
Deductive Database Languages: Problems and Solutions
MENGCHI LIU

University of Regina

Deductive databases result from the integration of relational database and logic
programming techniques. However, significant problems remain inherent in this
simple synthesis from the language point of view. In this paper, we discuss these
problems from four different aspects: complex values, object orientation, higher-
orderness, and updates. In each case, we examine four typical languages that
address the corresponding issues.

Categories and Subject Descriptors: H.2.3 [Database Management]: Languages—
Data description languages (DD); Data manipulation languages (DM); Query
languages; Database (persistent) programming languages; H.2.1 [Database
Management]: Logical Design—Data models; Schema and subschema; I.2.3
[Artificial Intelligence]: Deduction and Theorem Proving—Deduction (e.g.,
natural, rule-base); Logic programming; Nonmonotonic reasoning and belief
revision; I.2.4 [Artificial Intelligence]: Knowledge Representation Formalisms
and Methods—Representation languages; D.1.5 [Programming Techniques]:
Object-oriented Programming; D.1.6 [Programming Techniques]: Logic
Programming; D.3.2 [Programming Languages]: Language Classifications; F.4.1
[Mathematical Logic and Formal Languages]: Mathematical Logic—Logic and
constraint programming

General Terms: Languages, Theory

Additional Key Words and Phrases: Deductive databases, logic programming,
nested relational databases, complex object databases, inheritance, object-oriented
databases

1. INTRODUCTION

Databases and logic programming are
two independently developed areas in
computer science. Database technology
has evolved in order to effectively and
efficiently organize, manage and main-
tain large volumes of increasingly com-
plex data reliably in various memory
devices. The underlying structure of da-
tabases has been the primary focus of
research that has led to the develop-

ment of various data models. The most
well-known and widely used data model
is the relational data model [Codd
1970]. The power of the relational data
model lies in its rigorous mathematical
foundations with a simple user-level
paradigm and set-oriented, high-level
query languages. However, the rela-
tional data model has been found inex-
pressive for many novel database appli-
cations. During the past decade, many

Author’s address: Department of Computer Science, University of Regina, Regina, Saskatchewan S4S
0A2, Canada; email: mliu@cs.uregina.ca.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and / or a fee.
© 1999 ACM 0360-0300/99/0300–0027 $5.00

ACM Computing Surveys, Vol. 31, No. 1, March 1999

more expressive data models and sys-
tems have been developed, such as the
ER model [Chen 1976], RM/T [Codd
1979], TAXIS [Mylopoulos et al. 1980],
SDM [Hammer and McLeod 1981], DA-
PLEX [Shipman 1981], SHM1 [Brodie
1984], Gemstone [Maier et al. 1986],
Galileo [Albano et al. 1985], SAM*[Su
1986], Iris [Fishman et al. 1987], IFO
[Abiteboul and Hull 1987], the one for
EXODUS [Carey et al. 1988], Orion
[Kim 1990a; 1990b], O2 [Deux et al.
1991], Jasmine [Ishikawa et al. 1993],
Fabonacci [Albano et al. 1995], ODMG
[Cattell 1996], and others.

Logic programming is a direct out-
growth of earlier work in automatic the-
orem proving and artificial intelligence.
It is based on mathematical logic, which
is the study of the relations between
assertions and deductions and is for-
malized in terms of proof and model
theories. Proof theory provides formal
specifications for correct reasoning with
premises, while model theory prescribes
how general assertions may be inter-
preted with respect to a collection of
specific facts. Logic programming is pro-
gramming by description. It uses logic
to represent knowledge and uses deduc-

tion to solve problems by deriving logi-
cal consequences. The most well-known
and widely used logic programming lan-
guage is Prolog [Colmerauer 1985; Kow-
alski 1988; Sterling and Shapiro 1986],
which uses the Horn clause subset of
first-order logic as a programming lan-
guage and the resolution principle as a
method of inference with well-defined
model-theoretic and proof-theoretic se-
mantics [Lloyd 1987]. However, Prolog
lacks expressiveness in a number of ar-
eas. Over the past several years, a num-
ber of richer and more expressive logic
programming languages have been pro-
posed and implemented, such as LOGIN
[Aït-Kaci and Nasr 1986], LIFE [Aït-
Kaci and Nash 1986], HiLog [Chen et al.
1993], Prolog11 [Moss 1994], Gödel
[Hill and Lloyd 1994], Oz [Smolka
1995], Mercury [Somogyi et al. 1996],
XSB [Rao et al. 1997], etc.

Important studies on the relations be-
tween logic programming and relational
databases have been conducted for
about two decades, mostly from a theo-
retical point of view [Gallaire and
Minker 1978; Gallaire 1981; Jacobs
1982; Ullman 1982; Maier 1983]. Rela-
tional databases and logic programming
have been found quite similar in their
representation of data at the language
level. They have also been found com-
plementary in many aspects. Relational
database systems are superior to the
standard implementations of Prolog
with respect to data independence, sec-
ondary storage access, concurrency, re-
covery, security and integrity [Tsur and
Zaniolo 1986]. The control over the exe-
cution of query languages is the respon-
sibility of the system, which uses query
optimization and compilation tech-
niques to ensure efficient performance
over a wide range of storage structures.
However, the expressive power and
functionality of relational database
query languages are limited compared
to that of logic programming languages.
Relational languages do not have
built-in reasoning capabilities. Besides,
relational query languages are often
powerless to express complete applica-

CONTENTS

1. Introduction
2. Complex-Value Deductive Languages

2.1 LDL
2.2 COL
2.3 Hilog
2.4 Relationlog

3. Object-Oriented Deductive Languages
3.1 O-Logic
3.2 F-Logic
3.3 ROL
3.4 IQL

4. Schema and Higher-Order Features
4.1 HiLog
4.2 L2

4.3 F-logic
4.4 ROL

5. Updates
5.1 Prolog
5.2 DLP and Its Extension
5.3 DatalogA and LDL
5.4 Transaction Logic

6. Conclusion

28 • M. Liu

ACM Computing Surveys, Vol. 31, No. 1, March 1999

tions, and are thus embedded in tradi-
tional programming languages, result-
ing in impedance mismatch [Maier
1987] between programming and rela-
tional query languages. Prolog, on the
other hand, can be used as a general-
purpose programming language. It can
be used to express facts, deductive in-
formation, recursion, queries, updates,
and integrity constraints in a uniform
way [Reiter 1984; Sterling and Shapiro
1986].

The integration of logic programming
and relational database techniques has
led to the active research area of deduc-
tive databases [Gallaire et al. 1984; Ceri
et al. 1990; Grant and Minker 1992].
This combines the benefits of the two
approaches, such as representational
and operational uniformity, reasoning
capabilities, recursion, declarative que-
rying, efficient secondary storage ac-
cess, etc. The function symbols of Pro-
log, which are typically used for
building recursive functions and com-
plex data structures, have not been
found useful for operating over rela-
tional databases made up of flat rela-
tions. As a result, a restricted form of
Prolog without function symbols called
Datalog (with negation), with a well-
defined declarative semantics based on
the work in logic programming, has
been widely accepted as the standard
deductive database language [Ullman
1989a; Ceri et al. 1990].

In the past few years, various set-
oriented evaluation strategies specific
for deductive databases have been the
main focus of extensive research [Ban-
cilhon et al. 1986; Bancilhon and Ra-
makrishnan 1986; Beeri and Ra-
makrishnan 1991; Ceri et al. 1990;
Ioannidis and Ramakrishnan 1988;
Jiang 1990; Mumick et al. 1996; Sacca
and Zaniolo 1987; Ullman 1989a; Ull-
man 1989b] and a number of deductive
database systems or prototypes based
on Datalog have been reported. These
include Nail [Morris et al. 1986], LOLA
[Freitag et al. 1991], Glue-Nail [Derr et
al. 1993], XSB [Sagonas et al. 1994],
CORAL [Ramakrishnan et al. 1994],

Aditi [Vaghani et al. 1994], LogicBase
[Han et al. 1994], Declare/SDS [Kie-
bling et al. 1994] etc. See Ramakrish-
man and Ullman [1995] for a survey of
these deductive database systems. De-
ductive database systems have been
used in a variety of application domains
including scientific modeling, financial
analysis, decision support, language
analysis, parsing, and various applica-
tions of transitive closure such as bill-
of-materials and path problems [Ra-
makrishman 1994]. They are best
suited for applications in which a large
amount of data must be accessed and
complex queries must be supported.

However, significant problems remain
inherent in this kind of deductive data-
base from the language point of view. In
this paper, we investigate four problem-
atic areas. The first one is that such
deductive databases provide inexpres-
sive flat structures and cannot directly
support the complex values common in
novel database applications. The second
is that object orientation offers some of
the most promising ways of meeting the
demands of the most advanced database
applications, but it is not clear how to
incorporate object orientation into de-
ductive databases to increase their data
modeling capability. The third is that
current deductive databases cannot nat-
urally deal with schema and higher-
order features in a uniform framework
so that a separate, non-logic-based lan-
guage is normally provided to specify
and manipulate the schema informa-
tion. Finally, it is necessary to be able to
update and modify a database, but
there is no immediately obvious way of
expressing updates within a logical
framework. We elaborate these prob-
lems and survey four typical languages
for each area with consistent examples.

There are other significant issues rel-
evant to deductive database languages.
These include semantics of logic pro-
grams with negation such as predicate
stratification and fixpoint semantics
[Apt et al. 1988], local stratification and
perfect model semantics [Przmusinski
1988], stable model semantics [Gelfond

Deductive Database Languages: Problems and Solutions • 29

ACM Computing Surveys, Vol. 31, No. 1, March 1999

and Lifschitz 1988; Przymusinski 1990],
modularly stratified semantics [Ross
1994], well-founded semantics [Gelder
et al. 1991] and alternating fixpoint se-
mantics [Gelder 1993]; non-Horn clause
logic programs such as disjunctive de-
ductive databases [Fernández and
Minker 1992a; Fernández and Minker
1992b; Barback 1992; Subrahmanian
1993], hypothetical reasoning [Bonner
1989; Bonner 1990; Chen 1997; Inoue
1994; Sattar and Goebel 1997]; con-
straints [Brodsky 1993; Jaffar and Ma-
her 1994; Grumbach and Su 1996], etc.
However, we believe that a separate
survey is more appropriate for these
issues. Indeed, the languages we survey
here deal only with predicate stratifica-
tion and fixpoint semantics.

Throughout this paper, we follow the
Prolog convention and use words start-
ing with upper-case letters for variables
and ”_” for anonymous variables.

2. COMPLEX-VALUE DEDUCTIVE
LANGUAGES

The relational data model, which im-
poses the first normal form (1NF) re-
striction, has been found to be inexpres-
sive for many novel database
applications, such as engineering de-
sign, graphic databases, CAD/CAM,
etc., as these applications require
proper representation and manipulation
of arbitrarily complex values with inter-
nal structures. The nested relational
and complex-value data models [Abite-
boul et al. 1987; Ozsoyogly and Yuan
1987; Roth et al. 1987; Roth 1988; Colby
1989; Levene and Loizou 1993; Abite-
boul and Beeri 1995] developed during
the past decade allow tuple components
of a relation to be possibly nested
tuples, sets or even relations.

Datalog is based on 1NF relations and
therefore cannot support nested tuples
and sets. In fact, its predecessor Prolog
can indirectly support nested tuples by
using functors. For example, we may
use the following facts in Prolog to store
information about cars and their own-
ers:

car~vehicle~ny_858778, chevy_vega, 1983!,
owner~name~arthur, keller!,

getFrom~dealer!))

car~vehicle, ~ny_358735, volkswagen, 1990!
owner~name~arthur, keller!,

getFrom~owner~name~kurt, godel!,
getFrom~owner~name~norbert, wiener!,

getFrom~dealer!))))))

where vehicle, name, owner, getFrom
are functors that are not interpreted (or
are freely interpreted) because they
have no prior meanings.

Prolog also indirectly supports sets by
using lists. In Prolog, set expressions
are represented using the built-in pred-
icate setof:

setof~X, P, S!

where P represents a goal or goals, X is
a variable occurring in P, and S is a list
whose elements are sorted into a stan-
dard order with no duplicates and can
be treated as a set. It is read as “The set
of instances of X such that P is provable
is S”. In other words, S 5 $XP%.

The problems with the setof predicate
in Prolog are that it is based on lists
and that it is not a first-order predicate
so its semantics is not well-defined. Be-
sides, the usage of lists as sets is not
expressive enough. The simple member-
ship predicate has to specify details
about implementation, such as how to
iterate over the lists. When a predicate
involves more than one set, the program
can become quite complicated and non-
intuitive, which is contrary to the gen-
eral philosophy of declarative program-
ming [Kuper 1990].

For this reason, Datalog has been ex-
tended in the past several years to in-
corporate tuple and/or set constructors
[Kuper 1990; Beeri 1991; Abiteboul and
Grumbach 1991; Liu 1998b]. In the
meantime, Prolog has also been ex-
tended to incorporate general-purpose
set constructs and basic operations on
sets [Dovier et al. 1996; Jayaraman
1992; Hill and Lloyd 1994].

30 • M. Liu

ACM Computing Surveys, Vol. 31, No. 1, March 1999

In this section, we examine four dif-
ferent Datalog extensions: LDL, COL,
Hilog and Relationlog.

2.1 LDL

LDL (Logical Data Language) [Tsur and
Zaniolo 1986; Naqvi and Tsur 1989;
Chimenti et al. 1990; Beeri et al. 1991]
is the first language to extend Datalog
to support complex values with well-
defined semantics. It has been imple-
mented at MCC. Like Prolog, LDL can
indirectly support tuples by using func-
tors. In addition, it directly supports
sets.

Example 2.1 Consider the following
nested relation Dept2Employees:3

We can represent this relation in LDL
by using the following two facts:

dept2employees~ cpsc,
$empl~bob, $db, ai%!,
empl~joe, $os, pl, db%!%!

dept2employees~ math,
$empl~sam, $gt, cm, si%!,
empl~tom, $ca%!%!

To support access to elements in a set,
LDL allows the use of the member pred-
icate ~[!. To support the construction

of sets with rules, LDL provides two
powerful mechanisms: set enumeration
and set grouping. With set enumera-
tion, a set is constructed by listing all of
its elements. With set grouping, a set is
constructed by defining its elements
with a property that they must satisfy.
Several examples are given below.

Example 2.2 To derive a relation on
sets of book titles from the book base
relation such that the total price of any
three different books does not exceed
$100, we can use the following rule with
a set enumeration term $X, Y, Z% in
LDL:

book2deal~$X, Y, Z%! :- book~X, Px!,
book~Y, Py!, book~Z, Pz!,
X Þ Z, Y Þ Z,
Px 1 Py 1 Pz , 100

Note that we can specify the cardinal-
ity of the sets with set enumeration.
This feature is not directly supported in
Prolog.

Example 2.3 Consider the relation
parentof represented as facts in LDL as
follows:

parentof~bob, pam!
parentof~bob, tom!

The following set-grouping rule in LDL
groups all parents of a person into a set
and obtains parentsof~bob, $ pam,
tom%!, where ^Y& is a set-grouping
term:

parentsof~X, ^Y&! :- parentof~X, Y!

Unlike set enumeration, we cannot
specify the cardinality of the sets with
set grouping.

In LDL, programs must be predicate-
stratified (or layered) based on grouping
and negation in order to have a seman-
tics. Given a rule of the form A :- L1,
..., Ln, where n $ 0, if Li is negated or
A has grouping, then this rule must be
evaluated after the rules whose heads

Dept_Employees

Dept Employees

Name Areas

Area

cpsc bob db

ai

joe os

pl

db

math sam gt

cm

si

tom ca

Deductive Database Languages: Problems and Solutions • 31

ACM Computing Surveys, Vol. 31, No. 1, March 1999

have the same predicate symbol as Li,
for each 1 # i # n. That is, each Li
must be completely known when we
evaluate this rule. Whether or not a
program is predicate-stratified can be
determined statically based on the pred-
icate symbols in the program.

There are three significant limita-
tions in LDL. First, the grouping mech-
anism is restricted to a single rule
rather than to a set of rules (or a pro-
gram).

Example 2.4 Consider the following
facts:

fatherof~bob, pam!
motherof~bob, tom!

We cannot use the following grouping
rules in LDL to group all parents of a
person into a set and obtain parentsof
~bob, $ pam, tom%!:

parentsof~X, ^Y&! :- fatherof~X, Y!
parentsof~X, ^Y&! :- motherof~X, Y!

as they actually generate parentsof
~bob, $ pam%! and parentsof ~bob,
$tom%! instead. We have to introduce an
intermediate relation parentof and use
it to obtain the desired result, as shown
in Example 2.3.

The second problem is that grouping
requires predicate stratification, which
makes direct recursive definition of a
nested relation impossible.

Example 2.5 Consider the following
two rules:

ancestorsof~X, ^Y&! :- parentsof~X, S!, Y [S

ancestorsof~X, ^Y&! :- parentsof~X, S1!, Z[S1,
ancestorsof~Z, S2!, Y [S2

Here we intend to define the nested
relation ancestorsof directly and recur-
sively. However, we cannot achieve
what we intend in LDL as grouping is
restricted to a single rule and grouping

requires us to know the parentsof and
ancestorsof relations in the body be-
fore we can evaluate the ancestorsof
relation in the head in the second rule.
One way around this problem is to in-
troduce a flat intermediate relation
ancestorof as follows:

ancestorof~X, Y! :- parentsof~X, S!, Y [S

ancestorof~X, Y! :- parentsof~X, S1!, Z [S1,
ancestorof~Z, Y!

ancestorsof~X, ^Y&! :- ancestorof~X, Y!

Finally, it is cumbersome to access
deeply nested data and to nest/unnest
relations, since we must be procedural
by introducing intermediate variables
and/or relations.

Example 2.6 Consider the LDL facts
in Example 2.1 and two queries:

(1) Find the employee names in the
computer science department for
employees whose research areas in-
clude DB.

(2) Find if AI is a research area for
employees.

We can represent them in LDL as
follows by starting from the top level
and gradually getting to the level we
want and introducing intermediate
variables S1 and S2:

? 2 dept2employees~cpsc, S1!,
empl~X, S2! [S1,
db [S2.

? 2 dept2employees~_, S1!,
empl~_, S2! [S1,
ai [S2

Example 2.7 The nested relation
Dept_Employees in Example 2.1 can be
obtained from the following normalized
relation Dept_Employee_Area by using
the nest operation of extended rela-
tional algebra defined in Roth et al.
[1988] twice.

32 • M. Liu

ACM Computing Surveys, Vol. 31, No. 1, March 1999

In order to obtain Dept_Employees
from Dept_Employee_Area in LDL, we
have to use grouping several times and
introduce several intermediate relations
as follows:

r1~D, E, ^A&! :- dept2employee2area~D, E, A!

r2~D, empl~E, As!! :- r1~D, E, As!

dept2employees~D, ^Es&! :- r2~D, Es!

2.2 COL

COL (Complex Object Language) [Abite-
boul and Grumbach 1991] is a typed
extension of Datalog that supports com-
plex values directly. Unlike LDL, which
uses functor objects for tuples indi-
rectly, COL directly supports tuples,
tuple constructors and sets.

The nested relation Dept_Employees
in Example 2.1 can be represented in
COL as follows:

dept2employees~cpsc, $@bob, $db, ai%#,
@joe, $os, pl, db%#%!

dept2employees~math, $@sam, $gt, cm, si%#,
@tom, $ca%#%!

A novel feature of COL is the use of
interpreted functors called data func-
tions in a deductive framework. Data
functions play a crucial role in func-
tional data models and in many seman-
tic data models. Their use in COL pro-
vides natural support for functional
dependencies in deductive databases. In
LDL, functional dependencies are not
supported.

In COL, data functions and the mem-

ber predicate ~]! can be used to access
sets and to construct sets through
grouping or enumeration. Unlike LDL,
where sets are unnamed, data functions
in COL are used to name sets.

Consider the facts in Example 2.4
again. The parentsof relation can be
defined in COL using the functor par as
follows:

par~X!] Y :- fatherof~X, Y!

par~X!] Y :- motherof~X, Y!

parentsof~X, par~X!!

The functor par is used to group every
parent Y of a person X into a set de-
noted by par~X! and grouping can in-
volve more than one rule. Note that the
unique set of parents associated with X
is named by the data function par~X!.

In COL, we can group a set recur-
sively using data functions.

Example 2.8 The task shown in Ex-
ample 2.5 can be represented in COL as
follows:

anc~X!] Y :- par~X!] Y

anc~X!] Y :- par~X!] Z, anc~Z!] Y

ancestors~X, anc~X!!

The set enumeration of LDL shown in
Example 2.2 can be performed in COL
using a 0-ary functor f as follows:

f] $X, Y, Z% :- book~X, Px!,
book~Y, Py!, book~Z, Pz!,
X Þ Y, X Þ Z, Y Þ Z,
Px 1 Py 1 Pz , 100

book2deal~X! :- f] X

As a result, COL allows grouping over
several rules recursively with data func-
tions. However, it is still cumbersome to
access deeply nested data in order to
nest/unnest relations.

To represent the two queries in Ex-
ample 2.6 in COL, we still must intro-

Dept_Employee_Area

Dept Employee Area

cpsc bob db
cpsc bob ai
cpsc joe os
cpsc joe pl
cpsc joe db
math sam gt
math sam cm
math sam si
math tom ca

Deductive Database Languages: Problems and Solutions • 33

ACM Computing Surveys, Vol. 31, No. 1, March 1999

duce intermediate functions f and g as
follows:

? 2 dept2employees~cpsc, f!,
f] @X, g#, g] db

? 2 dept2employees~_, f!,
f] @_, g#, g] ai

The following rules in COL show how
to obtain the nested relation Dept Em-
ployees in Example 2.1 from the normal-
ized relation Dept_Employee_Area in
Example 2.7:

f~D, E!] A :- dept2employee2area~D, E, A!

r1~D, E, f~D, E!!

g~D!] @E, As# :- r1~D, E, As!

dept2employees~D, g~D!!

As in LDL, programs in COL must be
stratified as well in order to have a
well-defined semantics. Stratification is
based on predicate and function sym-
bols used in the program. Given a rule
of the form A :- L1, ..., Ln, n $ 0, if Li
is negated or contains a data function,
or A contains a data function, then this
rule must be evaluated after the rules
whose heads have the same predicate or
function symbol as Li or A, for each 1
i # n. As in LDL, whether or not a
program is stratified can be determined
statically based on the predicate and
function symbols occurring in the pro-
gram.

For the task shown in Example 2.5,
we might like to use the following two
rules instead of the rules in Example
2.8 in COL:

anc~X!] Y :-
parents~X, S1!,
S1] Z,
ancestors~Z, S2!,
S2] Y.

ancestors~X, anc~X!!.

However, they are not stratified and
therefore have no semantics in COL.

The stratification of COL has the fol-
lowing limitation:

Example 2.9 [Adapted from Kifer
and Wu [1993]] Consider the following
program in COL:

person~peter, $bridge%!
person~tom, $chess, tennis%!
person~tom, hobby~peter!!

hobby~X!] Y :- person~X, S!, S] Y

The intended meaning of these rules is
that Peter’s hobby is bridge and Tom’s
hobbies include chess and tennis and
every hobby of Peter’s is also a hobby of
Tom’s. However, the program is not
stratified and therefore has no meaning.

2.3 Hilog

Hilog [Chen and Chu 1989; Chen and
Kambayashi 1991] is a typed extension
of Datalog intended to solve some of the
problems of LDL. In Hilog, every set or
tuple must be associated with a name
that can be viewed as an atom or a
functor of Prolog. The relation Dept_
Employees in Example 2.1 can be repre-
sented in Hilog by using one fact as
follows:

dept2employees$
dept~cpsc,

employees$employee~bob,
areas$db, ai%!,

employee~joe,
areas$os, pl, db%!}),

dept~math,
employees$employee~sam,

areas$gt, cm, si%!,
employee~tom,

areas$ca%!})}

Note that the names associated with
tuples and sets must be unique (unique
name assumption). In the above exam-
ple, we cannot change the name dept
employees to employees as the latter is
used inside the relation.

Sets in Hilog have a special meaning.
For example, areas$db, ai% does not

34 • M. Liu

ACM Computing Surveys, Vol. 31, No. 1, March 1999

mean that the set consists of db and ai.
Instead, it means that db and ai are
elements of the set, and is equivalent to
areas$db% and areas$ai%. With this
special meaning, we can directly access
deeply nested data either by giving
their nested structure or using the
unique name associated with them. The
two queries in Example 2.6 can then be
represented in Hilog directly as follows
without introducing any intermediate
symbols:

? 2 dept~cpsc, employees$employee~X, areas$db%!%!

? 2 dept2employees$
dept~_, employees$employee~_, areas$ai%!%!}

With the unique-name assumption,
nested terms in Hilog can be directly
used as atoms. Therefore, the second
query above can be simply represented
as follows:

? 2 areas$ai%

The nested relation Dept_Employees
in Example 2.1 can be obtained from the
normalized relation Dept_Employee_
Area in Example 2.7 by using just the
rule:

dept~X, employees$employee~Y, areas$Z%!%! :-
dept2employee2area~X, Y, Z!

This set mechanism naturally sup-
ports grouping that involves several
rules. The parentsof relation can be ex-
pressed in Hilog as follows:

parentsof~X, parents$Y%! :- fatherof~X, Y!

parentsof~X, parents$Y%! :- motherof~X, Y!

This set mechanism does not require
stratification. The task shown in Exam-
ple 2.5 can be represented in Hilog as
follows:

ancestorsof~X, ans$Y%! :- parentsof~X, par$Y%!

ancestorsof~X, ans$Y%! :- parentsof~X, par$Z%!,
ancestorsof~Z, ans$Y%!

The unstratified COL program in Ex-

ample 2.9 can be expressed in Hilog as
follows:

person~peter, hobbies$bridge%!

person~tom, hobbies$chess, tennis%!

person~tom, hobbies$X%! :-
person~peter, hobbies$X%!

However, the special treatment of
sets in Hilog has its limitations since it
does not allow us to specify explicitly
what a set exactly contains. Therefore,
the set enumeration of LDL is not sup-
ported. Another problem with Hilog is
that the unique-name assumption is not
practical for large databases.

The Hilog language is not higher-or-
der in the sense that we cannot use
variables for the names associated with
the sets and tuples. In Section 4.1, we
discuss a true higher-order language
that has a similar name: HiLog.

2.4 Relationlog

Relationlog (Relation LOGic) [Liu 1995;
1998b] is another typed extension of
Datalog with powerful set and tuple
constructors. It has been implemented
at the University of Regina [Liu and
Shan 1998; Shan and Liu 1998]. Rela-
tionlog combines the best features of
LDL, COL and Hilog. It directly sup-
ports complex values as COL. The
nested relation Dept_Employees in Ex-
ample 2.1 can be represented in Rela-
tionlog in the same way as in COL.

Relationlog allows negation, supports
Hilog’s special set treatment with par-
tial set terms, and eliminates the
unique-name assumption. A partial set
term has the form ^X, Y, Z& and corre-
sponds to a Hilog set term p$X, Y, Z%
for some name p. It also supports set
enumeration in LDL with complete set
terms. A complete set term is of the
form $X, Y, Z% and corresponds to an
LDL set-enumeration term of the same
form.

Unlike set-grouping terms in LDL,
partial set terms in Relationlog can ap-

Deductive Database Languages: Problems and Solutions • 35

ACM Computing Surveys, Vol. 31, No. 1, March 1999

pear not only in the head but also in the
body of a rule. When a partial set term
appears in the body, it denotes part of a
set, as in Hilog. When appearing in the
head, it is used to group a set as in LDL.
Several rules can be used to group the
same set.

Consider Example 2.4 again. The par-
entsof relation can be directly defined in
Relationlog as follows:

parentsof~X, ^Y&! :- fatherof~X, Y!

parentsof~X, ^Y&! :- motherof~X, Y!

Here two rules are used to group the
same set.

As in LDL and COL, programs must
be stratified in order to have a seman-
tics. Stratification is based on predicate
symbols used in the program. Given a
rule of the form A :- L1, ..., Ln where n
$ 0, if Li is negated or contains a com-
plete set term, then this rule must be
evaluated after the rules whose head
has the same predicate symbol as Li, for
each 1 # i # n. As in LDL and also
COL, whether or not a program is strat-
ified can be determined statically based
on the predicate symbols occurring in
the program.

As the use of partial set terms in the
head does not require stratification, the
ancestorsof relation in Example 2.5 can
be defined recursively in Relationlog as
follows:

ancestorsof~X, ^Y&! :- parentsof~X, ^Y&!

ancestorsof~X, ^Y&! :-
parentsof~X, ^Z&!,
ancestorsof~Z, ^Y&!

As in Hilog, deeply nested data can be
directly accessed in Relationlog with
partial set terms. The two queries in
Example 2.6 can be represented in Rela-
tionlog directly as follows, without in-
troducing any intermediate symbols:

? 2 dept2employees~cpsc, ^@X, ^db&#&!
? 2 dept2employees~_, ^@_, ^ai&#&!

We can obtain the nested relation
Dept_Employees in Example 2.1 from
the normalized relation Dept_Employee_
Area in Example 2.7 by using only one
rule, as in Hilog:

dept2employee~X, ^@Y, ^Z&#&! :-

dept2employee2area~X, Y, Z!

The unstratified COL program in Ex-
ample 2.9 can be expressed clearly as a
stratified program in Relationlog as fol-
lows:

person~peter, $bridge%!

person~tom, ^chess, tennis&!

person~tom, ^X&! :- person~peter, ^X&!

The first fact says that Peter has ex-
actly one hobby, which is bridge. The
second fact says that Tom’s hobbies in-
clude chess and tennis. The rule states
that every hobby of Peter’s is also a
hobby of Tom’s.

Relationlog has the following limita-
tions. First, while it supports incom-
plete sets by using partial set terms, it
does not support incomplete tuples (i.e.,
tuples with null values), which are com-
mon in database applications. For ex-
ample, the tuple fatherof~tom, '!,
representing that Tom’s father is un-
known, cannot be represented in Rela-
tionlog. Therefore, it is not clear what
the meanings of recursive rules are
when both incomplete sets and tuples
appear. Next, since the complete set
terms in Relationlog cannot contain
partial set terms, it is not possible to
have a set of which we know the cardi-
nality but for which we do not have
complete knowledge of some of the ele-
ments, such as $^a, b&, $b, c%%. Besides,
there is no easy way to query sets of a
particular cardinality in Relationlog,
such as sets of cardinality $ 2 or # 2.
Finally, being a complex-value lan-
guage, Relationlog is lacking in its data-
modeling power, as we discuss in the
next section.

36 • M. Liu

ACM Computing Surveys, Vol. 31, No. 1, March 1999

3. OBJECT-ORIENTED DEDUCTIVE
LANGUAGES

Object-oriented concepts have evolved
in three different disciplines: first in
programming languages, then in artifi-
cial intelligence, and then in databases
(since the end of the 60’s). Indeed, object
orientation offers some of the most
promising ways to meet the demands of
many advanced database applications.
In this section, we first introduce the
fundamental principles of the object-ori-
ented data models and then examine
their applications in deductive database
languages.

Object Identity In a value-oriented
database, keys, which are values, are
used to represent objects in the real
world. A fundamental problem with
such a representation of objects is that
keys are subject to updates. Updating a
key causes a break in the continuity in
the representation of the object. Fur-
thermore, care must be taken to update
all tuples and sets that refer to this
object to reflect the change. Object-ori-
ented databases permit the explicit rep-
resentation of real-world objects
through the use of object identifiers,
which are different from values in the
database. A unique object identifier
within the entire database is assigned
to each object that can be represented in
the database and this association be-
tween object identifier and object re-
main fixed. Unlike values, an object
identifier can be created or destroyed
but cannot be updated. Two objects are
different if they have different object
identifiers even if they have the same
attribute values. Whether or not the
user can access object identifiers varies
from system to system.

Complex Values Each object is asso-
ciated with a value, which may be com-
plex. The value associated with the ob-
ject can contain object identifiers so
that two objects can share an object by
referencing the same object identifier.
Updates to the values of the shared
object do not affect the objects that refer

to it. The value part of an object is also
called its state [Beeri 1989; Kim 1990a].

Objects Since an object in the real
world is associated with an object iden-
tifier and a value in an object-oriented
database, a natural question is what an
object is in a database. There are two
kinds of views in object-oriented data-
bases. One view is that everything is an
object; that is, classes, object identifiers,
atomic values, tuples, and sets are all
objects. Objects are related to each
other through attributes. The attribute
values of an object can change but not
the object itself. With this view, at-
tributes of objects can be expressed in
terms of functions and all attribute val-
ues together form a tuple. This view is
used in Iris [Fishman et al. 1987] and
Jasmine [Ishikawa 1993]. This view
naturally incorporates functional and
multivalued dependencies. The other
view is that the pair of object identifier
and its associated value together is an
object. This view is used in the object-
oriented data models O2 [Lecluse and
Richard 1989], Orion [Kim 1990a;
1990b] and ODMG-93 [Cattell 1996].
The first view results in a simpler se-
mantics, which is very important for a
logic-based language, while the second
view allows object identifiers to identify
not only tuples but also atomic values
and sets.

Methods Objects in an object-ori-
ented database are manipulated with
methods. A method has a name, a signa-
ture, and an implementation. The name
and signature provide an external inter-
face to the method. The implementation
is typically written in an extended pro-
gramming language.

Classes A class is a set of objects that
have exactly the same internal struc-
ture and therefore the same attributes
and the same methods. The class to
which an object belongs is called the
immediate, proper or primary class of
the object. A class directly captures the
instance-of relationship between an ob-
ject and the class to which it belongs. In
addition, it provides the basis on which

Deductive Database Languages: Problems and Solutions • 37

ACM Computing Surveys, Vol. 31, No. 1, March 1999

a query may be formulated. It also de-
fines the attributes and methods of its
instances. It is sometimes useful to al-
low an object to belong to more than one
class. However, in most systems, an ob-
ject must belong to only one class for
performance reasons. In this case, an
object is said to have a unique primary
class. As we show shortly, inheritance
makes it possible for an object to belong
logically to more than one class.

Class Hierarchies and Inherit-
ance Classes are organized into class
hierarchies, which capture the generali-
zation relationship between a class and
its subclasses. Subclasses inherit the
attributes and methods of their super-
classes. An instance of a subclass logi-
cally belongs to its superclasses. Inher-
itance enables us to reduce the
redundancy of the specification while
maintaining its completeness. Inherit-
ance normally takes place between
classes, whereas instances are com-
pletely “sterile” in the object-oriented
data models. A subclass can modify the
attributes/methods inherited. This mod-
ification is called overriding. In addi-
tion, some attributes/methods defined
in a superclass may not be applicable to
its subclass. In this case, a subclass
must block (or cancel) their inheritance.
Inheritance can be single or multiple. In
the case of single inheritance, the sub-
class hierarchy forms a tree; in the case
of multiple inheritance, the subclass hi-
erarchy forms a DAG. Multiple inherit-
ance is more elegant than single inher-
itance, but conflicts may arise when an
attribute/method name is defined in two
or more superclasses. Several ap-
proaches are used to resolve an ambigu-
ity. One is user-specified priority, which
relies on the user to define a priority
among the super classes whose at-
tributes/methods are inherited. Another
one is explicit renaming, which requires
that all attributes/methods inherited
must have distinct names. Overriding
can also be used to resolve ambiguities.
Unfortunately, there is still no consen-
sus for the underlying semantics of mul-
tiple inheritance.

Encapsulation Encapsulation de-
rives from the notion of abstract data
types in programming languages. In an
object-oriented database, objects encap-
sulate data and methods to be applied
on these data. Encapsulation requires
that information about a given object
can be manipulated only by means of
the methods defined for the object. The
user or application program cannot di-
rectly examine or modify the value or
the methods associated with the object.
Therefore, encapsulation provides an
abstract interface to the object and
achieves some kind of logical data inde-
pendence. It is a very useful notion for
data modeling.

3.1 O-Logic

The object-oriented approach was first
applied to a deductive framework in O-
logic (Object Logic) [Maier 1986], which
was in turn based on the logic program-
ming language LOGIN [Aït-Kachi and
Nasr 1986]. It treats object identifiers
and atomic values as objects that can be
related to each other through at-
tributes. Classes can be used but are
not objects.

Example 3.1 The following is an O-
logic program:

joe : employee@name 3 “Joe”,
position 3 prof,
works 3 cs]

sam : employee@name 3 “Sam”,
position 3 inst,
works 3 cs]

cs : dept@name 3 “ComputerScience”,
head 3 joe]

prof : rank@name 3 “Professor”,
pay 3 2000]

inst : rank@name 3 “Instructor”,
pay 3 1000]

E : employee@salary 3 S# :-
E : employee@position 3 R#,
R : rank@pay 3 S#

38 • M. Liu

ACM Computing Surveys, Vol. 31, No. 1, March 1999

where employee, dept, rank are
classes, joe, sam, cs, prof, inst are
object identifiers, and name, position,
works, head, pay, salary are at-
tributes. The facts provide information
about employees, departments, and pay
rate of professors and instructors. The
rule specifies how to infer the salary of
each employee.

In O-logic, tuples and sets are not
allowed. The objects can have arbitrary
attributes but no structural or behav-
ioral information can be defined or de-
clared on their classes and therefore no
inheritance is supported.

As rules can be used, a fundamental
problem is how to generate objects with
rules. This issue is not properly ad-
dressed in O-logic.

Example 3.2 Consider the following
rule in O-logic:

P : interesting2pair@employee 3 E,
manager 3 M] :-

E : employee@name 3 N, works 3 D#
D : dept@manager 3 M :

employee@name 3 N#]

where P, E, M, D, and N are variables,
and interesting2pair, employee, and
dept are classes. The intended meaning
of this rule is that if the employee’s
department’s manager’s name coincides
with the employee’s name, then the pair
of employee and manager is interesting
and an object identifier should be cre-
ated for this pair by using the variable
P that occurs only in the head.

The problem with the rule in Example
3.2 is that it is not clear how the vari-
able P should be quantified [Kifer and
Wu 1993]. Universal quantification over
P obviously does not make sense. It is
suggested in Maier [1986] that P should
be existentially quantified as ~@E!
~@M!~@N!~?P!. However, the argu-
ment for such a quantification is not

well substantiated. It is pointed out in
Kifer and Wu [1993] that the correct
quantification should be ~@E!~@M!
~?P!~@N!. Both happen to work here
because E and M functionally deter-
mine N. If the label name is set-valued,
the two quantifications will yield differ-
ent results. There is no obvious way of
choosing between these two quantifica-
tions using only the syntactic structure
of the rule. The problem is that the
variable P does not appear in the rule
body so that the rule is not domain-
independent [Abiteboul 1995].

3.2 F-Logic

An extended O-logic based on O-logic
was first proposed in Kifer and Wu
[1993], followed by a more general F-
logic (Frame Logic) in Kifer and Lausen
[1989] and Kifer et al. [1995] as a solu-
tion to the problems of O-logic. F-logic
has been partially implemented at Uni-
versität Freiburg in Germany [Frohn et
al. 1997]. It treats atomic values, object
identifiers, functor objects, even at-
tribute and classes as objects. It allows
the declaration of attributes on classes
and supports attribute inheritance.

Example 3.3 The following is an ex-
ample of an F-logic program:

person@name f string,
age f integer,
parents ff person]

employee : : person
joe : employee
tom : person
pam : person
25 : integer
“Joe” : string
joe@name 3 “Joe”,

age 3 25,
parents33$tom, pam%]

where person, employee, integer, and
string are classes, while joe, tom, pam,
25 and “Joe” are object identifiers. The
symbols “::” and “:” denote subclass rela-

Deductive Database Languages: Problems and Solutions • 39

ACM Computing Surveys, Vol. 31, No. 1, March 1999

tionship and class membership respec-
tively. The statement employee::person
says that employee is a subclass of per-
son, joe:employee says that joe is an
instance of the class employee, etc. At-
tributes applicable to the class person
are declared by using double-shafted ar-
rows f and ff , where the former is
for scalar attribute definitions and the
latter for set-valued attribute defini-
tions. They are inherited by the sub-
class employee. Attribute values of the
object joe are represented by using sin-
gle-shafted arrows 3 and 33, where
the former is for scalar values and the
latter for set values, corresponding to
double-shafted arrows.

F-logic is a powerful deductive lan-
guage with a well-defined semantics
compared to O-logic. It supports functor
objects and sets. It also allows the use of
functor objects as classes, attributes,
and object identifiers. The interesting-
pair rule of O-logic in Example 3.2 can
be represented in F-logic as follows:

f~E, M! : interesting2pair
@employee 3 E, manager 3 M# :-

E : employee@name 3 M : string, works 3 D#
D : dept@manager3M : employee@name3 N#

where f is a functor and the rule infers
functor objects such as f~bob, sam! as
instances of the class interesting pair.

This object-creation mechanism is
also used in the object-oriented deduc-
tive languages C-logic [Chen and War-
ren 1989] and LIVING IN A LATTICE
[Heuer and Sander 1993].

Unlike O-logic, which only supports
simple attributes, F-logic supports pa-
rameterized attributes. For example, we
can have the following program in F-
logic:

person@children2with@person ff person#
bob@children2with@liz33$tom, pam%#
bob@children2with@ann33$ jim%#

F-logic has several drawbacks. First,

there is no distinction between classes
and objects, since the domains for
classes and objects are the same. They
can be distinguished only from their
occurrences in the program. The at-
tribute declaration information cannot
really be strictly separated from at-
tribute value information in F-logic. As
a result, there is no clear separation
between the notions of schema and in-
stance, which is essential for database
systems.

F-logic is a pure object-oriented de-
ductive language. It does not directly
support relationships as do in value-
oriented deductive languages discussed
in the previous section. It only supports
monotonic multiple attribute inherit-
ance, and does not support attribute
overriding and blocking.

In F-logic, sets are not treated as ob-
jects and cannot have attributes. Func-
tor objects cannot contain sets. As a
result, the object-creation mechanism in
F-logic is limited, since we cannot cre-
ate objects directly based on some sets.
Furthermore, the arguments associated
with attributes cannot be sets either.

The treatment of sets in F-logic is the
same as in Hilog. For a statement
bob@age 3 30#, 30 is the value of the
attribute age of bob. If a set is involved,
the semantics is different. For a state-
ment bob@children33$jim, pat%#, the
set $jim, pat% does not mean that it is
the value of the children of bob. Instead,
it means it is part (subset) of the set
value and therefore it is possible to have
another statement such as
bob@children33$sam%#. The (com-
plete) value of children of bob is the
union of all such partial values that can
be inferred from the program. This spe-
cial treatment allows the complete
value of a set-valued attribute to be
inferred in a number of steps using sev-
eral rules. The following is an example:

X@ancestors33$Y%# :- X@parents33$Y%#

X@ancestors33$Y%# :- X@parents33$Z%#,
Z@ancestors33$Y%#

40 • M. Liu

ACM Computing Surveys, Vol. 31, No. 1, March 1999

As in Hilog, this unique treatment of
sets makes it impossible to specify the
complete value of a set-valued attribute.
For example, if we know that tom and
pam are the two parents of joe, we can
only use the statement:

joe@parents33$tom, pam%#

which will not prevent additional per-
sons from being inferred as joe’s parent.

Next, F-logic is an untyped language
with a complicated syntax and seman-
tics full of various symbols. However,
important features such as typing and
unique primary class (the lowest class
in the class hierarchy where the object
is an instance of) for objects are not
built into the semantics, but are dealt
with using axioms. In terms of program-
ming, this means that the user should
take care of them by properly including
corresponding axioms into the programs
if he wants his program to be typed or
objects to have unique primary class. As
well, the notion of typing expressed in
axioms can only be applied to attribute
values rather than functor objects.

Finally, F-logic does not support be-
havioral object-oriented features such
as methods and encapsulation.

3.3 ROL

ROL (Rule-based Object Language) [Liu
1996; 1998a] is a recently proposed ob-
ject-oriented deductive language imple-
mented at the University of Regina [Liu
et al. 1998]. It is based on F-logic and
solves some of the problems of F-logic
discussed above.

Unlike F-logic, ROL is a typed lan-
guage. Objects and classes are strictly
distinguished and function at two differ-
ent levels: schema and instance. At the
schema level, we declare classes, at-
tributes on classes, and subclasses. The
attribute declarations of a class con-
strain the instances of the class. At the
instance level, we use facts and rules to
provide extensional and intensional in-
formation about objects. In addition,
ROL allows both partial and complete

information about set-valued attribute
to be specified by supporting limited
forms of partial and complete set terms
of Relationlog.

The F-logic program in Example 3.3
can be expressed equivalently in ROL
as follows:

Schema
person@name f string,

age f integer,
parents f $person%]

employee isa person

Facts
tom : person
pam : person
joe : employee@name 3 “Joe”,

age 3 25,
parents 3 ^tom, pam&]

where person, employee, integer, and
string are classes, joe, tom, and pam
are object identifiers, and ^tom, pam&
is partial set term. Unlike F-logic, ROL
builds in value classes such as integer,
string, real, etc. The symbols isa and :
are used to denote immediate subclass
relationship and primary class member-
ship respectively. The double-shafted
arrow f is used for both scalar and
set-valued attribute definitions and the
single-shafted arrow 3 is used for
both scalar and set-valued attribute val-
ues. If we want to represent that tom
and pam are the only parents of joe, we
can replace the partial set term ^tom,
pam& with the complete set term
$tom, pam%.

Unlike F-logic, ROL has a simple syn-
tax and semantics. The semantics build-
sin important object-oriented features,
such as typing, multiple inheritance
and unique primary class. In ROL, func-
tor objects are required to be typed with
respect to their class definitions. For
example, functor objects interesting_
pair~bob, sam! and list~1, list~2,
list~3, nil!!! are instances of the func-

Deductive Database Languages: Problems and Solutions • 41

ACM Computing Surveys, Vol. 31, No. 1, March 1999

tor class interesting2pair and
list~integer, list!, respectively.

A novel feature of ROL is that its
functor classes generalize classes and
relations. Functor objects can directly
represent relationships in ROL. They
can have attributes and can be used as
attribute values. In addition, functor ob-
jects can contain sets and thus are more
general than those in F-logic. As a re-
sult, ROL subsumes predicate-stratified
Datalog (with negation) and LDL with-
out grouping and Relationlog without
partial set terms as special cases. For
example, the following LDL rules are
also ROL rules:

int~s~X!! :- int~X!

ancestor~X, Y! :- parent~X, Y!

ancestor~X, Y! :- parent~X, Z!,
ancestor~Z, Y!

book2deal~$X, Y, Z%! :- book~X, Px!,
book~Y, Py!, book~Z, Pz!
X Þ Y, X Þ Z, Y Þ Z,
Px 1 Py 1 Pz , 100

The interesting-pair rule in Example
3.2 can be represented in ROL as fol-
lows:

interesting2pair~E, M! :-
E : employee@name 3 N, works 3 D#,
D : dept@manager 3 M#,
M : employee@name 3 N#

Here, a typed functor object interest-
ing_pair ~E, M! that has no separate
identifier is used for each interesting-
pair object, whereas in F-logic, an un-
typed functor object of the class interest-
ing_pair is used as an identifier for the
associated interesting pair.

ROL supports non-monotonic multi-
ple attribute inheritance, as discussed
in Borgida [1988], whereas F-logic sup-
ports only monotonic multiple attribute
inheritance. Subclasses in ROL can in-
herit attribute declarations of their su-
perclasses and can also override such
inheritance.

Example 3.4 In an international cou-
rier service address database, we may
have three classes address, us_address
(for U.S.A.), cn_address (for Canada), so
that us_address and cn_address are
subclasses of address. We may define
the attribute postcode of address on in-
teger which also applies to instances of
us_address. However, the postcode for
cn_address must be defined on string.
Therefore, cn_address should override
the inherited attribute declaration of
postcode from address. This can be
achieved in ROL with the following
class definitions, but is not supported in
F-logic:

address@..., postcode f integer#

us2address isa address

cn2address isa address
@postcode f string#

In ROL, a subclass can also block the
inheritance from its superclasses to it-
self and to its subclasses by using the
built-in class none.

Example 3.5 Consider the classes
person, french, orphan, and french_or-
phan where french, and orphan can be
defined as subclasses of person and fren-
ch_orphan as a subclass of both french
and orphan. If we declare attributes
father, mother, and age for person, then
it is meaningful for french to inherit or
override all attribute declarations from
person, but not meaningful for orphan
and french_orphan to inherit father and
mother attributes. That is, orphan and
french_orphan should block the inherit-
ance of attribute father and mother from
person. This intended semantics is nat-
urally supported in ROL using the fol-
lowing class definitions:

person@father f person,
mother f person,
age f integer]

42 • M. Liu

ACM Computing Surveys, Vol. 31, No. 1, March 1999

orphan isa person
@ father f none,
mother f none]

french isa person

french2orphan isa french, orphan

Even if french overrides (more accu-
rately, refines) the attributes father
and mother as follows:

french isa person
@ father f french,
mother f french]

the attribute father and mother are still
blocked in french_orphan because of the
use of none. If we insist that french_or-
phan have mother nun, then we can use
the following class definition to override
the inheritance blocking:

french2orphan isa french, orphan
@mother f nun#

Another novel feature of ROL is that
sets are treated as first-class citizens as
values, object identifiers, and functor
objects, so that sets can also have at-
tribute. For example, we can have the
following class definition and fact in
ROL:

$person%@count f integer#

$tom, pam%@count 3 2#

ROL has the following limitations.
First, like F-logic, an object identifier in
ROL can directly identify only a tuple
but not a set or an atomic value. ROL’s
treatment of classes is not general
enough as there are only two layers,
objects and classes, and classes cannot
be treated as objects (or meta objects).
In ConceptBase [Jarke et al. 1995],
there can be infinite layers of objects:
ordinary objects, classes, metaclasses,
etc. Besides, parameterized attributes
of F-logic are not supported in ROL.
Another problem with ROL is that dif-

ferent classes not related by the sub-
class relationship cannot have at-
tributes of the same name.

Although ROL is a deductive lan-
guage that supports both object-ori-
ented and value-oriented approaches,
its support for the value-oriented ap-
proach is limited as it does not support
grouping in functor objects. Its partial
and complete set mechanisms are not as
general as those in Relationlog.

Finally, behavioral object-oriented
features such as methods and encapsu-
lation are not supported in ROL.

3.4 IQL

IQL (Identity Query Language) [Abite-
boul and Kanellakis 1989] is a typed
deductive database language based on
the object-oriented data model O2. As in
O2, an object in IQL is a pair of object
identifier and value. Unlike F-logic and
ROL, the value in an IQL object can be
not only a tuple, but also a set or an
atomic value. For example, we can have
the following objects for a family in IQL:

~o1, @name : “Bob”, spouse : o2,
children : o5, phone : o6])

~o2, @name : “Liz’, spouse : o1,
children : o5, phone : o6

~o3, @name : “Tom”, phone : o6#!

~o4, @name : “Pam”, phone : o6#!

~o5, $o3, o4%!

~o6, 1234567!

In this example, object identifiers o1,
o2, o3 and o4 identify tuples, o5 identi-
fies a set, while o6 identifies an atomic
value. If this family changes its phone
number or add another child, only one
simple update is needed.

In IQL, the value associated with an
object identifier can be accessed by us-
ing the object identifier dereferencing
operator ˆ. For example, o 1̂, o 5̂ denote
the tuple @name : “Bob”, spouse : o2,

Deductive Database Languages: Problems and Solutions • 43

ACM Computing Surveys, Vol. 31, No. 1, March 1999

children : o5, phone : o6# and the set
$o3, o4%, respectively.

IQL directly supports relations in ad-
dition to classes. In pure object-oriented
data models such as O2 and ODMG-93,
many-to-many relationships between
objects are difficult to deal with. But
they can be represented in IQL by using
relations. Indeed, using object identifi-
ers for every object is burdensome and
problematic in object-oriented deductive
languages, and a pure value-oriented
approach has been argued to be better
in this regard [Ullman 1991]. With di-
rect support for relations, IQL combines
the benefits of the relational and object-
oriented approaches.

In F-logic and ROL, object identifiers
are simply constants that can be intro-
duced explicitly in facts and rules by the
user. In IQL, object identifiers are sys-
tem-created, as in object-oriented pro-
gramming languages. They can be cre-
ated only by using rules that have
variables occurring in the head, but not
in the body as in O-logic. This may be
viewed as a syntactic variation of the
new construct in object-oriented pro-
gramming languages. Unlike O-logic,
there is a well-defined semantics for
this object-creation mechanism.

The intended interesting_pair rule in
Example 3.2 can be represented in IQL
as follows:

pair~E, M! :-
employee~E, N, D!,
dept~D, M!,
employee~M, N, D!

interesting2pair~O, E, M! :- pair~E, M!

Ô 5 @E, M# :- interesting2pair~O, E, M!

The first rule generates all pairs in
the relation pair. The second creates an
object identifier for each pair with the
relation interesting_pair using the vari-
able O that appears in the head but not
in the body. The last rule assigns the
pair to the object identified by the corre-
sponding object identifier.

Object identity in IQL can be used not
only for object sharing and update man-
agement, but also for set grouping as
data function of COL.

Example 3.6 The following rules
show how to derive the relation ances-
torsof from the relation parentsof using
object identifiers as grouping in IQL.

temp~X, O! :- parentsof~X, Y!

Ô~Y! :- temp~X, O!, parentsof~X, Y!

Ô~Y! :- temp~X, O!, Ô~Z!, parentsof~Z, Y!

ancestorsof~X, Ô! :- temp~X, O!

The first rule is used to create an object
identifier for the set of ancestors for
each person. The next two rules use the
object identifiers to group all ancestors
for each person. The last rule generates
the relation ancestorsof by dereferenc-
ing object identifiers that identify sets.

Note that the rules in the above ex-
ample must be stratified; that is, the
last rule should be evaluated after the
first three rules. Unlike Datalog (with
negation), LDL, COL and Relationlog,
in which stratification is automatically
determined based on predicate or func-
tion symbols, in IQL we may not have
such symbols to use, as shown in the
second and third rule in Example 3.6.
Therefore, the user of IQL must take
care of stratification by using program
composition. The rules in Example 3.6
should be organized into two programs
with the first three rules in the first one
and the last in the second.

IQL’s object identifier-creation mech-
anism is also used in object-oriented
deductive languages LOGRES [Cacaceet
al. 1990] and LLO [Lou and Ozsoyoglu
1991].

Like ROL, IQL is a typed language.
There is a clear separation of the no-
tions of instances and schema. Objects
and classes are strictly distinguished
and function at two different levels: in-
stance and schema. At the schema level,

44 • M. Liu

ACM Computing Surveys, Vol. 31, No. 1, March 1999

we declare classes and their associated
types. The kinds of object identifiers
that can be created with rules are com-
pletely determined by the types associ-
ated with the classes for these objects.

IQL has the following problems: First,
the object identifier-creation mecha-
nism may lead to infinite loops and does
not support a logic-oriented semantics,
as discussed in Beeri [1990]. Indeed,
two kinds of semantics are used to de-
fine IQL, one for the underlying data
model and one for the IQL language,
which makes the language quite compli-
cated and nonintuitive.

Second, IQL is so dependent on rela-
tions that no objects can exist if there
are no relations. Therefore, it is not a
pure object-oriented deductive database
language.

Another problem is that values such
as integers, strings, tuples, sets, etc.,
cannot be treated as objects that have
properties in IQL. They can appear only
in the value part of an object. For a
mathematical database, we may store
integers and their associated attributes
such as odd, even, prime, etc. For exam-
ple, ~2, @even : true, prime : true#!.
In this case, an integer is identified by
itself rather than by a separate identi-
fier. The cases for tuples and sets are
the same.

In addition, separating relations from
classes suffers the same problems asso-
ciated with the entity-relationship
model. For example, relationships can
only include classes, while classes can-
not include relationships and relation-
ships cannot include relationships.

Finally, the schema supported by IQL
is quite limited. It does not support
important object-oriented features such
as attribute inheritance or behavioral
object-oriented features such as meth-
ods and encapsulation. Indeed, how to
incorporate methods and encapsulation
in an object-oriented deductive frame-
work remains an open problem.

4. SCHEMA AND HIGHER-ORDER
FEATURES

A database usually has a schema that
provides the description of the database
structure, constrains data in the data-
base and query results, and guarantees
part of the consistency of the database.
In relational database systems, sche-
matic information is also stored in rela-
tions and the same relational languages
can be used to query not only data but
also the schema.

However, the notion of schema is not
properly supported in deductive data-
base languages, because they are based
on the logic programming language Pro-
log, which is inherently not typed. In-
deed, the semantics of schema is not
well defined in most deductive frame-
works.

In Datalog, predicates correspond to
relation names. In order to reason about
schematic information, we need to use
predicate variables that belong to high-
er-order logic. However, higher-order
logics have been met with skepticism,
since the unification problem is unde-
cidable. A non-logic-based language has
been used to specify the schematic infor-
mation in a few implemented deductive
database systems such as LDL, and
such information cannot be queried, let
alone by using a logic-based language.

Prolog actually combines first-order
logic, higher-order constructs, and
meta-level programming in one working
system, so that generic predicates such
as transitive closure and sorting can be
defined, predicates can be passed as pa-
rameters and returned as values, and
predicates and rules can be queried.

Example 4.1 Prolog provides a
built-in binary predicate current_predi-
cate ~Name, Term! that can be used to
unify Name with the name of a user-
defined predicate, and Term with the
most general term corresponding to that
predicate. Consider the following rules
in Prolog:

Deductive Database Languages: Problems and Solutions • 45

ACM Computing Surveys, Vol. 31, No. 1, March 1999

relation~X! :- current2predicate~X, Y!

structure~Y! :- current2predicate~X, Y!

The first rule defines a relation to col-
lect all predicates (relation names) in
the database. The second rule defines a
relation to collect all predicate struc-
tures (predicates and their arguments)
in the database.

Unfortunately, the semantics of Pro-
log is based on first-order logic, which
does not have the wherewithal to sup-
port any of these features. Therefore,
they have an ad hoc status in logic
programming.

In this section, we examine four high-
er-order languages that can be used to
reason about schematic information in
deductive databases: HiLog, L2, F-logic
and ROL. The first two are value ori-
ented, while the last two are object ori-
ented.

4.1 HiLog

In first-order logic, predicates and func-
tions have different roles. Predicates
are used to construct atoms, while func-
tions are used to construct terms that
are embedded in other terms or atoms.
Predicate and function symbols have
fixed arities. However, it has been
shown from Prolog applications that it
is very useful to let a symbol be used as
both predicate and function with vari-
ous arities.

HiLog (Higher-order Logic) [Chen et
al. 1993] generalizes such a usage and
gives it a well-defined declarative se-
mantics. Note that HiLog here is differ-
ent from Hilog discussed in Section 2.3.
There are only two kinds of symbols in
HiLog, parameters with various arities
(or arityless) and variables. Parameters
can function as predicates, functions
and constants depending on the context.
Terms are formed with parameters and
variables in the usual way and may
represent individuals, terms, and atoms
in different contexts.

In first-order logic, unary relations

can be viewed as sets intensionally. In
HiLog, unary parameterized terms can
be viewed as sets in the same way. For
example, part of the relation in Exam-
ple 2.1 can be represented in HiLog as
follows:

areas~bob!~db!
areas~bob!~ai!
areas~joe!~os!
areas~joe!~pl!
areas~joe!~db!

employees~cpsc!~bob, areas~bob!!
employees~cpsc!~joe, areas~joe!!

dept2employee~cpsc, employees~cpsc!!

As HiLog does not support extension-
ally represented sets, we do not classify
it as a complex-value deductive lan-
guage. However, variables can be used
in place of predicates in HiLog, so that
we can use such variables to reason
about schematic information.

Example 4.2 Consider the database
consisting of three relations: hardware,
software, and admin, each of which rep-
resents the employees in the respective
departments. The tuples in all three
relations have attributes name, age and
salary. We can define the following rela-
tions with higher-order queries in Hi-
Log:

p1~R! :- R~_, _, _!

p2~R! :- R~joe, _, _!

p3~N! :- R~N, _, _!

p4~N! :-
R1~joe, A1, _!, R2~N, A2, _!,
A1 , A2

p5~N1, N2! :-
R1~N1, A, _!, R2~N2, A, _!,
R1 Þ R2, N1 Þ N2

p6~N1, N2! :-
R1~N1, _, S!, R2~N2, _, S!,
N1 Þ N2

46 • M. Liu

ACM Computing Surveys, Vol. 31, No. 1, March 1999

p7~N! :-
R~N, _, S!, ¬ R~N9, _, S9!,
S , S9

The relation p1 collects the relation
names in the database. The relation p2

collects the department names (relation
names) to which joe belongs. The rela-
tion p3 collects the names of employees
in the hardware, software and admin
relations. The relation p4 collects the
names of employees who are older than
Joe. The relation p5 collects the pair of
the names of employees who have the
same age but are in different depart-
ments. The relation p6 collects the pair
of the names of employees who have the
same salary. The relation p7 collects the
names of employees who have the high-
est salary in their department.

However, we cannot define a relation
to collect all relation names in HiLog
since we must explicitly deal with the
arity of each relation in order to query
the relation name, as shown in the first
rule in Example 4.2. Furthermore, we
cannot query attributes as they are not
representable in HiLog. Therefore, we
cannot define in HiLog the two relations
relation and structure, as in Example
4.1.

4.2 L2

L2 [Krishnamurthy and Naqvi 1988] is a
higher-order deductive database lan-
guage based on LDL. The problems dis-
cussed above are solved by introducing
attributes into tuples and redefining the
database as a tuple.

Example 4.3 The database discussed
in Example 4.2 can be defined in L2 as a
tuple as follows:

db 5 ~hardware : r1,
software : r2,
admin : r3)

where hardware, software and admin
are attribute names that function as
predicates or relation names of the da-
tabase tuple db, and r1, r2, r3 are corre-
sponding relations, each of which is a
set of tuples of the form ~name : ...,
age : ..., salary : ...!. A specific at-
tribute value joe in the relation hard-
ware can be referenced with
.hardware~.name 5 joe!. Besides 5,
we can also use Þ, ,, #, ., and $.

In L2, each relation has an ordering
of attributes in the tuples, so that at-
tributes can be omitted according to this
ordering. We can use variables for at-
tribute names (relation names) and we
need not deal with their arity.

Example 4.4 Based on the database
in Example 4.3, we can define the fol-
lowing relations with higher-order que-
ries:

.p1~R! :- .R

.p2~R! :- .R~.name 5 joe!

.p3~N! :- .R~.name 5 N!

.p4~N! :-
.R1~.name 5 joe, .age 5 A!,
.R2~.name 5 N, .age . A!

.p5~N1, N2! :-
.R1~.name 5 N1, .age 5 A!,
.R2~.name 5 N2, .age 5 A!,
R1 Þ R2

.p6~N1, N2! :-
.R1~.name 5 N1, .salary 5 S!,
.R2~.name 5 N2, .salary 5 S!,
N1 Þ N2

.p7~N! :-
.R~.name 5 N, .salary 5 S!,
R ¬ ~.name Þ X, .salary . S!,

.p8~A! :- .hardware~.A!

.p9~R, ^A&! :- .R~.A!

Deductive Database Languages: Problems and Solutions • 47

ACM Computing Surveys, Vol. 31, No. 1, March 1999

The relation p1 collects all relation
names in the database no matter what
arity they have. It is the L2 version of
the first rule in Example 4.1. The rela-
tions p2 to p7 are the same as in Exam-
ple 4.2. The relation p8 collects all the
attribute names of the relation hard-
ware in the database. The relation p9

collects all relation names and their at-
tributes, where ^A& is a set-grouping
term. Its definition is more intuitive
than the second rule in Example 4.1.

A novel feature of L2 is the introduc-
tion of replacement semantics as a solu-
tion to higher-order unification. In bot-
tom-up evaluation of rules in deductive
databases, general unification is not
needed. Instead, only matching is used;
that is, only one of the two terms con-
tains variables. The higher-order vari-
ables in L2 are limited to range over
database attributes. A rule with higher-
order variables can be rewritten by re-
placing the variables with attributes.
The rewritten rules are in first-order
logic and their meaning is well defined.
Since the number of database attributes
must be finite, the language is decid-
able. This approach is a natural and
simple way towards the integration of
the definition and manipulation of
schema and data.

However, L2 does not have a notion of
schema. In the database in Example
4.3, if one of the relations r1, r2, r3 is
empty, then we have no structural in-
formation such as name, age, and sal-
ary. Furthermore, it is not required that
tuples in a relation have the same form.
For example, r1 can contain two tuples:
~name : joe, age : 30, salary : 30K!
and ~name : sam, wife : pam!. There-
fore, the last two rules in Example 4.4
are not really meaningful in this case.

4.3 F-logic

In pure object-oriented databases, we
have classes instead of relations. A class

denotes a set of objects that have com-
mon attributes and prescribes the at-
tributes applicable to their instances.
Classes are organized into a subclass
hierarchy such that the prescribed at-
tributes of superclasses can be inherited
by the subclasses.

A natural question for object-oriented
databases is how to reason about the
subclass hierarchy, attribute informa-
tion of classes, and class and attribute
information of objects. F-logic is the
first object-oriented deductive language
that supports reasoning about class and
attribute information.

Example 4.5 The following is a por-
tion of an F-logic program based on the
database discussed in Example 4.1. It
has classes and subclass definitions and
part of the objects.

employee : : person

hardware : : employee

software : : employee

admin : : employee

joe : hardware

employee@name f string,
age f integer,
salary f integer,
children ff person]

joe@name 3 ‘‘Joe’’,
age 3 30,
salary 3 30K,
children33$bob, sam%]

. . .

Unlike L2, we can define attribute
information for classes in F-logic. Even
though we have no instances in the
class, the attribute information re-
mains.

As discussed in Section 3, classes and
attributes are also objects in F-logic.
They differ from other objects in their
occurrences in special places. Therefore,
we can use variables for the places of
classes and attributes and reason about

48 • M. Liu

ACM Computing Surveys, Vol. 31, No. 1, March 1999

class and attribute information in F-
logic.

Example 4.6 For the F-logic program
in Example 4.5, we can use the follow-
ing rules with higher-order queries to
collect all classes, all attributes of the
class hardware, all attributes of each
class, and all instances of each class in
F-logic:

db@classes33$C%# :- C : : D
db@classes33$C%# :- D : : C
db@classes33$C%# :- O : C
db@classes33$C%# :- C@A f D#
db@classes33$C%# :- C@A ? D#
db@classes33$C%# :- D@A f C#
db@classes33$C%# :- D@A ? C#

employee@subclasses33$C%# :-
C : : employee

hardware@attributes33$A%# :-
hardware@A f C#

hardware@attributes33$A%# :-
hardware@A ? C#

C@attributes33$A%# :- C@A f D#

C@attributes33$A%# :- C@A ff D#

C@instances33$O%# :- O : C

As shown in the above example, it is
cumbersome to query all classes in F-
logic. The reason is that F-logic does not
distinguish between ordinary objects
and classes. As a result, we have to
query all possible places for classes. The
use of two kinds of arrows is somewhat
burdensome, too. Similarly, it is also
cumbersome to query all immediate
subclasses, superclasses, and immedi-
ate instances of a class in F-logic. For
example, the following rules show how
to collect all immediate subclasses1

C@immediate2subclasses33$D%# :-
C : : D,
¬C@intervening2class@D33$E%#

C@intervening2class@D33$E%# :-
C : : E, E : : D,
C Þ E, E Þ D

4.4 ROL

ROL [Liu 1996; 1998a] is another lan-
guage that supports reasoning about
subclass hierarchy, attribute informa-
tion of classes, and class and attribute
information of objects. It has a clear
notion of schema and allows class and
attribute variables in rules. The seman-
tics of higher-order features of ROL is
based on replacement semantics of L2 so
that the language is still decidable.

Example 4.7 The F-logic program in
Example 3.3 can be represented in ROL
as follows:

Schema
person
employee isa person

@name f string,
children f $person%,
phone f integer]

hardware isa employee
software isa employee
admin isa employee

Facts
joe : hardware

@name 3 “Joe”,
age 3 30,
salary 3 30K,
children 3 $bob, sam%]

. . .

In ROL, the user explicitly defines
immediate subclasses and primary class
membership using the symbols “isa”
and “:”, respectively, based on which
general subclasses and class member-
ship can be derived using the symbols
“isap” and “:p”, respectively.

Example 4.8 Consider the following
ROL rules with higher-order queries
based on the ROL program in Example
4.7:1This example is due to one of the referees.

Deductive Database Languages: Problems and Solutions • 49

ACM Computing Surveys, Vol. 31, No. 1, March 1999

db@classes 3 ^C&# :- C

employee@subclasses 3 ^C&# :-
C isap employee

hardware@attributes 3 ^A&# :-
hardware@A f _#

C@attributes 3 ^A&# :- C@A f _#

C@immediate2subclasses 3 ^D&# :-
D isa C

C@non2immediate2subclasses 3 ^D&# :-
D isap C, ¬ D isa C

C@immediate2instances 3 ^O&# :- O : C

C@non2immediate2instances 3 ^O&# :-
O :p C, ¬O : C

C@instances 3 ^O&# :- O :p C,

C@highest2paid2employee 3 O# :-
O : C@salary 3 S1#
¬O9 : C@salary 3 S2#,
S1 , S2

The first five rules are the ROL versions
of the F-logic rules in Example 4.6. The
next four collect all immediate sub-
classes, all nonimmediate subclasses,
all immediate instances and all nonim-
mediate instances of of each class, re-
spectively. The last rule finds the em-
ployees who have the highest salary in
their department.

As discussed in Section 3, ROL’s func-
tor classes can be used as relations.
However, the higher-order mechanism
used in ROL only allows us to query the
relation schema and it is impossible to
query just the attributes in the rela-
tions. In addition, the non-immediate
and immediate features are cumber-
some.

5. UPDATES

Like a relational database, a deductive
database also undergoes updates to ab-
sorb new information. In the past de-
cade, various methods to incorporate
update constructs into logic-based lan-

guages have been proposed [Abiteboul
1988; Abiteboul and Vianu 1991; Bon-
ner and Kifer 1993; Bonner et al. 1993;
Bonner and Kifer 1994; Bry 1990; Chen
1997; de Maindreville and Simon 1988;
Kakas and Mancarella 1990; Kowalski
1992; Manchanda 1989; Montesi et al.
1997; Naqvi and Krishnamurthy 1988;
Naish et al. 1987; Reiter 1995; Wichert
and Freitag 1997]. Indeed, modeling up-
dates in logic-based languages is still
the subject of substantial current re-
search.

The important issues related to up-
dates from a deductive database point of
view are:

(1) extensional and intensional data-
base updates,

(2) nondeterministic updates,

(3) bulk or set-oriented updates,

(4) conditional updates.

In this section, we discuss four families
of deductive languages that support up-
dates, Prolog, DLP and its extension,
DatalogA and LDL, and Transaction
Logic, and show how they deal with the
above issues.

5.1 Prolog

In Prolog, the basic update primitives
are assert and retract. Assert is used to
insert a single fact or rule into the data-
base. It always succeeds initially and
fails when the computation backtracks.
Facts and rules can be deleted from the
database in Prolog by using retract. Ini-
tially, retract deletes the first clause in
the database that unifies with the argu-
ment of retract. On backtracking, the
next matching clause is removed. It
fails when there are no remaining
matching clauses. Therefore, both ex-
tensional and intensional databases can
be updated with Prolog.

Example 5.1 Let employee be a base
relation that stores the department and
salary of each employee. The following
query in Prolog is used to fire employee

50 • M. Liu

ACM Computing Surveys, Vol. 31, No. 1, March 1999

Joe in the Toy department with a salary
of 10K and hire an employee Bob in the
Shoe department with a salary of 15K.

? 2 retract~employee~joe, toy, 10K!!,
assert~employee~bob, shoe, 15K!!

Updates expressed in queries can be
performed only once. If the same kind of
updates may be used more than once, it
is better to write a general update rule
and then query the head of the rule for
specific updates.

Example 5.2 Let account be a base
relation that stores the balance of each
account. The following rule can be used
to withdraw money from an account:

withdraw~Acc, Amt! :-
account~Acc, Bal1!,
Bal1 $ Amt,
Bal2 5 Bal1 2 Amt,
retract~account~Acc, Bal1!!,
assert~account~Acc, Bal2!!

If we want to withdraw $30 from the
account a123, then we can use a query
?- withdraw~a123,30!.

In Prolog, variables that occur only in
the body of a rule are existentially
quantified. Therefore, updates in Prolog
can be nondeterministic.

Example 5.3 Let course, section and
size be base relations where course
stores the sections for each course, sec-
tion stores students for each section,
and size stores the size of each section.
The following Prolog rule can enroll a
student into one section of the course
whose size is no more than 30 nondeter-
ministically:

enroll~Student, Course! :-
course~Course, Section!,
size~Section, Num1!,
Num1 , 30, Num2 5 Num1 1 1,
retract~size~Section, Num1!!,
assert~section~Section, Student!!,
assert~size~Section, Num2!!

The nondeterminism is due to the vari-
able Section, which occurs only in the
body of the rule and is therefore exis-
tentially quantified.

Prolog uses a top-down, tuple-at-a-
time, backtracking-based inference
mechanism for updates and queries. For
bulk updates, it resorts to recursive up-
date rules in Prolog.

Example 5.4 Let employee be a base
relation as in Example 5.1. The follow-
ing recursive rules can be used to give
every employee an X% salary increase
in Prolog:

raise~X!:- ¬employee~Name, Dept, Sal!

raise~X!:-
retract~employee~Name, Dept, Sal1!!,
Sal2 5 Sal1 1 Sal1pX,
raise~X!,
assert~employee~Name, Dept, Sal2!!

In order to give every employee a 10%
salary increase, we can issue a query ?-
raise~0.1!. If there are still employees
in the database, the second will nonde-
terministically delete an employee, call
the query ?- raise~0.1! recursively, and
then insert the employee with a new
salary. In this way, the salary of each
employee can be increased.

Unfortunately, the semantics of assert
and retract is not well defined in Prolog.
The exact effect of calling code contain-
ing assert and retract is often difficult to
predict. The resulting database update
relies only on the operational semantics
of Prolog, rather than just the declara-
tive semantics. The order of execution of
subgoals is as important as the logical
content of the goal. For the rules in
Examples 5.2, 5.3 and 5.4, changing the
order of emph assert or retract in the
body of the rules may yield different
results. Many distributed Prolog sys-
tems have versions of retract with bugs
or strange behavior (sometimes called
“features”). In an external or distrib-

Deductive Database Languages: Problems and Solutions • 51

ACM Computing Surveys, Vol. 31, No. 1, March 1999

uted database system, the problems
with assert and retract become much
more severe. Multiuser access creates
even more difficulties. In addition, the
tuple-at-a-time, backtracking-based up-
date mechanism of Prolog is not suit-
able for deductive databases. The fol-
lowing example shows another problem
with conditional updates in Prolog.

Example 5.5 Let employee be as in
Example 5.1 and avg2sal an inten-
sional relation based on employee that
gives the average salary of employees in
each department. Consider the follow-
ing Prolog rule:

hire~Name, Dept, Sal! :-
assert~employee~Name, Dept, Sal!!,
avg2sal~Dept, Avg!, Avg # 50K

The intention here is to hire an em-
ployee only if the average salary in the
department stays below 50K after hir-
ing. However, in Prolog, if the average
salary after hiring Bob is greater than
50K, Bob has still been hired, since
Prolog does not undo updates during
backtracking.

5.2 DLP and Its Extension

The notion of states is inherent in any
notion of updates. A state in Datalog is
a set of base and derived relations. Up-
dates cause transitions from a state
through a state space, thereby changing
the database. Dynamic logic [Harel
1979] is a logic for reasoning about pro-
grams that test and change the values
of an environment. It provides a natural
state-transition semantics for updates
and is therefore used in several exten-
sions of Datalog with updates.

DLP (Dynamic Logic Programming)
[Manchanda and Warren 1988] is such
a Datalog extension. It allows only the
extensional database to be updated. The
intensional database cannot be updated.

In DLP, predicate symbols are divided
into three disjoint sets: base predicate
symbols, rule predicate symbols and dy-

namic predicate symbols. For every
base predicate symbol p, two associated
dynamic predicate symbols 1p and 2p
are used to specify basic addition and
deletion of tuples in the base relation p,
respectively. Atoms formed using dy-
namic predicate symbols are called dy-
namic atoms.

An update query in DLP is of the form
^D&~a! where D is a dynamic atom used
for updates and a is a query. The up-
dates specified in D are executed only if
the query a is evaluated true after the
updates. If a is just true, then we can
simply use ^D& as an update query. As a
can contain an update query, complex
updates can be expressed.

The updates in Example 5.1 can be
represented as a nested update query in
DLP in two different ways as follows:

? 2 ^2 employee~joe, toy, 10K!&
~^1 employee~bob, shoe, 15K!&!

? 2 ^2 employee~bob, shoe, 15K!&
~^1 employee~joe, toy, 10K!&!

Update rules whose body contains up-
date query can be used in DLP. The
updates in Example 5.2 can be repre-
sented as an update rule in DLP as
follows:

^withdraw~Acc, Amt!& :-
^2 account~Acc, Bal1!&
~Bal1 $ Amt, Bal2 5 Bal1 2 Amt,
^1 account~Acc, Bal1!&)

To withdraw $30 from the account
a123, we can use an update query ?-
^withdraw~a123,30!&.

As in Prolog, a top-down, tuple-at-
a-time, backtracking-based inference
mechanism is used in DLP for both up-
dates and queries. However, unlike Pro-
log, it undoes updates during backtrack-
ing. For the above query ?2^withdraw
~a123,30!&, DLP first deletes the tuple
account~a123, Bal1!. If Bal1 $ 30 is

52 • M. Liu

ACM Computing Surveys, Vol. 31, No. 1, March 1999

not true, DLP undoes the deletion dur-
ing backtracking.

Like Prolog, DLP also supports non-
deterministic updates as variables oc-
curring in the body of a rule are existen-
tially quantified. The nondeterministic
update rule in Example 5.3 can be de-
fined in DLP with a different ordering
as follows:

^enroll~Student, Course!& :-
course~Course, Section!,
size~Section, Num1!,
^1 section~Section, Student!&
~Num1 , 30, Num2 5 Num1 1 1,
^2 size~Section, Num1!&
~^1 size~Section, Num2!&!!

If a course DB has two sections, the
query ? 2 enroll~joe, db! inserts Joe
into one section and then checks if it is
full. If so, it backtracks, undoes the
insertion, and tries another section.
Therefore, if neither section is full, Joe
will be enrolled nondeterministically in
a section.

As an update query in DLP contains a
query part that must be evaluated true,
we can express conditions that com-
pleted updates must satisfy. For exam-
ple, the conditional updates in Example
5.4 can be represented as follows:

^hire~Name, Dept, Sal!& :-
^1 employee~Name, Dept, Sal!&
~avg2sal~Dept, Ave!, Avg # 50K

Given a query ? 2 ^hire~bob, toy,
15K!&, if the average salary after hiring
Bob is greater than 50K, then Avg
50K will fail. Therefore, the whole
query will fail and the update will be
undone without leaving a residue in the
database.

As in Prolog, the bulk updates in Ex-
ample 5.5 must be represented in DLP
by recursive update rules as follows:

^raise~X!& :- ¬employee~Name,Dept,Sal!

^raise~X!& :-
^2 employee~Name, Dept, Sal1!&
~Sal2 5 Sal1 1 Sal1pX,!
^raise~X!&
~^1 employee~Name, Dept, Sal2!&!

Updates in DLP have an operational
semantics with a left-to-right reading.
In addition, its tuple-at-a-time, back-
tracking-based update mechanism is
not suitable for deductive databases. As
a result, DLP is extended in Manchanda
[1989] to directly support bulk updates.
For example, the updates in Example
5.5 can be represented in this extension
of DLP as follows:

raise~X! : $employee2~Name, Dept, Sal2! :-
employee~Name, Dept, Sal1!,
Sal2 5 Sal1 1 Sal1pX}

Given a query ?- raise~0.1!, the up-
dates are performed as follows: trans-
form the given definition into the Data-
log one:

raise2employee2~X, Name, Dept, Sal2! :-
employee~Name, Dept, Sal1!,
Sal2 5 Sal1 1 Sal1pX

Then evaluate the relation denoted by
raise_employee2 in the current data-
base; project out the first attribute (cor-
responding to X) from this relation; re-
place the current instance of employee
with this projection.

5.3 DatalogA and LDL

DatalogA (Datalog with Actions) [Naqvi
and Krishnamurthy 1988] is another ex-
tension of Datalog with updates only to
base relations. Like DLP, it uses dy-
namic logic to assign state-transition
semantics to updates.

In DatalogA, base facts can be up-
dated by using primitive update actions
that are represented by prefixing a sym-
bol 1 or 2 to a base predicate, where 1
is for insertion and 2 is for deletion.
For example, 1 employee~joe, toy,

Deductive Database Languages: Problems and Solutions • 53

ACM Computing Surveys, Vol. 31, No. 1, March 1999

50K! denotes the action that inserts the
base fact employee~joe, toy, 50K! into
the current state.

Two kinds of updates are distin-
guished in DatalogA and have different
semantics. The first kind is the update
in which all different orders of execu-
tion yield the same final state. This
kind of update has a declarative seman-
tics and is represented by a, b, where a

and b stand for update actions. The
other kind is the update in which the
update results depend on the order of
execution. That is, different orders of
execution may yield different final
states. This kind of update has an oper-
ational semantics and is represented by
a;b, where a and b stand for update
actions. The semantics for this kind
does not require that a executed before
or after b gives the same result.

The updates in Example 5.1 can be
represented as a query in DatalogA as
follows:

? 2 employee~joe, toy, 10K!,
1 employee~bob, shoe, 15K!

Example 5.6 If we want to fire Joe
and give his salary to Bob, we can use
the following query:

? 2 employee~joe, toy, Sal!;
1 employee~bob, shoe, Sal!

In this query we cannot change the or-
der of actions, as we need to execute the
deletion first to get the substitution for
the variable Sal, and then perform the
insertion.

Rules with update actions in the body
can also be defined in DatalogA. For
example, the update rule in Example
5.2 can be represented as follows:

withdraw~Acc, Amt! :-
account~Acc, Bal1!,
Bal1 $ Amt,
Bal2 5 Bal1 2 Amt,
~2 account~Acc, Bal1!;
1 account~Acc, Bal2!)

In DatalogA, rules with update ac-
tions are evaluated only if the head of
the rule is queried (i.e., top-down),
while rules without update actions are
evaluated bottom-up even if they are
not directly queried.

Unlike Prolog and DLP, in which
variables occurring only in the body of
an update rule are existentially quanti-
fied, such variables in DatalogA are uni-
versally quantified so that a set-ori-
ented non-backtracking-based inference
mechanism can be used for updates. For
example, the updates in Example 5.4
can be represented as follows:

raise~X! :-
employee~Name, Dept, Sal1!,
Sal2 5 Sal1 1 Sal1pX,
~ 2 employee~Name, Dept, Sal1!;
1 employee~Name, Dept, Sal2!)

In this update rule, employee~Name,
Dept, Sal1! is a query that generates all
substitutions for Name, Dept, and Sal1,
and ~2 employee~Name, Dept, Sal1!;
1 employee~Name, Dept, Sal2!!, is
used to change the salary of the employee
from Sal1 to Sal2 for each group of sub-
stitutions.

Like Prolog, DatalogA does not sup-
port conditional updates, as it has no
provision for backtracking and remov-
ing the effects of previous updates if the
condition fails. Therefore, the intended
updates in Example 5.5 cannot be ex-
pressed in DatalogA.

As the semantics for variables occur-
ring only in the body and inference
mechanism in DatalogA are different
from those in Prolog, the update results
can be quite different too, even though
the rules look similar. The following
rule is the DatalogA version of the rule
in Example 5.3:

enroll~Student, Course! :-
course~Course, Section!,
size~Section, Num1!,
Num1 , 30, Num2 5 Num1 1 1,
2 size~Section, Num1!,
1 section~Section, Student!,
1 size~Section, Num2!.

54 • M. Liu

ACM Computing Surveys, Vol. 31, No. 1, March 1999

If a course DB has two sections, then
the query ?- enroll~joe, db! will insert
Joe into both sections of the DB course.
Indeed, nondeterministic updates are
not supported in DatalogA.

The update mechanism of DatalogA is
incorporated in LDL. The nondetermin-
istic updates in LDL are supported
through the use of the choice operator of
the form choice~~X!, ~Y!!, where X and
Y are vectors of terms, which selects
those instantiations of the variables X
and Y that satisfy the functional depen-
dency X 3 Y. The nondeterministic up-
dates in Example 5.3 can be repre-
sented in LDL as follows:

enroll~Student, Course! :-
course~Course, Section!,
size~Section, Num1!,
Num1 , 30, Num2 5 Num1 1 1,
choice~~Course!, ~Section!!,
2 size~Section, Num1!,
1 section~Student, Section!,
1 size~Section, Num2!

The choice operator here guarantees
that only one section of the course is
selected for insertion.

The dynamic logic interpretation of
updates in DatalogA and LDL provides
a semantics to updates that is conso-
nant with the operational meanings of
the update predicates. However, this se-
mantics is rather tricky.

5.4 Transaction Logic

The notion of transaction is essential for
database operations. It was first intro-
duced into Prolog informally in Naish et
al. [1987]. Its use in logic programming
was then formalized in Transaction
Logic T5 [Bonner and Kifer 1993; 1994;
Bonner et al. 1993]. T5 is an extension
of first-order logic, both syntactically
and semantically. Not only the exten-
sional database but also the intensional
database can be updated in T5. Unlike
other approaches, the main novel fea-
ture of T5 is that it has a natural model

theory and a sound and complete proof
theory.

In T5, two primitive operations are
provided to delete and insert facts and
rules: del and ins. A new logical connec-
tive called serial conjunction and de-
noted by R is introduced to sequence
transactions, where a R b means do a

then do b. The updates in Example 5.1
do not require sequencing and can be
represented as a transaction in T5 as
follows:

? 2 del : employee~joe, toy, 10K!,
ins : employee~joe, shoe, 10K!

The updates in Example 5.6 require
sequencing and can be represented us-
ing R as follows:

? 2 del : employee~joe, toy, Sal! R
ins : employee~joe, shoe, Sal!

In T5, transactions can be defined
using rules that can call other transac-
tions. The update rule in Example 5.2
can be represented as follows:

withdraw~Acc, Amt! :-
balance~Acc, Bal! R
Bal $ Amt R
del : balance~Acc, Bal! R
ins : balance~Acc, Bal 2 Amt!

As in Prolog and DLP, in T5 variables
occurring only in the body of a rule are
existentially quantified and tuple-at-a-
time evaluation mechanism is used.
However, the evaluation can be exe-
cuted either bottom-up or top-down.
Nondeterministic updates are naturally
supported in this way. The rule in Ex-
ample 5.3 can be represented in T5 as
follows:

enroll~Student, Course! :-
~course~Course, Section!,
size~Section, Num!,
Num , 30 R

ins : section~Section, Student! R
del : size~Section, Num! R
ins : size~Section, Num 1 1!.

Deductive Database Languages: Problems and Solutions • 55

ACM Computing Surveys, Vol. 31, No. 1, March 1999

As a transaction must be done atomi-
cally, the conditional updates in Exam-
ple 5.4 can be represented in T5 as
follows:

hire~Name, Dept, Sal! :-
ins : employee~Name, Dept, Sal! R
avg2sal~Dept, Ave! R
Avg # 50K

As in DLP and DatalogA, if the aver-
age salary after hiring an employee is
greater than 50K, the whole query will
fail without leaving a residue in the
database.

In order to support bulk updates, T5

uses relational assignment as in rela-
tional databases, in the same spirit as
the extension of DLP discussed in Sec-
tion 5.2. For example, the following
rules in T5 can be used to give every
employee a 10% salary increase.

employee2~Name, Dept, Salp1.1! :-
employee~Name, Dept, Sal!

raise :- @employee :5 employee2#

Given a query ?2 raise, the new contents
of the employee relation are computed
by the first rule and are held in the rela-
tion employee2. Then the relational as-
signment @employee :5 employee2# in
the second rule assigns the new contents
into the relation employee.

Unfortunately, the relational assign-
ment cannot pass arguments. There-
fore, we cannot define the rule in Exam-
ple 5.4 that gives every employee an X%
salary increase in T5.

6. CONCLUSION

Approaches to deductive databases are
torn by two opposing forces. On one side
there are the stringent real-world re-
quirements of actual databases. The re-
quirements include efficient processing
as well as the ability to express complex
and subtle real-world relationships. On
the other side are the simple and clear

semantics of logic programming and its
inference capabilities. The need for ex-
pressiveness has forced deductive data-
base languages away from their simple
roots in logic programming and the rela-
tional data model.

In this paper, we have discussed the
problems with the standard deductive
database language Datalog (with nega-
tion) from four different aspects: com-
plex values, object orientation, higher-
orderness and updates. In each case, we
have examined four typical solutions.

There are three important areas that
we have not discussed here, since little
has been published to date. One is that
none of the deductive database lan-
guages are computationally complete so
not all programming tasks can be per-
formed in a single framework. The sec-
ond is that none of the deductive data-
base languages support unknown/null
values, which are common in database
applications. Indeed, it is not clear how
to derive information with rules when
there are null values in the database.
Finally, most object-oriented deductive
languages are only structurally object-
oriented, since methods and encapsula-
tion, two important features of object
orientation, are not properly supported.
In Bertino and Montesi [1992], encapsu-
lation is addressed in an object-oriented
deductive framework, but the semantics
is not defined.

We expect that a few more expressive
deductive database languages will be
developed that incorporate various im-
portant features to solve the problems
discussed here. In the mean time, vari-
ous implementation techniques will be
investigated. Powerful deductive data-
base systems will eventually be deliv-
ered to the database market to extend
database applications further.

ACKNOWLEDGMENTS

The author would like to thank Michael
Franklin, associate editor of ACM Com-
puting Surveys, and reviewers for their
critical reading of the article. Their
many valuable comments and sugges-

56 • M. Liu

ACM Computing Surveys, Vol. 31, No. 1, March 1999

tions substantially helped to improve
the quality and accuracy of this survey.
Thanks also to Katrina Avery at ACM
Computing Surveys, Cory Butz, and
Shilpesh Katragadda for their correc-
tions. This work was partly supported
by the Natural Sciences and Engineer-
ing Research Council of Canada.

REFERENCES

ABITEBOUL, S. 1988. Updates, a New Database
Frontier. In Proceedings of the International
Conference on Data Base Theory (Pruges, Bel-
gium). Springer-Verlag, New York, 1–18.

ABITEBOUL, S. AND BEERI, C. 1995. The Power of
Languages for the Manipulation of Complex
Values. VLDB J. 4, 4, 727–794.

ABITEBOUL, S., FISCHER, P. C., AND SCHEK, H.,
Eds. 1987. Proceedings of the International
Workshop on Theory and Applications of
Nested Relations and Complex Objects in Da-
tabases. (Darmstadt, Germany) Springer-
Verlag, New York.

ABITEBOUL, S. AND GRUMBACH, S. 1991. A rule-
based language with functions and sets.
ACM Trans. Database Syst. 16, 1 (Mar.),
1–30.

ABITEBOUL, S. AND HULL, R. 1987. IFO: a formal
semantic database model. ACM Trans. Da-
tabase Syst. 12, 4 (Dec. 1987), 525–565.

ABITEBOUL, S., HULL, R., AND VIANU, V.
1995. Foundations of Databases. Addison-
Wesley, Reading, MA.

ABITEBOUL, S. AND KANELLAKIS, P. 1989. Object
Identity as a Query Language Primitive. In
Proceedings of the 1989 ACM SIGMOD inter-
national conference on Management of data
(SIGMOD ’89, Portland, Oregon, June 1989),
J. Clifford, J. Clifford, B. Lindsay, D. Maier,
and J. Clifford, Eds. ACM Press, New York,
NY, 159–173.

ABITEBOUL, S. AND VIANU, V. 1991. Datalog ex-
tensions for database queries and up-
dates. J. Comput. Syst. Sci. 43, 1 (Aug.
1991), 62–124.

AÏT-KACI, H. 1993. An Introduction to Life. In
Proceedings of the Joint International Confer-
ence and Symposium on Logic Programming
(Vancouver, Canada). MIT Press, Cam-
bridge, MA, 506–524.

AÏT-KACI, H AND NASR, R 1986. Login: A logic
programming language with built-in inherit-
ance. J. Logic Program. 3, 3 (Oct. 1986),
185–215.

ALBANO, A., CARDELLI, L., AND ORSINI, R.
1985. GALILEO: a strongly-typed, interac-
tive conceptual language. ACM Trans. Data-
base Syst. 10, 2 (June 1985), 230–260.

ALBANO, A., GHELLI, G., AND ORSINI, R.
1995. Fibonacci: A Programming Language
for Object Databases. VLDB J. 4, 3, 403–
444.

APT, K. R., BLAIR, H. A., AND WALKER,
A. 1988. Towards a theory of declarative
knowledge. In Foundations of deductive da-
tabases and logic programming, J. Minker,
Ed. Morgan Kaufmann Publishers Inc., San
Francisco, CA, 89–148.

BANCILHON, F., MAIER, F., SAGIV, Y., AND ULLMAN,
J. 1986. Magic Sets and Other Strange
Ways to Implement Logic Programs. In Pro-
ceedings of the ACM Symposium on Principles
of Database Systems (PODS ’86, Cambridge,
Massachusetts). ACM Press, New York, NY,
1–16.

BANCILHON, F. AND RAMAKRISHNAN, R. 1986. An
Amateur’s Introduction to Recursive Query
Processing Strategies. In Proceedings of the
conference on Management of data (SIGMOD
’86, Washington, D.C., May 28-30, 1986), C.
Zaniolo, Ed. ACM Press, New York, NY, 16–
52.

BARBACK, M., LOBO, J., AND LU, J.
1992. Minimizing Indefinite Information in
Disjunctive Deductive Databases. In Pro-
ceedings of the International Conference on
Data Base Theory (Berlin, Ger-
many). Springer-Verlag, New York,
246–260.

BEERI, C. 1989. Formal Models for Object-Ori-
ented Databases. In Proceedings of the Inter-
national Conference on Deductive and Object-
Oriented Databases (Kyoto, Japan), W. Kim,
J. Nicolas, and S. Nishio, Eds. North-Hol-
land Publishing Co., Amsterdam, The Nether-
lands, 405–430.

BEERI, C. 1990. A formal approach to object-
oriented databases. Data Knowl. Eng. 5, 2,
353–382.

BEERI, C., NAQVI, S., SHMUELI, O., AND TSUR,
S. 1991. Set constructors in a logic data-
base language. J. Logic Program. 10, 3/4
(Apr./May 1991), 181–232.

BEERI, C. AND RAMAKRISHNAN, R. 1991. On the
power of magic. J. Logic Program. 10, 3/4
(Apr./May 1991), 255–299.

BERTINO, E. AND MONTESI, D. 1992. Towards a
Logical Object-oriented Programming Lan-
guage for Databases. In Proceedings of the
International Conference on Extending Data-
base Technology (Vienna, Austria). Springer-
Verlag, New York, NY, 168–183.

BONNER, A. J. 1989. Hypothetical datalog nega-
tion and linear recursion. In Proceedings of
the eighth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of Database Systems
(PODS ’89, Philadelphia, PA, Mar. 29–31,
1989), A. Silberschatz, Ed. ACM Press, New
York, NY, 286–300.

BONNER, A. J. 1990. Hypothetical datalog: com-
plexity and expressibility. Theor. Comput.
Sci. 76, 1 (Oct. 31, 1990), 3–51.

BONNER, A. J. AND KIFER, M. 1993. Transaction
logic programming. In Proceedings of the
tenth international conference on Logic pro-
gramming (ICLP’93, Budapest, Hungary,

Deductive Database Languages: Problems and Solutions • 57

ACM Computing Surveys, Vol. 31, No. 1, March 1999

June 21–25, 1993), D. S. Warren, Ed. MIT
Press, Cambridge, MA, 257–279.

BONNER, A. J. AND KIFER, M. 1994. An overview
of transaction logic. Theor. Comput. Sci.
133, 2 (Oct. 24, 1994), 205–265.

BONNER, A., KIFER, M., AND CONSENS,
M. 1993. Database Programming in Trans-
action Logic. In Proceedings of the Interna-
tional Workshop on Database Programming
Languages (New York, NY). Morgan Kauf-
mann Publishers Inc., San Francisco, CA,
309–337.

BORGIDA, A. 1988. Modeling class hierarchies
with contradictions. In Proceedings of the
Conference on Management of Data (SIGMOD
’88, Chicago, IL, June 1-3, 1988), H. Boral and
P.-A. Larson, Eds. ACM Press, New York,
NY, 434–443.

BRODIE, M. 1984. On the development of data
models. In On Conceptual Modelling, M.
Brodie, J. Mylopoulos, and J. Schmidt,
Eds. Springer-Verlag, New York, NY, 19–
48.

BRODSKY, A., JAFFAR, J., AND MAHER, M.
1993. Towards practical constraint databas-
es. In Proceedings of the International Con-
ference on Very Large Data Bases (Dublin,
Ireland). Morgan Kaufmann Publishers Inc.,
San Francisco, CA, 557–580.

BRY, F. 1990. Intensional Updates: Abduction
via Deduction. In Proceedings of the Interna-
tional Conference on Logic Programming
(Budapest, Hungary). MIT Press, Cam-
bridge, MA, 561–575.

CACACE, F., CERI, S., CREPI-REGHIZZI, S., TANCA, L.,
AND ZICARI, R. 1990. Integrating Object-
Oriented Data Modelling with a Rule-Based
Programming Paradigm. In Proceedings of
the 1990 ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD ’90,
Atlantic City, NJ, May 23–25, 1990), H. Gar-
cia-Molina, Ed. ACM Press, New York, NY,
225–236.

CAREY, M. J., DEWITT, D. J., AND VANDERBERG, S.
1988. A data model and query language for
EXODUS. In Proceedings of the Conference
on Management of Data (SIGMOD ’88, Chi-
cago, IL, June 1-3, 1988), H. Boral and P.-A.
Larson, Eds. ACM Press, New York, NY,
413–423.

CATTELL, R., Ed. 1996. The Object Database
Standard: ODMG-93. Release 1.2 Morgan
Kaufmann Publishers Inc., San Francisco,
CA.

CERI, S., GOTTLOB, G., AND TANCA,
L. 1990. Logic programming and databas-
es. Springer-Verlag, New York, NY.

CHEN, P. 1976. The Entity-Relationship model:
Toward a unified view of data. ACM Trans.
Database Syst. 1, 1, 9–36.

CHEN, Q. AND CHU, W. 1989. HILOG: A High-
Order Logic Programming Language for Non-
1NF Deductive Databases. In Proceedings of
the International Conference on Deductive and

Object-Oriented Databases (Kyoto, Japan), W.
Kim, J. Nicolas, and S. Nishio, Eds. North-
Holland Publishing Co., Amsterdam, The
Netherlands, 431–452.

CHEN, Q. AND KAMBAYASHI, Y. 1991. Nested Re-
lation Based Database Knowledge Represen-
tation. In Proceedings of the 1991 ACM SIG-
MOD International Conference on
Management of Data (SIGMOD ’91, Denver,
CO, May 29–31, 1991), J. Clifford and R.
King, Eds. ACM Press, New York, NY, 328–
337.

CHEN, W. 1997. Programming with Logical
Queries, Bulk Updates and Hypothetical Rea-
soning. IEEE Trans. Knowl. Data Eng. 9, 4,
587–599.

CHEN, W., KIFER, M., AND WARREN, D.
S. 1993. HILOG: a foundation for higher-
order logic programming. J. Logic Program.
15, 3 (Feb. 1993), 187–230.

CHEN, W. AND WARREN, D. S. 1989. C-logic of
complex objects. In Proceedings of the eighth
ACM SIGACT-SIGMOD-SIGART symposium
on Principles of Database Systems (PODS ’89,
Philadelphia, PA, Mar. 29–31, 1989), A. Sil-
berschatz, Ed. ACM Press, New York, NY,
369–378.

CHIMENTI, D., GAMBOA, R., KRISHNAMURTHY, R.,
NAQVI, S., TSUR, S., AND ZANIOLO, C.
1990. The LDL System Prototype.
IEEE Trans. Knowl. Data Eng. 2, 1, 76–90.

CODD, E. 1970. A relational model for large
shared databases. Commun. ACM 13, 6,
377–387.

CODD, E. F. 1979. Extending the Database rela-
tional model to capture more meaning. ACM
Trans. Database Syst. 4, 4 (Dec.), 397–434.

COLBY, L. 1989. A Recursive Algebra and
Query Optimization for Nested Relations. In
Proceedings of the 1989 ACM SIGMOD inter-
national conference on Management of data
(SIGMOD ’89, Portland, Oregon, June 1989),
J. Clifford, J. Clifford, B. Lindsay, D. Maier,
and J. Clifford, Eds. ACM Press, New York,
NY, 124–138.

COLMERAUER, A. 1985. Prolog in 10 figures.
Commun. ACM 28, 12 (Dec. 1985), 1296–
1310.

DE MAINDREVILLE, C. AND SIMON, E.
1988. Modelling Non Deterministic Queries
and Updates in Deductive Databases. In
Proc. 14th International Conference on Very
Large Data Bases (Los Angeles, CA). Mor-
gan Kaufmann Publishers Inc., San Fran-
cisco, CA, 395–406.

DERR, M., MORISHITA, S., AND PHIPPS,
G. 1993. Design and Implementation of the
Glue-Nail Database System. In Proceedings
of the 1993 ACM SIGMOD international con-
ference on Management of data (SIGMOD ’93,
Washington, DC, May 26–28, 1993), P. Bun-
eman and S. Jajodia, Eds. ACM Press, New
York, NY, 147–167.

58 • M. Liu

ACM Computing Surveys, Vol. 31, No. 1, March 1999

DEUX, O. 1991. The O2 system. Commun.
ACM 34, 10 (Oct. 1991), 34–48.

DOVIER, A., OMODEO, E., PONTELLI, E., AND ROSSI,
G. 1996. {log}: A Language for Program-
ming in Logic with Finite Sets. J. Logic Pro-
gram. 28, 1, 1–44.

FERNÁNDEZ, J. AND MINKER,
J. 1992a. Semantics of Disjunctive Deduc-
tive Databases. In Proceedings of the Inter-
national Conference on Data Base Theory
(Berlin, Germany). Springer-Verlag, New
York, 21–50.

FERNÁNDEZ, J. A. AND MINKER, J. 1992b.
Disjunctive Deductive Databases. In Pro-
ceedings of the International Conference on
Logic Programming and Automated Reason-
ing (LPAR ’92, St. Peterburg, Rus-
sia). Springer-Verlag, New York, 332–356.

FISHMAN, D. H., B., B., CATE, H. P., CHOW, E. C.,
CONNORS, T., DAVIS, J. W., DERRETT, N., HOCH,
C. G., KENT, W., LYNGBAEK, P., MAHBOD, B.,
NEIMAT, M. A., RYAN, T. A., AND SHAN, M.
C. 1987. Iris: An object-Oriented Database
Management System. ACM Trans. Off. Inf.
Syst. 5, 1, 48–69.

FREITAG, B., SCHUTZ, H., AND SPECHT, G.
1991. LOLA—A Logic Language for Deduc-
tive Databases and its Implementation. In
Proceedings of the 2nd International Sympo-
sium on Database Systems for Advanced Ap-
plications (DASFAA ’91, Tokyo, Japan,
Apr.). 216–225.

FROHN, J., HIMMERÖDER, R., KANDZIA, P., LAUSEN,
G., AND SCHLEPPHORST, C. 1997. Florid: A
Prototype for F-logic. In Proceedings of the
International Conference on Data Engineer-
ing. IEEE Computer Society, New York, NY.

GALLAIRE, H. 1981. Impacts of Logic on Data
Bases. In Proceedings of the International
Conference on Very Large Data Bases
(Cannes, France). IEEE Computer Society,
New York, NY, 248–259.

GALLAIRE, H. AND MINKER, J., Eds. 1978. Logic
and Data Bases. Plenum Press, New York,
NY.

GALLAIRE, H., MINKER, J., AND NICOLAS, J. M.
1984. Logic and Databases: A Deductive Ap-
proach. ACM Comput. Surv. 16, 2, 153–186.

GELFOND, M. AND LIFSCHITZ, V. 1988. The stable
model semantics for logic programming. In
Proceedings of the 5th International Confer-
ence on Logic Programming (Washington,
DC). MIT Press, Cambridge, MA, 1070–1080.

GRANT, J. AND MINKER, J. 1992. The impact of
logic programming on databases. Commun.
ACM 35, 3 (Mar. 1992), 66–81.

GRUMBACH, S. AND SU, J. 1996. Towards practi-
cal constraint databases (extended abstract).
In Proceedings of the fifteenth ACM SIGACT-
SIGMOD-SIGART symposium on Principles
of database systems (PODS ’96, Montreal,
P. Q., Canada, June 3–5, 1996), R. Hull,
Ed. ACM Press, New York, NY, 28–39.

HAMMER, M. AND MCLEOD, D. 1981. Database
description with SDM: A semantic database
model. ACM Trans. Database Syst. 6, 3
(Sept.), 351-386.

HAN, J., LIU, L., AND XIE, Z. 1994. LogicBase: a
deductive database system prototype. In
Proceedings of the 3rd International Confer-
ence on Information and Knowledge Manage-
ment (CIKM ’94, Gaithersburg, Maryland,
Nov. 29–Dec. 2, 1994), N. R. Adam, B. K.
Bhargava, and Y. Yesha, Eds. ACM Press,
New York, NY, 226–233.

HAREL, D. 1979. First-Order Dynamic Logic.
Lecture Notes in Computer Science, vol.
361. Springer-Verlag, New York.

HEUER, A. AND SANDER, P. 1993. The LIVING
IN A LATTICE Rule Language. Data Knowl.
Eng. 9, 4, 249–286.

HILL, P. AND LLOYD, J. 1994. The Gödel pro-
gramming language. MIT Press, Cambridge,
MA.

INOUE, K. 1994. Hypothetical Reasoning in
Logic Programs. J. Logic Program. 18, 3,
197–227.

IOANNIDIS, Y. AND RAMAKRISHNAN, R. 1988.
Efficient Transitive Closure Algorithms. In
Proc. 14th International Conference on Very
Large Data Bases (Los Angeles, CA). Mor-
gan Kaufmann Publishers Inc., San Fran-
cisco, CA, 382–394.

ISHIKAWA, H., SUZUKI, F., KOZAKURA, F., MAKINOU-
CHI, A., MIYAGISHIMA, M., IZUMIDA, Y.,
AOSHIMA, M., AND YAMANE, Y. 1993. The
model, language, and implementation of an
object-oriented multimedia knowledge base
management system. ACM Trans. Database
Syst. 18, 1 (Mar. 1993), 1–50.

JACOBS, B. 1982. On Database Logic. J. ACM
29, 2 (Apr.), 310–332.

JAFFAR, J. AND MAHER, M. 1994. Constraint
logic programming: A survey. J. Logic Pro-
gram. 19-20, 503-581.

JARKE, M., GALLERSDÖRFER, R., JEUSFELD, M. A.,
STAUDT, M., AND EHERER, S. 1995.
ConceptBase—a deductive object base for
meta data management. J. Intell. Inf. Syst.
4, 2 (Mar. 1995), 167–192.

JAYARAMAN, B. 1992. Implementation of subset-
equational programs. J. Logic Program. 12,
4 (Apr. 1992), 299–324.

JIANG, B. 1990. A Suitable Algorithm for Com-
puting Partial Transitive Closures. In Proc.
IEEE Sixth International Conference on Data
Engineering (Kobe, Japan, May). IEEE Com-
puter Society, New York, NY, 264–271.

KAKAS, A. AND MANCARELLA, P. 1990. Database
Updates through Abduction. In Proceedings
of the 16th VLDB Conference on Very Large
Data Bases (VLDB, Brisbane, Australia).
VLDB Endowment, Berkeley, CA, 650–661.

KIEBLING, W., SCHMIDT, H., STRAUB, W., AND DUN-
ZINGER, G. 1994. DECLARE and SDS:
Early Efforts to Commercialize Deductive Da-
tabase Technology. VLDB J. 3, 2, 211–243.

Deductive Database Languages: Problems and Solutions • 59

ACM Computing Surveys, Vol. 31, No. 1, March 1999

KIFER, M. AND LAUSEN, G. 1989. F-Logic: A
Higher-Order Language for Reasoning about
Objects, Inheritance, and Schema. In Pro-
ceedings of the 1989 ACM SIGMOD interna-
tional conference on Management of data
(SIGMOD ’89, Portland, Oregon, June 1989),
J. Clifford, J. Clifford, B. Lindsay, D. Maier,
and J. Clifford, Eds. ACM Press, New York,
NY, 134–146.

KIFER, M., LAUSEN, G., AND WU,
J. 1995. Logical foundations of object-ori-
ented and frame-based languages. J. ACM
42, 4 (July 1995), 741–843.

KIFER, M. AND WU, J. 1993. A logic for program-
ming with complex objects. J. Comput. Syst.
Sci. 47, 1 (Aug. 1993), 77–120.

KIM, W. 1990a. Introduction to Object-Oriented
Databases. MIT Press, Cambridge, MA.

KIM, W. 1990b. Object-Oriented Databases:
Definition and Research Direction. IEEE
Trans. Knowl. Data Eng. 2, 3 (Sept.), 327–
341.

KOWALSKI, R. A. 1988. The early years of logic
programming. Commun. ACM 31, 1 (Jan.
1988), 38–43.

KOWALSKI, R. 1992. Database updates in the
event calculus. J. Logic Program. 12, 1/2
(Jan. 1992), 121–146.

KRISHNAMURTHY, R. AND NAQVI, S. 1988.
Towards a Real Horn Clause Language. In
Proc. 14th International Conference on Very
Large Data Bases (Los Angeles, CA). Mor-
gan Kaufmann Publishers Inc., San Fran-
cisco, CA, 252–263.

KUPER, G. M. 1990. Logic programming with
sets. J. Comput. Syst. Sci. 41, 1 (Aug. 1990),
44–64.

LECLUSE, C. AND RICHARD, P. 1989. The O2 Da-
tabase Programming Language. In Proceed-
ings of the fifteenth international conference
on Very large data bases (Amsterdam, The
Netherlands, Aug 22–25 1989), R. P. van de
Riet, Ed. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, 411–422.

LEVENE, M. AND LOIZOU, G. 1993. Semantics for
null extended nested relations. ACM Trans.
Database Syst. 18, 3 (Sept. 1993), 414–459.

LIU, M. 1995. Relationlog: A Typed Extension
to Datalog with Sets and Tuples (Extended
Abstract). In Proceedings of the Interna-
tional Symposium on Logic Programming
(ILPS ’95, Portland, Oregon, Dec. 4–7). MIT
Press, Cambridge, MA, 83–97.

LIU, M. 1996. ROL: A Deductive Object Base
Language. Inf. Syst. 21, 5, 431–457.

LIU, M. 1998a. An Overview of Rule-based Ob-
ject Language. J. Intell. Inf. Syst. 10, 1,
5–29.

LIU, M. 1998b. Relationlog: A Typed Extension
to Datalog with Sets and Tuples. J. Logic
Program. 36, 3, 271–299.

LIU, M. AND SHAN, R. 1998. The Design and
Implementation of the Relationlog Deductive
Database System. In Proceedings of the 9th

International Workshop on Database and Ex-
pert System Applications (DEXA Workshop
’98, Vienna, Austria, Aug. 24–28). IEEE
Computer Society Press, Los Alamitos, CA,
856–863.

LIU, M., YU, W., GUO, M., AND SHAN,
R. 1998. ROL: A Prototype for Deductive
and Object-Oriented Databases. In Proceed-
ings of the International Symposium on Data-
base Engineering and Applications (ICDE ’98,
Orlando, FL, Feb. 23–27). IEEE Computer
Society Press, Los Alamitos, CA, 598.

LLOYD, J. W. 1987. Foundations of Logic Pro-
gramming. 2nd ed. Springer-Verlag Symbolic
Computation and Artificial Intelligence Se-
ries. Springer-Verlag, Vienna, Austria.

LOU, Y. AND OZSOYOGLU, M. 1991. LLO: A De-
ductive Language with Methods and Method
Inheritance. In Proceedings of the 1991 ACM
SIGMOD International Conference on Man-
agement of Data (SIGMOD ’91, Denver, CO,
May 29–31, 1991), J. Clifford and R. King,
Eds. ACM Press, New York, NY, 198–207.

MAIER, D. 1983. The Theory of Relational Data-
bases. Computer Science Press, Inc., New
York, NY.

MAIER, D. 1986. A logic for objects. Technical
Report CS/E-86-012. Oregon Graduate Cen-
ter, Beaverton, Oregon.

MAIER, D. 1987. Why Database Languages are
a Bad Idea. In Proceedings of the Workshop
on Database Programming Languages
(Roscoff, France).

MAIER, D., STEIN, J., OTIS, A., AND PURDY,
A. 1986. Development of Object-Oriented
DBMS. In OOPSLA ’86. ACM Press, New
York, NY, 472–482.

MANCHANDA, S. 1989. Declarative expression of
deductive database updates. In Proceedings
of the eighth ACM SIGACT-SIGMOD-SI-
GART symposium on Principles of Database
Systems (PODS ’89, Philadelphia, PA, Mar.
29–31, 1989), A. Silberschatz, Ed. ACM
Press, New York, NY, 93–100.

MANCHANDA, S. AND WARREN, D. S. 1988. A log-
ic-based language for database updates. In
Foundations of deductive databases and logic
programming, J. Minker, Ed. Morgan Kauf-
mann Publishers Inc., San Francisco, CA,
363–394.

MONTESI, D., BERTINO, E., AND MARTELLI,
M. 1997. Transactions and Updates in De-
ductive Databases. IEEE Trans. Knowl.
Data Eng. 9, 5, 784–797.

MORRIS, K., ULLMAN, J. D, AND VAN GELDER,
A. 1986. Design overview of the NAIL! sys-
tem. In Proceedings on Third international
conference on logic programming (London,
UK, July 14-18, 1986), E. Shapiro, Ed.
Springer-Verlag, New York, NY, 554–568.

MOSS, C. 1994. Prolog11. Addison-Wesley Long-
man Publ. Co., Inc., Reading, MA.

MUMICK, I. S., FINKELSTEIN, S. J., PIRAHESH, H.,
AND RAMAKRISHNAN, R. 1996. Magic condi-

60 • M. Liu

ACM Computing Surveys, Vol. 31, No. 1, March 1999

tions. ACM Trans. Database Syst. 21, 1,
107–155.

MYLOPOULOS, J., BERNSTEIN, P. A., AND WONG, H.
K. T. 1980. A Language Facility for De-
signing Database-Intensive Applications.
ACM Trans. Database Syst. 5, 2 (June), 185–
207.

NAISH, L., THOM, L., AND RAMAMOHANARAO, K.
1987. Concurrent Database Updates in Pro-
log. In Proceedings of the International Con-
ference on Logic Programming (Melbourne,
Australia). MIT Press, Cambridge, MA,
178–189.

NAQVI, S. AND KRISHNAMURTHY, R. 1988.
Database Updates in Logic Programming. In
Proc. 7th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems
(Austin, TX, Mar.). 261–272.

NAQVI, S. AND TSUR, S. 1989. A logical language
for data and knowledge bases. Computer
Science Press principles of computer science
series. Computer Science Press, Inc., New
York, NY.

OZSOYOGLU, Z. M. AND YUAN, L.-Y. 1987. A new
normal form for nested relations. ACM
Trans. Database Syst. 12, 1 (Mar. 1987), 111–
136.

PRZYMUSINSKI, T. C. 1988. On the declarative
semantics of deductive databases and logic
programs. In Foundations of deductive data-
bases and logic programming, J. Minker, Ed.
Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, 193–216.

PRZYMUSINSKI, T. 1990. Extended Stable Se-
mantics for Normal and Disjunctive Pro-
grams.
In Proceedings of the International Conference
on Logic Programming (Budapest, Hunga-
ry). MIT Press, Cambridge, MA, 459–477.

RAMAKRISHMAN, R., Ed. 1994. Applications of
Logic Databases. Kluwer Academic Publish-
ers, Hingham, MA.

RAMAKRISHNAN, R., SRIVASTAVA, D., SUDARSHAN, S.,
AND SESHADRI, P. 1994. The coral deductive
system. VLDB J. 3, 2, 161–210.

RAMAKRISHMAN, R. AND ULLMAN, J. D. 1995. A
Survey of Deductive Database Systems. J.
Logic Program. 23, 2, 125–150.

RAO, P., SAGONAS, K., SWIFT, T., WARREN, D., AND

FREIRE, J. 1997. XSB: A System for Eff-
ciently Computing. In Proceedings of the In-
ternational Conference on Logic Programming
and Non-Monotonic Reasoning (LPNMR ’97,
Dagstuhl, Germany). Springer-Verlag, New
York, 431–441.

REITER, R. 1984. Towards a logical reconstruc-
tion of relational database theory. In On
Conceptual Modelling, M. Brodie, J. Mylopou-
los, and J. Schmidt, Eds. Springer-Verlag,
New York, NY, 191–233.

REITER, R. 1995. On Specifying Database Up-
dates. J. Logic Program. 25, 1, 53–91.

ROSS, K. A. 1994. Modular stratification and
magic sets for Datalog programs with nega-
tion. J. ACM 41, 6 (Nov. 1994), 1216–1266.

ROTH, M. A., KORTH, H. F., AND BATORY, D. S.
1987. SQL/NF: a query language for ¬ 1NF
relational databases. Inf. Syst. 12, 1 (Jan.
1987), 99–114.

ROTH, M. A., KORTH, H. F., AND SILBERSCHATZ,
A. 1988. Extended algebra and calculus for
¬1NF relational databases. ACM Trans. Da-
tabase Syst. 13, 4 (Dec. 1988), 389–417.

SACCA, D. AND ZANIOLO, C. 1987. Magic Count-
ing Methods. In Proceedings of the ACM
SIGMOD Annual Conference on Management
of Data (SIGMOD ’87, San Francisco, CA,
May 27-29, 1987), U. Dayal, Ed. ACM Press,
New York, NY, 49–59.

SAGONAS, K., SWIFT, T., AND WARREN, D.
1994. XSB as an Efficient Deductive Data-
base Engine. In Proceedings of the 1994
ACM SIGMOD International Conference on
Management of Data (SIGMOD ’94, Minneap-
olis, Minnesota, May 24–27, 1994), R. T.
Snodgrass and M. Winslett, Eds. ACM
Press, New York, NY, 442–453.

SATTAR, A. AND GOEBEL, R. 1997. Consistency-
motivated reason maintenance in hypotheti-
cal reasoning. New Gen. Comput. 15, 2, 163–
186.

SHAN, R. AND LIU, M. 1998. Introduction to the
Relationlog System. In Proceedings of the
6th Intl. Workshop on Deductive Databases
and Logic Programming (DDLP ’98, Manches-
ter, UK, June 20 1998). 71–83.

SHIPMAN, D. W. 1981. The Functional Data
Model and the Data Language DAPLEX.
ACM Trans. Database Syst. 6, 1, 140–173.

SMOLKA, G. 1995. The Oz programming mod-
el. In Computer Science Today, J. van Leeu-
wen, Ed. Lecture Notes in Computer Sci-
ence, vol. 1000. Springer-Verlag, New York,
324–343.

SOMOGYI, Z., HENDERSON, F., AND CONWAY, T.
1996. The Execution Algorithm of Mercury:
An Efficient Purely Declarative Logic Pro-
gramming Language. J. Logic Program. 29,
1–3, 17–64.

STERLING, L. AND SHAPIRO, E. 1986. The art of
Prolog: advanced programming tech-
niques. MIT Press series in logic program-
ming. MIT Press, Cambridge, MA.

SU, S. Y. W. 1986. Modeling Integrated Manu-
facturing Data with SAM p. IEEE Computer
19, 1, 34–49.

SUBRAHMANIAN, V. S. 1992. Paraconsistent dis-
junctive deductive databases. Theor. Com-
put. Sci. 93, 1 (Feb. 3, 1992), 115–141.

TSUR, S. AND ZANIOLO, C. 1986. LDL: A Logic-
based data-language. In Proceedings of the
12th international conference on on Very
Large Data Bases (Kyoto, Japan, Aug.,
1986). VLDB Endowment, Berkeley, CA, 33-
41.

Deductive Database Languages: Problems and Solutions • 61

ACM Computing Surveys, Vol. 31, No. 1, March 1999

ULLMAN, J. 1982. Principles of Database Sys-
tems. Computer Science Press, Inc., New
York, NY.

ULLMAN, J. 1989a. Principles of Database and
Knowledge-Base Systems. Computer Science
Press, Inc., New York, NY.

ULLMAN, J. D. 1989b. Bottom-up beats top-
down for datalog. In Proceedings of the
eighth ACM SIGACT-SIGMOD-SIGART sym-
posium on Principles of Database Systems
(PODS ’89, Philadelphia, PA, Mar. 29–31,
1989), A. Silberschatz, Ed. ACM Press, New
York, NY, 140–149.

ULLMAN, J. 1991. A Comparison between De-
ductive and Object-Oriented Databases Sys-
tems. In Proceedings of the International
Conference on Deductive and Object-Oriented
Databases (Munich, Germany), C. Delobel, M.

Kifer, and Y. Masunaga, Eds. Springer-Ver-
lag, New York, 263–277.

VAGHANI, J., RAMANOHANARAO, K., KEMP, D., SOMO-
GYI, Z., STUCKEY, P., LEASK, T., AND HARLAND,
J. 1994. The Aditi Deductive Database
System. VLDB J. 3, 2, 245–288.

VAN GELDER, A. 1993. The alternating fixpoint
of logic programs with negation. J. Comput.
Syst. Sci. 47, 1 (Aug. 1993), 185–221.

VAN GELDER, A., ROSS, K. A., AND SCHLIPF, J. S.
1991. The well-founded semantics for gen-
eral logic programs. J. ACM 38, 3 (July
1991), 619–649.

WICHERT, C.-A. AND FREITAG, B. 1997.
Capturing Database Dynamics by Deferred
Updates. In Proceedings of the International
Conference on Logic Programming (Leuven,
Belgium). MIT Press, Cambridge, MA.

Received: March 1997; revised: September 1997, April 1998; accepted: July 1998

62 • M. Liu

ACM Computing Surveys, Vol. 31, No. 1, March 1999

