Interaction Module (IIM) and a tempo-
ral model using MS-TCN. Spatially, IIA-Net models the sur-
geon’s intention through extracting rich geometric features of
the instrument-instrument interactions and semantic features of
instrument-surrounding interactions. Motivated by the recog-
nition methods (Twinanda et al., 2016; Jin et al., 2017; Padoy,
2019; Jin et al., 2018), we introduce tool and phase signal to
boost the feature extraction process. Temporally, we utilize
causal dilated MS-TCN (Farha and Gall, 2019) to capture long-
term patterns with a large receptive field. Unlike the dense
segmentation prediction, shown in Fig. 1, our IIA-Net follows
(Rivoir et al., 2020) to handle anticipation as a real-time remain-
ing time regression problem without any latency or pre-loading
process.

3.1. Task Formulation

Inspired by (Rivoir et al., 2020), we process the antici-
pation task as a regression problem both for instrument and
phase anticipation, aiming to predict the remaining time un-
til the occurrence of one of τ surgical phases and α in-
struments within a future horizon of h minutes. Given a
timestamp i from video x, we firstly extract semantic map
si and instrument bounding boxes bi for each video frame
xi. At the same time, we obtain the instrument pres-
ence signal ti and phase signal pi. Given the observed se-
quence {(x1, s1, b1, t1, p1), ...(xTobs , sTobs , bTobs , tTobs , pTobs )} from
time 1 to Tobs, IIA-Net predicts the remaining time until the
phase/instrument occurrence, the ground truth is denoted as
rTobs (τ/α).

There is no need for extra human effort to annotate the
ground truth for remaining time prediction. Specifically, the
ground truth’s value ri(τ/α) for each timestamp i can be calcu-
lated from the existing phase/instrument presence annotations
Pτ/α, which is a 0/1 signal from Cholec80 (Twinanda et al.,

2016) dataset. There are three categories for each frame, ’non-
presence’ frames that the certain phase/instrument will not hap-
pen in next h minutes; ’anticipating’ frames that the occurrence
can be foreseen within next h minutes; ’presence’ frames that
the specific phase/instrument is current happening.

The construction method of ground truth starts from the end-
ing point, and assigns 0 to the frame with occurrence, i.e., ’pres-
ence’ frames. Then it will assign the true remaining time in
minutes to the ’anticipating’ frames, which are close to the oc-
currence. The values are truncated at h minutes because the
the anticipation model shall not predict the future with arbitrary
long interval. The ground truth ranges [0, h], where 0 denotes
that the τ/α is currently happening and h denotes that τ/α will
not happen within next h minutes. Also, based on the three
categories, denoted as cTobs (τ/α), we additionally supervise the
model with a classification task to regularize the model.

3.2. Network Architecture
Fig. 2 shows the overall network architecture of our IIA-

Net. It is a two-step model with a feature extractor and a
temporal model. The feature extractor takes five inputs xi,
si, bi, ti, pi mentioned in Section. 3.1. si and bi are used
for IIM to model instrument-instrument interactions and the
instrument-surrounding interactions. The frame xi is encoded
by ResNet50(He et al., 2016) into visual features, and the tool
signal ti, phase signal pi are provided by the manual annota-
tions from Cholec80 dataset. They are embedded into the fea-
ture space and concatenated with interaction feature and visual
feature jointly for the input of the next temporal model.

For the temporal pattern modeling, we apply a multi-stage
temporal convolutional network firstly for phase anticipation.
Then we concatenate the above five feature vectors and the pre-
diction of phase anticipation together as the input for the instru-
ment anticipation. In the rest of this section, we will introduce
the above modules in details.

3.3. Spatial Feature Extractor
3.3.1. Instrument Interaction Module

In this module, we model surgeons’ intention by ana-
lyzing the instrument-instrument interaction and instrument-
surrounding interaction, shown in Fig. 3. We assume each
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Fig. 3. Instrument interaction module. Upper: instrument-surrounding modeling uses pooled scene semantic features to encode features; Bottom:
instrument-instrument modeling extracts the spatial relations between the grasper and the other instruments.

frame is processed to obtain the spatial coordinates and bound-
ing boxes of all instruments. Also, we extract the categorical
prior for each frame, which characterizes the semantic class of
a region in an image. (e.g., liver, gallbladder).

Instrument-Instrument Encoder
This encoder explicitly models the geometric relation among

instruments. Here we only consider the interaction between
grasper and other instruments because the grasper is the most
frequently used instrument. It provides the primary support for
the other instruments during the surgery.

We encode the geometric relation G ∈ RM×4 using Eq. 1
that is proven effective in object detection (Liang et al., 2019).
Specifically, at any time instant, given the bounding box of
grasper (xg, yg,wg, hg) and M other instruments in the scene
{(xm, ym,wm, hm)|m ∈ [1,M]}, we encode the geometric relation
into G ∈ RM×4, the m-th row of which equals to:

Gm = [log(
|xg − xm|

wg
), log(

|yg − ym|

hg
), log(

wm

wg
), log(

hm

hg
)](1)

This encoding computes the geometric relation in terms of the
geometric distance and the fraction box size. We then embed
this geometric feature at each time instant into RTobs×C1 where
C1 is the embedding size.

Instrument-Surrounding Encoder To encode an instru-
ment’s nearby anatomical surroundings, we first extract pixel-
level scene semantic classes for each frame. Here, we use
totally Ns = 7 scene classes (i.e., background, liver, fat, ab-
dominal wall, tool Shaft, tool tip, gallbladder). Then we trans-
form the integer semantic map into Ns binary masks of the size
Tobs × h × w, where h, w are spatial resolution. We apply two
convolutional layers on the binary masks with a stride of 2 to
get the scene CNN features. We then average the scene feature
along the spatial dimensions and generate a feature vector as
the encoder’s output.

The generated feature vector is in RTobs×C2 , where C2 is the
number of channels in the convolution layers. After combin-

ing the feature vectors from instrument-instrument encoder and
instrument-surrounding encoder, the final feature vector out-
puted from IIM is in RTobs×(C1+C2)

3.3.2. Visual Features
Visual features extracted from the RGB frame xi are the most

important information to anticipate the future surgery phase and
instrument usage. For instance, the usage of irrigator is often
triggered by bleedings and can not be predicted solely from in-
strument signals. For the phase anticipation, there is mostly a
significant ending activity for each phase that can be heavily
recognized from visual frames. For instance, after clipping and
cutting the cystic artery and duct, the hook shall be introduced
again to dissect gallbladder from the liver, indicating the start
of the Gallbladder-Dissection phase. Thus, IIA-Net introduces
the ResNet50 to extract the visual representation. Compared
to the AlexNet as the backbone, ResNet50 achieves the better
result thanks to its representational ability. The design of skip-
connection eases the training of ResNet50 and the pretrained
version on ImageNet promotes its transfer learning ability to
the other small dataset, e.g., Cholec80 in this work. Also, ow-
ing to the two-stage training, the ResNet50 does not suffer from
the data leaking problem from batch-normalization layers (Ioffe
and Szegedy, 2015).

3.3.3. Phase and Instrument Presence Signal
Surgical phase and instrument presence signals pi/ti have

proven effective in a similar setting (Abu Farha et al., 2018)
and empirically performed better than the model with only vi-
sual features. These signals could be obtained either from hu-
man annotation or from an extra recognition model, such as
(Twinanda et al., 2016; Czempiel et al., 2020). In this work,
we thoroughly studied these two cases and investigate the ef-
fect in the following sections. For the presence signal pro-
vided from human experts, we opt for the Cholec80 dataset’s
annotations. We also train the TeCNO (Czempiel et al., 2020)
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Fig. 4. MS-TCN for online inference. As more frames are observed, the
input and output are enlarging with the last index of output as the desired
prediction.

to provide phase presence signal and YOLOv5 (Jocher, 2020)
to provide instrument presence signal, that could be obtained
from the real-world. Since the YOLOv5 is trained to detect the
tooltip bounding boxes, the instrument presence signal can be
easily transferred from its output. Noted that, YOLOv5 is not
exclusively used to provide instrument presence, its output also
supports the IIM.

3.4. Multi-Stage Temporal Convolutional Network

Surgical video is represented as a sequence of feature vec-
tor with the shape of (BS ,T,D), where BS is the batch size,
T is the temporal length of the video, and D is the hidden di-
mension. In this work, instead of processing the temporal se-
quence recursively like RNNs, we apply the lightweight model
MS-TCN (Farha and Gall, 2019) to model the temporal pattern.
The MS-TCN takes the feature vector sequence as input and ap-
ply dilated temporal convolutional layers to predicts a sequence
of values with the same length as the input. As shown in the
Fig. 4 in the online scenario, as the video stream is progressing,
the length of the input and output will increase monotonically.
However, only the last index of value from the output sequence
will be considered as the true prediction for the current times-
tamp, framed by red in Fig. 4, while the other past predictions
can be ignored for online inference.

This inference strategy is different from the RNNs and re-
quires dynamic computational resources when the video is pro-
gressing and the input sequence is enlarging. Specifically, the
cost needed for the timestamp close to the end is larger than the
timestamp close to the start of the video. Therefore, we opt for
the MS-TCN for its efficacy. The MS-TCN is constructed fully
with dilated temporal convolutions without neither pooling lay-
ers nor fully connected layers. This design keeps the model
processing the full resolution temporal sequence and reducing
the number of parameters.

Also, the MS-TCN applies the multi-stage approach by
adding multiple stages to the network to refine the output of
the first stage multiple times. After each stage, we use a com-
bination of smooth L1 loss and cross-entropy loss to train our
model given the defined horizon h, as described in Eq. 2 and
Eq. 3.

Lτ =
∑
τ

T∑
t

S moothL1( ft, rt(τ)) + λ1 ·CE(pt, ct(τ))) (2)

Lα =
∑
α

T∑
t

S moothL1( ft, rt(α)) + λ2CE(pt, ct(α))) (3)

L(τ/α) =

M∑
m

(λ3 · Lτm + λ4 · Lαm) (4)

Here, ft is the predicted remaining time value and pt is the
classification output of each stage. The model is optimized
based on the sum of these sub-losses, denoted in Eq. 4.

3.4.1. Causal Modification
The original MS-TCN is proposed for the offline action seg-

mentation, where the model is applied after the whole video is
presented. Therefore, the acausal design of the temporal con-
volution layer makes the inference of each frame conditioned
on the previous frames’ and subsequent frames’ information,
which is not feasible for the online surgery scenario. In this
work, the model shall make prediction for each frame by only
observing the previous ones. Therefore, a simple and efficient
method could be applied to make the network causal, through
padding and shifting the output of each layer as follows:

Algorithm 1: Temporal Convolution Layer with Causal
Modification
Data: Input feature vector sequence X ∈ R(BS ,T,D)

Result: Remaining time sequence Y ∈ R(BS ,T,D′)

kernelsize← 3;
layers← 8;
for ( i← 1 to layers ) {

dilation← 2i;
if Causal is True then

Y← Padding(dilation ∗ (kernelsize − 1))(X)
Y ← Conv1d(kernelsize, dilation)(Y)
Y ← Y[:, :, : −(dilation ∗ 2)]

end
if Causal is False then

Y← Padding(dilation)(X)
Y ← Conv1d(kernelsize, dilation)(Y)

end
Y ← Y + X

}

4. Experiment Setup

4.1. Datasets and Preprocessing
4.1.1. Anticipation Dataset

We evaluate our method on publicly available surgical work-
flow intraoperative video dataset, Cholec80 (Twinanda et al.,
2016), which contains laparoscopic cholecystectomy proce-
dures for the resection of the gallbladder. Cholec80 dataset
consists of 80 videos ranging from 15 minutes to 90 minutes.
We follow the same split as (Rivoir et al., 2020), separating the
dataset to 60 videos for training and 20 for testing. We resize
the videos spatial resolution to 224×224 to dramatically reduce
the computational cost. Also, we resample the video from 25
fps to 1 fps.
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Table 1. Effect of IIM and MS-TCN on different feature extraction models for instrument anticipation. We report the MAEin/MAEe averaging over
instrument types in minutes per metric when h = 5 min. T: tool signal feature; P: phase signal feature; IIM: interaction feature from instrument
interaction module.

ResNet50 ResNet50+T+P ResNet50+T+P+IIM Baseline
No MS-TCN 1.99/4.06 1.79/3.58 1.65/2.51

1.75/2.681 Stage 1.62/3.74 1.57/3.29 1.42/2.22
2 Stages 1.59/3.67 1.45/3.23 1.40/2.14
3 Stages 1.53/3.64 1.60/3.31 1.48/2.15

Table 2. MAEin/MAEp/MAEe comparison. We report the mean over instrument types in minutes per metric. Ours 2D: our feature extractor without
temporal training. Baseline: model from (Rivoir et al., 2020).

Instrument Phase
h = 2min h = 3min h = 5min h = 2min h = 3min h = 5min

MeanHist 1.09/0.93/1.85 1.62/1.34/2.72 2.64/2.14/4.35 – – –
OracleHist (offline) (0.92/0.83/1.36) (1.31/1.18/1.93) (2.01/1.73/2.96) – – –

Baseline 0.77/0.64/1.12 1.13/0.92/1.65 1.75/1.49/2.68 0.63/0.62/1.02 0.86/0.85/1.47 1.17/1.37/1.54
IIA-Net (2D) 0.70/0.52/1.07 1.07/0.77/1.65 1.65/1.16/2.51 0.70/0.53/1.38 1.04/0.76/1.85 1.40/1.12/2.42

IIA-Net 0.66/0.42/1.01 0.97/0.69/1.46 1.40/1.28/2.14 0.62/0.49/1.18 0.81/0.73/1.42 1.08/1.22/1.09

4.1.2. Detection and Segmentation Dataset
As mentioned above, we need to extract instrument bound-

ing boxes and semantic maps for the Cholec80 dataset. How-
ever, annotating such dataset is manually unfeasible. Therefore,
we opt for training the segmentation model (Ronneberger et al.,
2015) on a synthesized dataset(Pfeiffer et al., 2019), which uti-
lizes conditional GAN (Isola et al., 2017) to generate Cholec80
style laparoscopic images from simulation images. Then, we
apply the trained model to infer on the Cholec80 dataset. The
segmentation result can be found in the supplementary materi-
als.

To detect the surgical instrument bounding boxes on
Cholec80, we leverage the dataset from (Jin et al., 2018) to train
a YOLOv5 (Jocher, 2020) detector. The trained model is proven
to detect surgical instruments on Cholec80 dataset effectively
(Jin et al., 2018).

4.2. Implementation Detail

In this section, we provide the hyper-parameter settings and
the settings to construct the IIA-Net. We train for 49 epochs for
the first feature extraction process and 30 epochs for the second
temporal modeling process. The batch sizes are 60 and 1 for
the first and second training step, respectively. The embedding
space for the C1 and C2 are both 64. For the peripheral recog-
nition networks, we opt for the UNet for the segmentation map
extraction and the YOLOv5 for the instrument bounding boxes
detection. Also, the λ1 and λ2 are both equal to 0.01, while the
λ3 and λ4 are 0.6 and 0.4, respectively. For the fair evaluation,
we experimented three times and average them before reporting
the result in the table.

4.3. Evaluation Metrics

Automatic instrument preparation is one of the primary tasks
that benefits from surgical workflow anticipation. It does not
require tools or phases to be anticipated too far in advance.
Also, the preparation system should only react to the signals

that indicate tool/phase is anticipating. In this work, the sys-
tem outputs the specific value to indicate the remaining time of
the next tool’s/phase’s occurrence. Therefore, we follow Rivoir
et al. (2020) to opt for the frame-based evaluation metrics, mean
absolute error (MAE) and its variants, i.e., MAEin, MAEp and
MAEe. The MAEin, MAEe, MAEp can be represented in the
following formulas:

MAEin =
1
T

T∑
i

MAE( fi, r(τ/α)), 0 < r(τ/α) < h (5)

MAEe =
1
T

T∑
i

MAE( fi, r(τ/α)), 0 < r(τ/α) < 0.1h (6)

MAEp =
1
T

T∑
i

MAE( fi, r(τ/α)), 0.1h < fi < 0.9h (7)

. In the above, fi is the prediction of the model and r(τ/α)
represents the ground truth value for the current timestamp. In
specific, we average the MAE of ’anticipating’ frames using
MAEin, because the preparation system should only react to the
signals that indicate phase/instrument is anticipating. Also, it
does not require tools or phases to be anticipated too far in ad-
vance. Therefore, we propose to use MAEe to evaluate intervals
(0 < rTobs (τ/α) < 0.1h) that provides the most effective support
to the computer-assistance system.

Also, we follow the Rivoir et al. (2020) to utilize the MAEw

and MAEout to evaluate overall performance the errors outside
the horizon. The MAEw and MAEout can be respectively repre-
sented as folows:

MAEout =
1
T

T∑
i

MAE( fi, r(τ/α)), r(τ/α) = h (8)

MAEw = (MAEin + MAEout)/2 (9)
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Table 3. Model’s robustness to different kinds of signals. Noisy: presence signals with artificial noises; Real: recognized signals from the real-world
recognition models; Upper: presence signals from human annotations.

Training Noisy Real Upper Baseline
Testing Noisy Real Noisy Real Noisy Real Upper

Instrument Anticipation
MAEin 1.64 1.55 1.45 1.42 1.67 1.61 1.48 1.75
MAEe 2.60 2.39 2.25 2.17 2.61 2.53 2.14 2.68
MAEp 1.32 1.34 1.32 1.32 1.39 1.39 1.28 1.49

Phase Anticipation
MAEin 1.23 1.25 1.12 1.13 1.38 1.32 1.08 1.17
MAEe 1.81 1.80 1.36 1.23 1.81 1.70 1.13 1.54
MAEp 1.29 1.27 1.25 1.26 1.42 1.38 1.22 1.37

5. Results and Discussions

5.1. Effect of IIM and Stages in MS-TCN

We conduct ablative testing to compare different feature ex-
traction models, ResNet50 (He et al., 2016), ResNet50 with
instrument and phase features, ResNet50 with all added fea-
tures, to identify a suitable feature extractor for our model. Ad-
ditionally, we conduct experiments with different numbers of
MS-TCN stages to determine which architecture can maximally
capture temporal patterns.

As shown in Tab. 1, the ResNet50 with all features outper-
forms ResNet50 across the board with improvements ranging
from 1.99 to 1.57 in MAEin and 4.06 to 2.51 in MAEp. The loss
reduction should be attributed to the improved representation
by our designed features. Among the features that we added,
the IIM makes more contribution than the instrument and phase
signals. This suggests that modeling the interactions signifies
the surgeon’s intention and the occurrence of the next situation.
Interestingly, ResNet50 with all added feature achieves a com-
parable result with the baseline model(Rivoir et al., 2020) even
without any temporal modeling.

Tab. 1 also highlights the substantial performance improve-
ment achieved by the MS-TCN refinement stages. Those re-
sults demonstrate the ability of MS-TCN to improve the perfor-
mance of any feature extractor. All feature extractors achieve
higher performance when only 1 stage is used. However, the
2-stage model outperforms the 3-stage one, implying that mul-
tiple rounds ofrefinement may render overfitting over a limited
amount of data.

5.2. Anticipation Results

We evaluate the model for instrument and phase anticipation
on horizons of 2, 3, and 5 minutes. We remove the horizon
setting of 7 minutes since anticipating the surgical workflow
too early is unnecessary for instrument preparation and robot
assistance. We re-implement methods from (Rivoir et al., 2020)
and retrain them as the baseline for phase anticipation.

Tab. 2 shows that IIA-Net achieves lower MAEin and MAEp

error compared to the previous methods. Regarding the MAEp

error, the margin increases even further. Even though (Rivoir
et al., 2020) is trained in an end-to-end fashion, it is also out-
performed by our IIA-Net, which is trained in a two-step pro-
cess. Interestingly, our model trained without temporal context
(Ours 2D) achieved a lower MAEp when h = 5. This is be-
cause the 2D model has difficulty foreseeing the long-horizon

occurrence and is prone to outputting a near-0/h value, leading
to unsmooth prediction. Also, Tab. 2 shows our model achieves
the lowest MAEe error, suggesting that our model can effec-
tively identify instrument or phase occurrence a few seconds
ahead. In real-world scenarios, this is typically the most critical
time for accurate anticipation.

5.3. Robustness to Presence Signals

As indicated in the methodology, the model takes the pe-
ripheral presence signals and embeds them into the joint fea-
ture space for the anticipation. (Yuan et al., 2021) utilizes the
Cholec80’s annotation to provide presence signals for the train-
ing and testing, but how the model performs with noisy sig-
nals remains unexplored. Here, we apply the TeCNO(Czempiel
et al., 2020) as the phase recognition model to generate the rec-
ognized phase presence signal and apply the YOLOv5 to gener-
ate the tool presence signal for model training. In addition, we
apply random artificial noise to show the model’s training and
testing ability with different levels of noise. The entire experi-
ment is conducted under the horizon as 5.

As shown in the Tab. 3, the model’s performance drops when
being tested with noisy signals compared to the recognized sig-
nals. Recall that the surgical phases are high-level activities
and can not be easily anticipated from low-level RGB frames.
Therefore, it is mostly conditioned on the phase presence sig-
nals, causing a large margin of degradation when a noisy phase
signal is fed.

Also, the model trained with annotated signals is sensitive
to the noise, as the MAEe surges from 2.14 to 2.53. Tab. 3
illustrates that the model favors a cleaner signal for the testing,
regardless of the signal types used for training. This indicates
that the training of IIA-Net can dig the occurrence patterns even
from the noisy annotations, easing the annotation burden. Also,
as shown in the first two columns, the model achieves a better
baseline for instrument anticipation, demonstrating IIA-Net’s
strong representational ability.

The model trained with the recognized signals achieves the
strongest robustness against the noisy recognized signals for the
instrument and phase anticipation, as shown in the second col-
umn. It has the smallest degradation when the noisy signal is
fed for inference and still achieve a better result compared to
the baseline. This is because the input of training has been aug-
mented by using recognition model to generate signals. This
provides the clue to perform data augmentation during the train-
ing with slightly noisy instrument and phase presence signals.
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Table 4. Inference Resources. The first two colums are peripheral network to generate presence signals and tool tip detections. The spatial feature extractor
contains the ResNet50 and IIM, deployed sequentially with the MS-TCN.

YOLOv5 UNet Feature Extractor TeCNO MS-TCN Baseline(Rivoir et al., 2020)
Inference Time (s) 0.0090 0.0087 0.0142 0.193 0.0151 0.0328

Number of Parameters (M) 7.9 30 23 23.3 0.3 108.3

Fig. 5. Robustness of the model to the recognized instrument and phase signals. The model trained with human annotated presence signals is framed by
blue and the model train trained with recognized signals is framed by black.

As shown in the Fig. 5, the noise from presence signals sig-
nificantly influences the phase anticipation and causes a lot false
positive predictions. For the instrument anticipation, the model
trained with recognized presence signals can better the starting
point of the specimenbag compared to that trained with anno-
tated signals. For the other instruments, the models perform
similarly, meaning the noise in instrument presence signal does
not affect the anticipation too much.

5.4. Running Time Performance
To deploy the model into the end device, the most concerning

problem is the space-time tradeoff, i.e., the balance between the
GPU memory and the inference time. In this work, there are to-
tally five networks and four of them can be deployed parallelly,
namely, ResNet50(He et al., 2016), UNet(Ronneberger et al.,
2015), TeCNO(Czempiel et al., 2020) and YOLOv5(Jocher,

2020). The MS-TCN will be applied for the sequence mod-
eling after the above four networks finishing the inference. In
this work, we implement the model in PyTorch and train it on a
NVIDIA RTX 2080 Ti with 12GB GPU.

As shown in Tab. 4, the longest running time per
frame is Max(YOLOv5,UNet,ResNet50) + MS − TCN =

Max(0.0090s, 0.0087s, 0.0142s+0.193s)+0.0151s = 0.0344s,
and the Max operation is introduced because multiple models
can run in parallel. The speed can completely fulfill the real-
time requirement in clinical tasks and the efficiency is compara-
ble to the (Rivoir et al., 2020) taking 0.0328s via CNN+LSTM
architecture.

5.5. Effect of Sequence Modeling
As shown in the Fig. 6, the sequence modeling of MS-TCN

smooths and denoises the remaining time prediction from the
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Table 5. wMAE/MAEout comparison. We report the mean over instrument types in minutes per metric. Ours 2D: our feature extractor without temporal
training.

Instrument Phase
h = 2min h = 3min h = 5min h = 2min h = 3min h = 5min

MeanHist 0.56/0.04 0.85/0.08 1.42/0.20 – – –
OrcaleHist (offline) 0.50/0.07 0.72/0.12 1.12/0.22 – – –

Baseline(Rivoir et al., 2020) 0.42/0.08 0.64/0.15 1.12/0.44 0.39/0.15 0.59/0.32 0.85/0.52
IIA-Net (2D) 0.43/0.11 0.64/0.19 1.06/0.45 0.34/0.11 0.50/0.17 0.75/0.28

IIA-Net 0.40/0.10 0.60/0.19 1.03/0.44 0.32/0.10 0.47/0.18 0.75/0.28

Fig. 6. Effect of sequence modeling in phase anticipation. The upper part is from IIA-Net (2D), which does not contain sequence modeling method. The
bottom part is the full model with MS-TCN as the sequence modeling method.

IIA-Net (2D). It significantly reduces the noise at the beginning
of the surgery when the 2D model tends to output a sharp and
irrational prediction. At the same time, it maintains the antici-
pation trending when the phase is really happening in next few
minutes, as shown in the grey area. This indicates that the se-
quence modeling is necessary because the over-sharp outputs
is not straightforward signal for the decision making and intro-
duces ambiguity.

5.6. Trade-off between Inside and Outside Horizon

As the MAEp has undesirable properties to capture the minor
mistakes outside the horizon, it favors models with more erratic
predictions. This makes the MAEp metric unsuitable to mea-
sure the the overall anticipation performance. Also, the solely
usage of MAEin and MAEe does not capture the ’false posi-
tive’ predictions from ’non-presence’ frames, leading to incom-
plete evaluation of the model. Therefore, we follow the Rivoir
et al. (2020) and report the results of MAEout and MAEw, which
are the mean square error of frames outside the horizon and
the weighted average of MAEin and MAEout, respectively. As
shown in the Tab. 5, our proposed IIA-Net achieves the superior
MAEw result compared to the previous methods for both instru-
ment anticipation and phase anticipation. However, the MAEout

of IIA-Net for instrument anticipation is comparable and some-
times worse than the baseline method Rivoir et al. (2020), indi-
cating that our method exhibits a trade-off between the frames
inside and outside the horizon. This trade-off makes IIA-Net

more sensitive and generates more ’fals positive’ predictions.
However, given the better MAEw and MAEin, we would like to
say this trade-off is acceptable for some specific surgical sce-
narios. Also, for the phase anticipation, the IIA-Net achieves
the better result both for the MAEw and MAEout, confirming
the better representation learning ability of this work. In the
future work, the sensitivity of the model should be investigated
and proposed.

6. Discussion

This work aims to raise the interest of surgical workflow
anticipation tasks, benefiting the current computer-assisted
surgery system. The anticipation model can generate a useful
peripheral signal, indicating the remaining time until the next
occurrence of certain instrument/phase. This signal offers four-
fold prominent benefits for clinicians. Firstly, the reliable antic-
ipation prediction provides a useful reference to robotic systems
in decision making. It can support the surgeon to decide when
to go into the next phase and when to introduce next instru-
ment for the current situation. Secondly, accurately anticipating
tools such as the irrigator can help the early detection and even
the prevention of potential complications, for example, mas-
sive haemorrhage. Thirdly, it allows real-time instruction for
automated surgical coaching therefore increasing patient safety
and reducing surgical errors. Also, the anticipation of surgical
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phases can provide vital input to streamline communication in
the operating room (OR).

While a lot of deep learning models have been proposed so
far, it is still a challenging task to find an effective and robust
solution to the anticipation tasks for both surgical phase and in-
strument. Compared with natural video action anticipation, one
of the main challenges for surgical video is the task formula-
tion design for the long-range workflow. Also, it is important to
consider the different occurrence patterns between the surgical
instruments and the phases to build the unified network struc-
ture for the anticipation. Specifically, the surgical phase pattern
assumes that the new phase is occurring within typically one
second and only its correct category is unknown. For the instru-
ment pattern, the occurrence is sparse that certain instruments
are rarely used throughout surgery. Therefore, the dense seg-
mentation and phase trajectory prediction (Ban et al., 2021) do
not fit the surgical workflow anticipation, because they can only
handle the phase anticipation. As another view to handle the an-
ticipation, remaining time prediction can process both the phase
occurrence and instrument occurrence with seamless effort to
modify the training objectives and schemes. Also, it could be
easily deployed in a real-time manner. Therefore, we opt for
this formulation and design the network around this idea.

For the remaining time prediction framework, the horizon h
is used to truncate the output so that the model will neglect the
frames that occur far early from the anticipating ones. However,
the choice of the horizon is empirical and may significantly im-
pact the user experience. For example, if the model is trained by
setting the horizon as 5 and tested with 2, the proposed metrics
will end up with different values. Currently, the horizon is set
the same for both training and testing to conduct the quantitative
evaluation, which can not reflect the real-life user experience.

Another improvement lies in improving the spatial-temporal
representational ability of the spatial feature extraction process.
Instrument interaction proves to be an effective feature to model
the intention. However, the surgeon’s action is modeled implic-
itly in this work and requires the detection model ahead. Re-
cently, (Innocent Nwoye et al., 2021) proposes the CholecT50
dataset with human annotated action triplets for each frame,
enhancing the model’s representational ability explicitly. Fol-
lowing works can base this dataset and design the feature ex-
traction blocks, combining more surgical expert’s priors. For
the sequence modeling, the emerging transformer architectures
empower the long-range video processing. However, the com-
putational cost of transformer is O(n2) and introduces a heavier
GPU burden, thus urgently calling for an more efficient trans-
former.

How to evaluate the model in the real-world scenario is a
common issue for the clinical works. For this surgical work-
flow anticipation work, it is more complex because the system
tells the surgeons the future in the real-time manner. There-
fore, it is more challenging to evaluate this work on the real
surgery. Here we provide the potential direction and hope this
can stimulate more research attention to the real-world clinical
evaluation.Real-time feed back is crucial. The user should not
only react to the current predictions, they should also provide
the post-feedback within a time limit. Then, an offline feedback

based on the whole sequential prediction should be made. How-
ever, current work, including IIA-Net only consider the offline
feedback, which is not feasible for the real-world evaluation.

7. Conclusion

In this paper, we have proposed the IIA-Net that incorporates
various existing surgical workflow analysis methods (including
tool detection, phase recognition and laparoscopic image seg-
mentation) and outperforms previous works. The achieved re-
sults show that the interaction relationship during spatial feature
extraction is effective to resolve surgical workflow anticipation.
In the absence temporal training, the developed model can act
as a decent baseline for the following 2D works. Furthermore,
temporal modelling using a MS-TCN with causal and dilated
convolution handles full temporal resolution of time series, fit-
ting extreme long laparoscopic workflow well. Its large recep-
tive field captures distant and recent observations. Our multi-
task learning scheme offers a promising opportunity for joint
instrument performing and phase anticipation.
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