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Abstract

A popular manufacturing technique is clamshell casting, where liquid is poured into a cast
and the cast is removed by a rotation once the liquid has hardened. We consider the case where
the object to be manufactured is modeled by a polyhedron with combinatorial complexity n of
arbitrary genus. The cast consists of exactly two parts and is removed by a rotation around
a line in space. The following two problems are addressed: (1) Given a line of rotation [
in space, we determine in O(nlogn) time whether there exists a partitioning of the cast into
exactly two parts, such that one part can be rotated clockwise around [ and the other part can
be rotated counterclockwise around ! without colliding with the interior of P or the cast. If the
problem is restricted further, such a partitioning is only valid when no reflex edge or face of P
is perpendicular to I, the algorithm runs in O(n) time. (2) An algorithm running in O(n*logn)
time is presented to find all the lines in space that allow a cast partitioning as described above.
If we restrict the problem further and find all the lines in space that allow a cast partitioning
as described above, such that no reflex edge or face of P is perpendicular to [, the algorithm’s
running time becomes O(n*a(n)). All of the running times are shown to be almost optimal.

1 Introduction

The problem of whether a given object modeled by a polyhedron can be manufactured using the
casting process is a well studied problem in computational geometry. The following overview of
related problems is not extensive. For a detailed discussion of problems related to manufacturing
processes considered in computational geometry, the reader is referred to Bose [6], Bose and Tous-
saint [9], and the Handbook of Discrete and Computational Geometry by Goodman and O’Rourke
[18].

We are concerned with the geometric setting of clamshell casting outlined below.

Assume that we wish to manufacture an object modeled by a polyhedron P with combinatorial
complexity n. Let the boundary of P be the cast of P. Note that although this assumption is not
realistic, the assumption allows us to study a simplified version of the problem to obtain more in-
sight. Two problems are addressed. First, given a line of rotation [ in space, we determine whether
there exists a partitioning of the cast into exactly two parts, such that one part can be rotated
clockwise around [ and the other part can be rotated counterclockwise around ! without colliding
with the interior of P or the cast. We present an algorithm to solve this problem with running time
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O(nlogn). If we restrict the problem further and determine whether such a partitioning is possible
when no reflex edge or face of P is perpendicular to [, the algorithm runs in O(n) time. Second, an
algorithm is presented to find all the lines in space that allow a cast partitioning as described above.
The algorithm’s running time is O(n*logn). Again, we can restrict the problem further and find
all the lines in space that allow a cast partitioning as described above, such that no reflex edge or
face of P is perpendicular to I. The algorithm’s running time is O(n*a(n)) in that case, where a(n)
is the inverse Ackermann function. Alternatively, P can be preprocessed in O(n**¢) expected time
into a data structure of size O(n**¢), such that for any given line /, we can decide in O(log n) time if
| is a valid casting line. We provide an example of a class of polyhedra with Q(n*) combinatorially
distinct valid casting lines. Hence, the algorithms we present are almost worst case optimal.

To our knowledge, this problem has not been considered in the past, but the problem was stated
as an open problem in different publications [6, 7, 24]. The equivalent two-dimensional problem
has been considered by Bose et al. [8]. Furthermore, the analogous three-dimensional translational
casting problem, where the two parts of the cast are removed using a translation has been studied
extensively in both two and three dimensions.

There exists a close relationship between rotational casting and translational casting. Let P
denote a polyhedron and let [ denote the axis of rotation. Assume that P and [ are given in a
cylindrical coordinate system with [ as z-axis. Transform the coordinate system into a cartesian
coordinate system, such that the z-axis describes the angle ¢, the y-axis describes the distance d,
and the z-axis stays fixed. Considering this transformed system between = = 0 and = = 27 shows
the transformed cylindrical coordinate system. It is not hard to see that every point of the cast of P
moves along a straight line when the cast is removed. This means that rotational casting becomes
translational casting. It remains to analyze the shape of the transformed polyhedron P. Without
loss of generality (since everything can be rotated), assume that P does not contain vertical edges
or faces. Furthermore, assume that [ does not intersect the interior of P, since otherwise, P could
not be cast using / as axis of rotation. The reason is that there exists a point on the boundary of
P that is the perpendicular projection of [ on a face of P. This projection point cannot be rotated
by an infinitesimal rotation around [ without intersecting the interior of P. The transformation of
a face f of P is in essence a curve describing the distance of points on the face to the origin. The
distance from a face to a point is non-linear and can not be described using an algebraic surface,
but trigonometric functions are necessary [5]. Since [ does not intersect the interior of P, the
transformed polyhedron P is topologically equivalent to P and its boundary consists of piecewise
non-algebraic surface patches. considering rotational casting of P about the line [ is equivalent to
considering translational casting P with cast removal directions +z and —z.

To our knowledge, this close relationship between rotational casting and translational casting
has not previously been mentioned or used to obtain algorithms to rotationally cast polygons or
polyhedra. Although the transformation may be useful in testing whether a given line allows to cast
P, we can not find a line in space that allows to cast P using this transformation only. Furthermore,
none of the algorithms surveyed in the following can easily be extended to handle translational
castability of 3-dimensional objects bounded by piecewise non-algebraic surface patches.

Different approaches exist to examine the three-dimensional version of the casting problem,
where the object to be manufactured is modeled by a polyhedron in space with combinatorial
complexity n and the polyhedron’s boundary is used as cast and removed by translations. Ahn
et al. [3] determine whether the cast can be partitioned into exactly two pieces, such that both
pieces can be removed from the manufactured object by translations in opposite directions without



breaking the object or the cast. They consider two problems: the first problem is to decide whether
a given object is castable with respect to a given cast removal direction and the second problem is to
find a valid removal direction for a given object in case that one exists. Ahn et al. give sufficient and
necessary conditions for translational castability of objects bounded by algebraic surface patches
that meet along algebraic curves. However, algorithms to determine castability only work for
polyhedra. For a polyhedron of combinatorial complexity n, they present algorithms to solve the
first problem in time O(nlogn) and to solve the second problem in expected time O(n*). They
also prove that their algorithm can not be extended to allow arbitrary cast removal directions, i.e.
non-opposite directions. Ahn et al. [1] present necessary and sufficient conditions to test whether
an object can be manufactured via translational casting using non-opposite removal directions. For
a given pair of directions, the test can be performed in O(n?logn) time. Before Ahn et al. [3] found
an analytic solution to this problem, Hui and Tan [20] developed a heuristic method to solve the
problem. They choose candidate removal directions heuristically and test for a sample of points
located on the boundary of the polyhedron whether the points can be removed in that direction.
Ahn et al. [2] solve the two above-mentioned problems using randomized algorithms in a setting,
where the direction for cast removal is uncertain. This setting is important in practice, since the
control of the casting machinery is imperfect.

Note that the 3-dimensional problems considered here are closely related to the problems con-
sidered by Ahn et al. in [3]. The 3-dimensional decision problem for translational casting consid-
ered by Ahn et al. corresponds to the 3-dimensional decision problem addressed in this paper. The
problem of determining all the valid removal directions considered by Ahn et al. corresponds to
the problem of determining all valid casting lines in space addressed in this paper. Since Ahn et al.
propose algorithms that handle opposite cast removal only, the space of solutions is the space of
all possible directions, i.e. the unit sphere of directions, and therefore 2-dimensional. The problem
we address considers full lines. Hence the space of all solutions is the space of all possible lines in
3D and therefore 4-dimensional. Note that despite these two additional degrees of freedom, the
algorithms we present are only slightly less efficient than the algorithms proposed by Ahn et al.

Bose et al. [7] consider an object modeled by a simple polyhedron with n vertices and use the
polyhedron’s boundary as cast. They determine whether the cast can be partitioned into two pieces
by a plane, such that both pieces can be removed from the manufactured object by translation
without breaking the object or the cast. If this is the case, the object can be manufactured by sand
casting. A simple algorithm to decide whether a simple polyhedron with n vertices can be manufac-
tured by sand casting running in time O(n?logn) is provided. The running time of the algorithm
can be improved to O(n%+€), for any fixed ¢ > 0, by using complicated data structures. Further-
more, the running time of the algorithm becomes O(n?) in case that the cast removal directions are
opposite directions.

Section 2 introduces the notation and preliminaries used throughout this paper. Section 3
discusses the problem of finding a partitioning of a given cast based on a given line of rotation,
and Section 4 discusses the problem of finding all of the combinatorially distinct lines in space that
allow a valid partitioning of the cast. Finally, Section 5 concludes and gives ideas for future work.

2 Preliminaries

Define a polyhedron P of arbitrary genus as a closed, compact, connected subset of R? bounded by
a piecewise linear surface. Let int(P) and 0P denote the interior and boundary of P, respectively,



so that P = int(P) U OP. The boundary is also called the cast of P. Two faces are adjacent if they
share at least one edge. Parallel adjacent faces are not allowed, since this can be easily avoided by
merging the two adjacent parallel faces. Let n denote the combinatorial complexity of P. The aim
is to rotationally remove the cast of P in two pieces. We specify below precisely what this means.

Definition 1. Let [ be a directed line in 3-dimensional space. Consider the plane 7 perpendicular to [
passing through a point p of P. Denote the intersection point of  and [ by I’(p). Denote the circular
arc with center ’(p) and angle « starting at p winding in clockwise (cw) or counterclockwise (ccw)
direction by cwarc(l'(p), p, a) or ccwarc(l'(p), p, «) respectively. A face f of P is called removable in
cw orientation with respect to [ if

Ja > 0 such that ¥V p € int(f) : cwarc(l'(p),p,a) Nint(P) = ()
and removable in ccw orientation with respect to [ if

Ja > 0 such that V p € int(f) : ccwarc(l'(p), p,a) Nint(P) = 0.
The cw and ccw orientation is measured with respect to the orientation of line /.

The cw or ccw orientation is then called a valid orientation for cast removal for f with respect to
[ respectively, and [ is called a valid casting line for f.

Definition 2. Let / be a directed line in 3-dimensional space. A polyhedron P is rotationally castable
with respect to [, if 0P can be partitioned into exactly two non-empty connected components P;
and P, such that all faces of P; are removable in cw orientation with respect to [, all faces of P,
are removable in ccw orientation with respect to [, 3 « > O such that Vp € P,

cwarc(l'(p),p, @) Nint(Py) = 0,
and 3a > 0suchthatVpe P,
cecwarc(l'(p), p, ) Nint(Py) = (.

The last two conditions of the definition ensure that the two components P, and P, (which
partition the boundary of P) do not obstruct each other’s rotational paths. Figure 1 shows part of
a polyhedron that is decomposed into P, and P,. Although 0P can be decomposed into P; and
Py, it is impossible to split the face perpendicular to [ in a way that allows the removal of the
cast without intersecting int(P) and without the pieces P, and P, intersecting each other. This is
despite the fact that each face individually is removable with respect to . In the following, the
notations rotationally castable and castable are used interchangeably. Note that the partitioning of
the polyhedron is not necessarily at edges of P.

Let p € OP be a point incident to k reflex edges e;,1 < i < k and s faces f;,1 < i < s. Denote

-

the direction of ¢; by d(e;) and the inner normal of f; by 7i(f;).

Definition 3. Let [ be a directed line in 3-dimensional space in direction I. A polyhedron P is
robustly castable with respect to [, if P is rotationally castable with respect to [,

VpG@P:CRei)-f#O,lgigk, and
VpedP :A(f) x [ #0,1<j<s,

where - denotes the dot product of two vectors and x denotes the vector product of two vectors.
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Figure 1: Two different views of P are shown along with the partitioning of P. The components P;
and P, obstruct each other’s rotational paths.

The last two conditions of the definition ensure that no face or reflex edge of P is perpendicular
to [.

If P is robustly castable with respect to [, we say [ is a valid robust casting line for P. The
definition implies that P is robustly castable with respect to a line [ if P is castable with respect
to [ and no reflex edge or face of P is perpendicular to . However, there can still exist a point of
OP that slides along the boundary of P when the cast parts are removed. Hence, the definition
does not correspond to the intuitive definition of robust, where the limited precision of the casting
machinery used to manufacture an object is taken into account. Therefore, the definition of robust
castability does not imply that surface defects are less likely to occur in robust casting than in
general casting. Although the definition of robust castability does not offer this advantage, it
ensures that algorithms to determine robust castability of a polyhedron are more efficient than
algorithms to determine general castability of a polyhedron.

The following sections discuss both the robust casting process and the general casting process.

3 Decision Problem

In this section, we address the problem of determining whether a polyhedron P with combinatorial
complexity n is castable with respect to a given line of rotation and present an algorithm that
solves the problem in O(nlogn) time. In case we want to determine if P is robustly castable, the
algorithm’s running time becomes O(n).

Let P be a polyhedron and let [ be a line in space. The problem can be decomposed into three
subproblems: determining the valid orientation for cast removal for all faces of P with respect to
[, checking whether all the faces removable in cw and ccw orientation with respect to | form a
connected component of P, respectively, and testing whether the two components can be rotated
by a small amount around [ without colliding.

3.1 Robust rotational casting

This section presents an algorithm to test whether a polyhedron P is robustly castable with respect
to a line [ in space in O(n) time.



Definition 4. Let f be a face of P and denote its inner normal by 7. Define the open unbounded
prism S(f) = {p+ti : p € fand t € R}. Denote ST(f) = {p+ti :p € fandt > 0} and
ST(f)={p+ti:pée€ fandt <0}, see Figure 2.

Figure 2: The prisms S*(f) and S™(f).

In a first step, the algorithm determines whether any reflex edge or face of P is perpendicular
to the given line /. This test takes constant time per reflex edge or face, respectively, and therefore
O(n) total time. If any reflex edge or face of P is perpendicular to /, P is not robustly castable
with respect to [/, by definition. Otherwise, we determine the valid orientation for cast removal
for each face of P. In the following, we can therefore assume that no reflex edge or face of P is
perpendicular to /.

The following lemma characterizes all locations from which a face is removable.

Let f be a face of P with inner normal 7 and let [ be a line in direction [ with 7 x [’ # 0. If
INS(f) =0, compute a point p € Jf that minimizes the Euclidean distance between df and [. If
p is not unique, an arbitrary point p of that set is picked. Denote by 7 the plane with normal 7 x I
passing through p and by p* the point p translated by 7 x [. Denote the open half space induced by
7 containing p* by 7 and the open half space induced by 7 not containing p* by 7~. The following
lemma characterizes all locations from which a face is removable.

Lemma 1. For the orientation for cast removal of f, the following four cases are possible:

1. The face f is removable from the cast using only a cw orientation around I, if and only if [ N
S(fy=0andl € cl(r7).

2. The face f is removable from the cast using only a ccw orientation around [, if and only if
INS(f)=0andl € cl(rT).

3. The face f needs to be partitioned into two or more parts along the orthogonal projection of [ on
f,ifand only if IN ST(f) = 0 and I N S™(f) # 0. One or more parts of f are removable using
a ccw rotation and the other ones using a cw rotation around I.

4. The face f is not removable from the cast, if and only if LN ST(f) # 0.

Proof. Consider the plane 7 perpendicular to [ passing through a point p of P. Denote the intersec-
tion point of 7 and [ by /'(p). Every point p € int(f) moves on cwarc(l'(p), p, ) or ccwarc(l'(p), p, )
when rotated by an angle « around . Denote the vector from p to I'(p) by pl’(p) and the vector
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I'x pl'(p) by pl'(p)*. The tangent of cwarc(!'(p), p, @) or ccwarc(l'(p), p,a) is pl' (p)* or —pl'(p)*,
respectively, for any point p. Denote by v the plane passing through p with normal vector pf’ (p) and
denote by vt the open half space bounded by v containing I’. The two arcs cwarc(l'(p), p, «) and
ccwarc(l'(p), p, ) are contained in cl(v™).

Let p be an arbitrary point in the interior of f. There exists an open ball b with positive radius
centered at p with the property that exactly half of b is contained in int(P) and exactly half of b is
contained in the exterior of P. Denote the ray starting at p propagating in direction pi’ (p)* by ¢+
and denote the ray starting at p propagating in direction —pl’ (p)*+ by ¢~

Assume that [N S(f) =0 and ! € cl(77), and let p be an arbitrary point in the interior of f. The
intersection b N ¢+ is located completely outside of int(P). Hence, p can move by a small amount
along pl’(p)* without penetrating int(P). Since cwarc(l'(p),p,a) C cl(v*) and since pl’(p)* is the
tangent of cwarc(r, p,«) in p, small movements of p along cwarc(l'(p), p, a) are possible without
penetrating int(P). Hence, 3 a > 0 such that ¥V p € int(f) : cwarc(l'(p),p,a) Nint(P) = {.
The intersection b N ¢~ is completely contained in int(P) U {p} and hence, p cannot move in-
finitesimally along —pl’(p)*- without penetrating int(P). Since infinitesimal movements along
—pl'(p)* correspond to infinitesimal movements along ccwarc(l’(p), p, a), there is no a > 0 such
that vV p € int(f) : ccwarc(l'(p),p,a) Nint(P) = . Hence, f is only removable using a cw orienta-
tion around /.

Assume that [N S(f) =@ and [ € cl(7T), and let p be an arbitrary point in the interior of f. The
intersection b N ¢~ is located completely outside of int(P). Hence, p can move by a small amount
along —pl’(p)* without penetrating int(P). Since ccwarc(l'(p), p,a) C g™ (p) and since —pl’(p)* is
the tangent of ccwarc(l'(p), p, @) in p, small movements of p along ccwarc(l’(p), p, «) are possible
without penetrating int(P). Hence, 3« > 0 such that ¥ p € int(f) : ccwarc(l'(p), p, a)Nint(P) = 0.
The intersection b N ¢ is completely contained in int(P) U {p} and hence, p cannot move infin-
itesimally along pi’(p)* without penetrating int(P). Since infinitesimal movements along pl’(p)*
correspond to infinitesimal movements along cwarc(l’(p), p, ), there is no o > 0 such that V p €
int(f) : cwarc(l'(p),p,a) Nint(P) = ). Hence, f is only removable using a ccw orientation around
l.

IfINST(f)=0and NS~ (f) #0, fis divided into two or more faces along the perpendicular
projection !’ of [ on f by inserting one or more edges e. Denote the set of faces contained in ¢l(77)
by F and the set of faces contained in cl(7") by Fy. For arbitrary f; € Fy and fo € F, the points
on e globally minimize the distance between 0f1,0f2 and [ respectively. Hence, f; is removable
using a cw orientation around / and f> is removable using a ccw orientation around /. Note that F}
and F» contain exactly one face each for every convex face f.

If I N St(f) # 0, consider an arbitrary point p located on the orthogonal projection of [ on
f. The point p cannot be rotationally removed from the cast, i.e. there is no o > 0 such that
cwarc(l'(p), p,a) Nint(P) = 0 or ccwarc(l'(p),p,«) Nint(P) = (. Therefore, f is not removable
with respect to I.

This determines the removability of f depending on the location of / in 3-dimensional space.
Hence, the four statements of Lemma 1 follow directly. O

Lemma 1 classifies all faces of P into four categories. In linear time, all the faces of P can be
categorized. If any face of P is not removable with respect to [, P is not castable with respect to
[. Otherwise, the aim is to determine if the boundary of P can be decomposed into two connected
components. In particular, the faces of P that need to be split (faces of type 3 in Lemma 1) need to
be examined more carefully as outlined in the following lemma.



Lemma 2. Let P be a polyhedron with combinatorial complexity n and let | be a line in space. All the
faces f of Pwith INST(f)=0and NS~ (f) # 0 can be partitioned along the orthogonal projection
of l on f and the resulting new faces can be labeled as removable in cw or ccw orientation with respect
to [ respectively in O(n) time.

Proof. Consider a single face f with IN ST (f) =0and NS~ (f) # 0. Lemma 1 states that f needs
to be partitioned along the orthogonal projection of / on f. If we denote the number of vertices of
f by, fis partitioned into O(r) faces, because every edge of f is split at most once. Assume that f
is stored using a doubly-connected edge list. The s < r points on Jf, where f needs to be split can
be found ordered by their appearance on f in O(r) time by traversing the edges of f [17, Chapter
2]. Using the algorithm by Hoffmann et al. [19], it is possible to order the points with respect to
their appearance on the projected line in time O(r). Denote the points on df, where f needs to
be split ordered with respect to their appearance on the projected line by ¢y,...,qs. Note that s
is even, because every edge that is added to f has two endpoints and no two new edges share a
vertex. Adding the edges with endpoints ¢; and ¢o, ¢3 and qq, ..., gs—1 and ¢, partitions f along
the orthogonal projection of [ on f. Once the new edges and their intersection points with f are
known, it takes time O(m) to insert the new edge into the doubly-connected edge list, where m is
the number of edges adjacent to the new edge [17, Chapter 2]. In the worst case, O(r) = O(n) and
O(m) = O(n).

Next, we analyze the running time for splitting all of the faces f with I N ST(f) = 0 and
INS~=(f) # 0 of P. Since every edge e of P has two adjacent faces, e needs to be split at most
twice. This ensures that the total number of new edges is O(n). Also, the total number of edges
adjacent to the new edges is 2n = O(n). The reason for this is that each original edge of P is
adjacent to at most two new edges. Hence, all of the faces can be split in O(n) total time. Each
of the newly created faces can be labeled as removable in cw or ccw orientation with respect to
[, respectively, in constant time. Therefore, it takes O(n) time to partition all the faces of P with
INST(f)=0and I NS~ (f) # 0 and to find the valid orientation with respect to [ for each of the
newly created faces. O

This yields the conclusion that all the faces of a polyhedron P with combinatorial complexity n
can be labeled as removable in cw, ccw, or no orientation with respect to a line of rotation / in O(n)
total time.

The next step is to determine if those labels on the faces admit a decomposition of 9P into two
connected sets. The following lemma allows this test to be done in linear time:

Lemma 3. Given a partitioning of P into two sets P, and P», such that all faces of P, are removable
in cw orientation with respect to | and all faces of P, are removable in ccw orientation with respect to
I, we can determine whether P, and P, are connected respectively in time O(n).

Proof. To test whether all the faces of P, and P, form connected components, consider two undi-
rected graphs: graph (G; induced by the faces in P, and graph G, induced by the faces in P». Next,
a depth-first search [15, Chapter 22] is performed on G and G4 respectively. The faces in P; and
P, are connected, respectively, if and only if the depth-first forests of G; and G5 consist of exactly
one tree each. This implies that non-connected polyhedra are not castable with respect to any line.
The running time for this algorithm is in the order of the sum of all the edges and vertices of the
two undirected graphs, and hence O(n). O



The final step is to determine whether P; can be rotated by a small amount in cw orientation
with respect to [ without colliding with P, and whether P, can be rotated by a small amount in
ccw orientation with respect to [ without colliding with P;. The definition of robust castability of
P implies that P is robustly castable if and only if the rotations are possible.

Lemma 4. Given a partitioning of 0P into two connected components P; and P, such that all faces of
Py are removable in cw orientation with respect to [ and all faces of P, are removable in ccw orientation
with respect to I, we can test whether 3 « > 0 such that ¥ q on Py

cwarc(l'(q), q, @) Nint(Py) = 0,
or equivalently 3 o > 0 such that ¥/ q on P

ccwarc(l'(q),q, ) Nint(Py) = ()
in time O(n).

Proof. Each edge contained in the cycle C' consisting of edges and vertices of P that separates
Py from P, can be found in linear time by testing for each edge of P whether it is adjacent to
both a face removable in cw orientation with respect to /[ and a face removable in ccw orientation
with respect to [. The statement of Lemma 4 is true if and only if every point in C' can rotate
by a small amount in cw (respectively ccw) orientation with respect to [ without penetrating P»
(respectively P;). As C' consists of non intersecting simple polygonal cycles on P, it is sufficient
to test all the vertices of C. Denote the intersection of the plane = perpendicular to [ passing
through a vertex p of C with [ by I’(p). Rotations of p with respect to / in 3-dimensional space
correspond to rotations of p with respect to I’(p) in 7. Previously, Bose et al. [8] examined rotational
castability of simple polygons in two dimensions. An edge e of a polygon R with interior int(R)
and boundary OR is removable in cw orientation with respect to a point r in the plane, if 3 o >
0 such that ¥ p on e : cwarc(r,p, o) Nint(R) = ). The edge e is removable in ccw orientation with
respect 7, if 3 a > 0 such that ¥ p on e : ccware(r,p,a) Nint(R) = (. Bose et al. [8] proved that
the valid orientation for cast removal with respect to » changes at a point p € dR if and only if p
either locally minimizes or maximizes the distance between OR and r. This result ensures that p
can be rotated by a small amount in arbitrary orientation with respect to ’(p) if and only if p either
locally minimizes or maximizes the distance between 9P N 7 and !’(p) and p is not a reflex vertex
in 7. Hence, C can rotate by a small amount in cw (respectively ccw) orientation with respect
to [ without penetrating P» (respectively P), if every vertex p of C either locally minimizes or
maximizes the distance between 9P N 7 and !’(p) and is not a reflex vertex in 7.

The aim is to test for every point p of C' whether it either locally minimizes or maximizes the
distance between 9 PN and I'(p) and is not a reflex vertex in . Note that p is incident to two edges
in C, because C is a set of non-intersecting simple polygonal cycles on P. Hence, testing whether
p is a local extremum requires intersecting = with the four faces adjacent to the two edges of C
adjacent to p. We can test whether p minimizes or maximizes the distance to !’(p) by computing
the distances from p and p’s two neighboring vertices in 7 to I'(p). If p is closer to I’(p) than its
two neighboring vertices, it locally minimizes the distance between 9P N7 and I'(p). If p is further
from !’(p) than its two neighboring vertices, it locally maximizes the distance between 9P N7 and
I'(p). Hence, testing whether one vertex p of C' can rotate by a small amount in cw (respectively
ccw) orientation with respect to [ without penetrating int(P,) (respectively int(P;)) takes constant
time. As C has O(n) vertices, testing whether P; and P, collide takes O(n) time. O
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This yields the following result:

Theorem 1. Given a polyhedron P with combinatorial complexity n and a line of rotation [ in 3-
dimensional space, it is possible to determine whether P is robustly castable with respect to [ in time

O(n).

3.2 General rotational casting

Now, we turn our attention to general rotational casting. Recall that the only difference between a
polyhedron being robustly rotationally castable and rotationally castable is the degenerate situation
where faces or reflex edges of P are perpendicular to /. We now outline how to handle this situation
which turns out to impose an additional logn factor on the running time. Thus, determining
whether a polyhedron P is castable with respect to a line [ in space requires O(nlogn) time.

Consider the notation of Lemma 1. In the case of general castability of P, it is possible that a
face f of P with inner normal 77 is perpendicular to the given line /. The following Observation can
easily be proven using the same techniques used in the proof of Lemma 1.

Observation 1. Let f be a face of P with inner normal 7 and let | be a line in direction I. IFINS(f) = 0
and i x I = 0, f is removable in both cw and ccw orientation with respect to 1.

As in Section 3.1, it is possible to label all the faces of P that are not perpendicular to [ as
removable in cw, ccw, or no orientation in O(n) time. It remains to split the faces with [N S(f) =0
and 7 x [ = 0 and assign unique valid orientations to the newly created faces if possible. The
face f can be partitioned into two (possibly empty) sets of faces F; and F5, such that all the faces
adjacent to f removable in cw orientation with respect to / are adjacent to faces in F} and all the
faces adjacent to f removable in ccw orientation with respect to [ are adjacent to faces in F5. The
definition of castability of a polyhedron implies that f is only removable with respect to [ if there
exists a partitioning of f into F; and F, with the following two properties: F; does not intersect
F5> when rotated by a small amount in cw orientation with respect to [ and F; does not intersect F
when rotated by a small amount in ccw orientation with respect to I. Such a partitioning is called
a valid partitioning of f. The definition of castability implies that P is not castable with respect to [
if no valid partitioning of f exists. Then, we say that f is not removable with respect to [.

If [ passes through a hole of a face f perpendicular to [, there are two possible cases: NP # ()
and I NOP = (. If INOP # (), at least one of the faces of P intersects [ and is therefore not
removable with respect to [. If I N 9P = (), the boundary of the hole of P that contains / can not be
removed without penetrating int(P). This yields the following observation:

Observation 2. If [ passes through a hole of f, P is not castable with respect to .

Lemma 5. Let P be a polyhedron with combinatorial complexiqu n and let | be a line in direction I.
For all faces f of P with inner normal 7, I N S(f) = 0, and [ is parallel to 7, we can find a valid
partitioning or report that f is not removable with respect to [ in total time O(nlogn).

Proof. Consider a single face f with inner normal 7, [ N S(f) = (), and [is parallel to 7i. As f is
located in a plane orthogonal to / and as no two adjacent faces of P are parallel, we know the valid
orientation for cast removal with respect to [ for every face adjacent to f. An edge of f is considered
removable in cw (respectively ccw) orientation with respect to [ if it is incident to a face adjacent to
f removable in cw (respectively ccw) orientation with respect to [. Since the valid orientations with
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respect to [ of all the faces adjacent to f are known, every edge of f can be labeled as removable in
cw or ccw orientation with respect to [, respectively, in constant time per edge. Note that no edge
is labeled both cw and ccw because edges that were originally labeled this way have already been
split as described above. The aim is to partition f into two or more components F; and F», such
that all the edges of f removable in cw orientation with respect to [ are only incident to F; and all
the edges removable in ccw orientation with respect to [ are only incident to F5.

Denote the set of edges of f removable in cw orientation with respect to | by CW (f) and the
set of edges of f removable in ccw orientation with respect to I by CCW (f). Define cwa;(p) >
0 as the maximal angle by which p can be rotated in cw orientation with respect to [ without
penetrating the exterior of f. Let cwas > 0 be an arbitrarily small positive angle. Define cwa(p) =
max(cwaq (p), cwaz) and note that cwa(p) > 0. Let I’ denote the point | N 7, where 7 is the
supporting plane of f.

Claim 1. There exists a valid partitioning of f if and only if

(cwarc(l', p, cwa(p)) \ {p}) NCCW (f) =0V p e CW(f).

The proof of this claim is left until later.

Next, we present an algorithm to decide whether (cwarc(l’, p, cwa(p))\{p})NCCW (f) =0V p €
CW (f) for a given face f and analyze its running time. Each edge of f is labeled as removable in cw
or ccw orientation with respect to [ respectively. The aim is to test whether any point p on an edge
removable in cw orientation with respect to [ intersects an edge removable in ccw orientation with
respect to [ when rotated by cwa(p) in cw orientation with respect to [. To conduct this test, f is
represented in a fixed polar coordinate system, where [’ is the origin and where the polar axis is not
perpendicular to any edge of f and does not intersect f. If it is impossible to represent f that way,
then P is not castable with respect to /, because the initial assumption ensures that I’ ¢ int(f) and
Observation 2 shows that P is not castable with respect to [ if [ passes through a hole of f. In polar
coordinates, every point is described by an angle ¢ and the distance d from the origin. Transform
the coordinate system into a cartesian coordinate system, such that the z-axis describes the angle
¢ and the y-axis describes the distance d. Considering this transformed system between x = 0 and
x = 2r shows the transformed polar coordinate system. The polygon f is transformed into f. A
sketch illustrating the transformation is shown in Figure 3. Since the positive polar axis does not
intersect f, f and f are topologically equivalent. The vertices of f are points and the edges of f
are transformed line segments. The transformation of a line [ is in essence a curve describing the
distance of points on the line to the origin. The distance of points on [ to the origin has exactly one
minimum and consists of two strictly monotone pieces with monotone derivatives. Hence, there
exists a pair (dp, ¢o) that denotes the minimum distance from the line to the origin and the distance
increases symmetrically as ¢ increases or decreases, respectively. This yields that edges of f have
one global minimum and consist of at most two strictly monotone pieces. Furthermore, each edge e
of f was split before (while splitting faces of type 4 in Lemma 1) at the perpendicular projection of
I’ on e. This corresponds to splitting each edge ¢ of f at the global minimum. Hence, every edge of
f is a strictly monotone curve with monotone derivative. Two edges of f only intersect in vertices
of f. Each edge ¢ has constant description size.

In the cartesian coordinate system, rotations in cw (respectively ccw) orientation with respect to
I’ correspond to translations in direction of the negative (respectively positive) z-axis. It is possible

11



l’ ] 0 ™

Figure 3: Sketch illustrates the transformation from f to f.

to determine whether f is removable with respect to [ by enlarging a circle in the polar coordinate
system. This corresponds to sweeping a line in y-direction in the cartesian plane. Let each edge é
of f be labeled as removable in cw or ccw orientation with respect to [ respectively and let ¢ have
a label indicating whether int(f) is located to the left or to the right side of . Let the sweep line
status of the plane sweep algorithm contain the edges of f that are currently intersected by the
sweep line and let the event queue contain all the vertices of f. At every event point of the plane
sweep algorithm, an edge of f is either inserted to or removed from the sweep line status. If this
insertion or removal, respectively, yields one of the following two situations, the algorithm reports

that f is not removable with respect to [.

1. An edge ¢; removable in cw orientation with respect to [ is located immediately to the right
of an edge ¢; removable in ccw orientation with respect to [ and int(f) is located to the left
of €~1.

2. An edge ¢; removable in cw orientation with respect to [ is located immediately to the right

of an edge ¢, removable in ccw orientation with respect to [, int(f) is located to the right of
€1, and €1 and é; share a vertex.

If none of the above two situations occurs during the plane sweep, the algorithm reports that f
is removable with respect to [.

The proof of correctness of this algorithm consists of two parts. The first part, f is not remov-
able with respect to [ if the algorithm finds one of the two above mentioned situations is easy to
see. It remains to prove that f is removable with respect to [ if none of the above mentioned situ-
ations occur. We prove this by contradiction and assume that f is not removable with respect to [
although the two situations did not occur. Hence, 3 p € CW(f), such that (cwarc(l', p, cwa(p)) \
{p}) NCCW (f) # 0. Since the transformation from f to f maintains the distance from I/, 3 p €

CW (f), such that (cwarc(l', p, cwa(p))\{p})NCCW (f) # 0. Let the point ¢ = (cwarc(l', p, cwa(p))\
{p}) NCCW (f). Since every edge of f is strictly monotone and has a monotone derivative, p and ¢
are located on distinct edges €; and é; of f respectively. Two situations are possible. First, cwa/(p)
is the cw angle that p is rotated by prior to leaving the interior of f. Assume without loss of gener-
ality that there is no edge between ¢; and é,. This assumption is valid, because if there is an edge
between €7 and é;, we can find an edge ¢;’ with the desired property. Hence, ¢; is located immedi-

ately to the right of é; and int(f) is located to the left of €;. This corresponds to the first situation
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mentioned above and therefore contradicts the assumption. Second, cwa(p) is an arbitrarily small
angle, i.e. int(f) is located to the right of the edge ¢; and the distance between ¢; and ¢, is arbi-
trarily small. Hence, ¢€; and €, share a vertex. This corresponds to the second situation mentioned
above and therefore contradicts the assumption and proves the correctness of the algorithm.

For a face with s vertices, labeling all of the edges as removable in cw or ccw orientation
with respect to / and transforming f to f takes time O(s). The plane sweep algorithm takes time
O(slogs) [17, Chapter 2]. Since no two adjacent faces of P are parallel, every vertex of P is part
of at most one face perpendicular to I. Hence, it takes O(nlogn) total time to test all of P’s faces

with inner normal 77, I N S(f) = 0, and [ is parallel to 7. O
It remains to prove Claim 1:

Proof. The proof of this statement consists of two parts. First, we prove that f is not removable
with respect to [ if 3 p € CW(f), such that (cwarc(l', p, cwa(p)) \ {p}) N CCW(f) # (. From
the definition of cwa(p), we know that (cwarc(l’, p, cwa(p)) \ {p}) N Of is a single point ¢q. The
assumption ensures that ¢ € CCW (f). If cwarc(l’, p, cwa(p)) \ ({p} U {q}) is completely contained
in the exterior of P, cwa(p) is an arbitrarily small angle. But this implies that p cannot be rotated
by an arbitrarily small angle in cw orientation with respect to [ without hitting a point of CCW ( f).
The definition of castability implies that f is not removable. Otherwise, cwarc(l’, p, cwa(p)) \ ({p}U
{q}) € int(f). Since p and ¢ need to be removed in opposite orientations with respect to /, we find
at least one point p* € cwarc(l’, p, cwa(p)), where the valid orientation with respect to | changes
from cw to ccw when traversing cwarc(l’, p, cwa(p)) starting at p. As the traversal from p to ¢ is a
rotation in cw orientation around ', p* penetrates F; (respectively F;) when rotated infinitesimally
in cw (respectively ccw) orientation with respect to [. Therefore, f is not removable with respect
to [.

The second part we prove is that there exists a valid partitioning of f if (cwarc(l', p, cwa(p)) \
{p})NCCW(f) =0V p e CW(f). We prove this explicitly by assigning a unique valid orientation
with respect to [ to every point ¢ € f, such that no cw point of f penetrates F, when rotated
by an arbitrarily small angle in cw orientation with respect to [ and no ccw point of f penetrates
F; when rotated by an arbitrarily small angle in ccw orientation with respect to /. Consider an
arbitrary point p € CW(f). Since (cwarc(l',p,cwa(p)) \ {p}) N CCW(f) = 0V p € CW(f),
every point g on cwarc(l’, p, cwa(p)) can rotate by an arbitrarily small angle in cw orientation with
respect to [ without hitting a point of CCW (f). Hence, we label every point ¢ € int(f) with I p €
CW(f), such that ¢ € cwarc(l',p, cwa(p)) as removable in cw orientation with respect to [. Every
point ¢ € int(P) with g € cwarc(l',p,cwa(p)) ¥V p € CW(f) can leave int(f) by a ccw rotation with
respect to [ without intersecting CW (f). Every point ¢ € P with ¢ & cwarc(l',p,cwa(p)) V p €
CW (f) can rotate by an arbitrarily small angle in ccw rotation with respect to [ without intersecting
CW (f). Hence, we label every point g € f with g € cwarc(l', p, cwa(p)) Vp € CW(f) as removable
in ccw orientation with respect to [. Since the two sets F; = {q | 3 p € CW(f), suchthatq €
cwarc(l',p,cwa(p))} and Fy = {q | ¢ & cwarc(l’, p, cwa(p)) ¥V p € CW(f)} have the properties that
FiNFy, =(and f = F| UF5, avalid partitioning of f was found. Note that the set of faces forming
Fy and F3, respectively, consists of faces bounded by edges of f and circular arcs with center point
I. O

This yields the conclusion that all the faces of a polyhedron P with combinatorial complexity
n can be labeled as removable in cw, ccw, or no orientation with respect to a line of rotation / in
space in O(nlogn) total time.
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Since Lemmata 3 and 4 still hold in the general setting, we conclude with the following theorem:

Theorem 2. Given a polyhedron P with combinatorial complexity n and a line of rotation [ in 3-
dimensional space, it is possible to determine whether P is castable with respect to [ in time O(n logn).

4 Determining all valid casting lines

In this section, we solve the problem of finding all lines / in 3-dimensional space, such that a given
polyhedron is (robustly) castable with respect to . Two aspects of the same problem are considered:
reporting a representative for each class of combinatorially distinct (robust) valid casting lines for
a given polyhedron and preprocessing P such that, for any given query line /, we can efficiently
determine if P is (robustly) castable with respect to I. Two lines [y and [l are combinatorially
distinct if the valid casting line /; with respect to P can not continuously be moved to [, without
becoming an invalid casting line with respect to P.

4.1 Robust rotational casting

Recall that a polyhedron P is not robustly castable with respect to a line [ with the property that
some face or reflex edge of P is contained in a plane perpendicular to [. Hence, this section only
considers lines [, such that no face or reflex edge of P is perpendicular to [.

As mentioned before, Bose et al. [8] consider rotational castability of polygons in two dimen-
sions. They define a polygon to be rotationally castable with respect to a point r in the plane if the
boundary of the polygon can be partitioned into exactly two connected chains, such that all the
edges of one chain are removable in cw orientation with respect to r and all edges of the other
chain are removable in ccw orientation with respect to r.

The 3-dimensional casting problem can be reduced to the 2-dimensional version considered by
Bose et al. [8]. Consider an arbitrary plane 7 orthogonal to [ and compute the set P/ = = N P.
The intersection consists of sets of polygons, since P is a polyhedron. Hence, the castability of P’
with respect to the point I’ = 7 N[ € R? can be analyzed using the methods proven by Bose et al.
[8]. Since P’ consists of a set of polygons, P’ is castable with respect to I’ if and only if all of the
polygons in P’ are castable with respect to !’. If a set of polygons forms a polygon with holes, P is
not robustly castable with respect to [, because the polygon forming the hole can not be removed
without penetrating int(P).

Since P is a polyhedron, the boundary 0P is an orientable surface. The proof of Lemma 3
states that P is not castable if 0P is not connected. Hence, we assume in the following that 0P is
a connected orientable surface in R>.

Definition 5. The genus g of a connected orientable surface S € R3 is the maximum number of
cuttings along closed simple curves without disconnecting S.

Definition 6. A handle is a subset of a manifold that is topologically equivalent to a ball.

The genus of a connected orientable surface S equals the number of handles of S. A hole in
S exists if there exists a continuous loop L that cannot be homotopically deformed onto a point
within the surface S. For each handle of S, there exists a hole in S, such that the corresponding
loop L is partially located on the handle.
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Lemma 6. A polyhedron P in R? is robustly castable with respect to a line of rotation I if and only
if every cross section P’ of P with a plane 7 perpendicular to [ is castable with respect to the point
I'=mnNlL

Proof. The proof consists of two parts. First, P is not robustly castable with respect to [ if any cross
section P’ is not castable with respect to I’ because the rotation of 9P around [ includes the rotation
of every possible 9P’ around /.

Proving that P is robustly castable with respect to [ if every cross section P’ is castable with
respect to [’ requires showing that the points of 9P’ that locally minimize or maximize the distance
from P’ to I’ form connected chains that partition 9P into exactly two connected sets. It follows
then that all the faces of one component are removable in cw orientation with respect to / and all
the faces of the other component are removable in ccw orientation with respect to [. Since the
partitioning of JP is at near and far points that are not reflex vertices, Lemma 4 ensures that no
collisions occur.

To examine the location of near and far points of 9P, the plane 7 perpendicular to [ is swept
over P in direction I. When 7 is swept over P, I’ does not move and P’ changes continuously.
Hence, the near and far points of 9P’ with respect to I’ move continuously along edges of 9P and
orthogonal projections of [ on faces of 9P. This implies that vertices of P and the start and end
points of the orthogonal projections of [ on faces of P are the only event points of the sweep
algorithm. The output of the plane sweep is a set of circular lists representing cycles on 9P formed
by near and far points of 9P’ with respect to I’. The circular lists contain event points of the sweep
algorithm ordered by their appearance on the cycle. During the plane sweep, a set of lists L that
represent parts of circular lists is updated. When referring to event points of the plane sweep, only
event points that were not swept yet are considered.

First, assume that only one event point occurs per cross section. The following events can occur
at an event point v of the plane sweep:

1. In P/, a new polygon occurs as isolated vertex v. Hence, v is both a near and a far point with
respect to I’. A new list that represents part of a circular list is created and added to the set
L. Tt contains the event point adjacent to v with minimal distance from [ (a near point with
respect to I'), v, and the event point adjacent to v with maximal distance from [ (a far point
with respect to ) in that order.

2. In P’, an existing polygon disappears as isolated vertex v. Hence, v is both a near and a far
point with respect to I’. The event point v is already contained in one list of L as first point
and in one (possibly the same) list of L as last point. If v is contained in two different lists,
the lists are joined. Otherwise, the list of L containing v as both first and last point is stored
as circular list.

3. In P’, an existing polygon splits into two polygons. The two polygons have the common
vertex v, and therefore, v is both a near and a far point with respect to I’. A new list that
represents part of a circular list is created and added to the set L. It contains the event point
adjacent to v with minimal distance from [, v, and the event point adjacent to v with maximal
distance from [ in that order.

4. In P’, two polygons merge into one. The two polygons have the common vertex v, and
therefore, v is both a near and a far point with respect to I’. The event point v is already
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contained in one list of L as first point and in one (possibly the same) list of L as last point.
If v is contained in two different lists, the lists are joined. Otherwise, the list of L containing
v as both first and last point is stored as circular list.

5. No topological changes occur in the cross section and the event point v is not contained in
any list of L. Hence, v is neither a near nor a far point with respect to I’ and no updates are
required.

6. No topological changes occur in the cross section and the event point v is contained in a list
of L as first or last point respectively. If v is the first point, v is a near point with respect to ’.
The event point adjacent to v with minimal distance from [ is added to the list of L containing
v at the front. If v is the last point, v is a far point with respect to I’. The event point adjacent
to v with maximal distance from [ is added to the list of L containing v at the tail.

Note that although twelve topological changes can occur when a plane is swept over a polyhedron
(see [10]), only the first four above are relevant as polygons with holes are not castable.

If a cross section contains more than one event point, the event points can simply be treated in
sequential order, because no two event points are on one face or edge of P. As the set of circular
lists L returned by the plane sweep represents chains of near and far points of 9P’ with respect
to I/, QP is partitioned along L. Hence, it remains to show that L partitions 9P into exactly two
connected sets. We prove this by induction on the genus g of 9P.

Base case: There are no split or merge vertices. A simple polyhedron P (i.e. g = 0) is robustly
castable with respect to [ if every cross section P’ is castable with respect to I’. The plane sweep
returns one simply connected cycle. We prove this by induction on the number of split and merge
event points (event points of type 3 and 4).

e Base case: The first event point is of type 1 and creates one list that represents part of a
circular list. As long as only event points of type 5 and 6 occur, no new lists are created. As
there are no merge event points, it is impossible that further event points of type 1 occur.
Hence, the only topological change that will occur when the last event point is swept is of
type 2. This results in one circular list representing a simply connected cycle on 0P. As 0P
has genus 0, any simply connected cycle partitions 0P into exactly two connected sets.

e Induction step: Given that the plane sweep algorithm returns one circular list if k& topological
changes of type 3 or 4 occur during the plane sweep, we show that the plane sweep algorithm
returns one circular list if k£ + 1 topological changes of type 3 or 4 occur during the plane
sweep. If the k + 1% topological change is a split, a new list L, is created. After the split,
the two new polygons in P’ disappear in event points of type 2. Note that they cannot merge
again as P is simply connected. When the first of the two new polygons in P’ disappears in
an event point of type 2, L joins another list of L. The initial assumption implies that this
list is eventually the only remaining list that will be returned as circular list. If the k + 15
topological change is a merge, a new polygon occurs as an isolated vertex at an event point of
type 1 creating a new list L. When this new polygon merges with another polygon, L joins
another list of L. The initial assumption implies that this list is eventually the only remaining
list that will be returned as circular list. Hence, the sweep algorithm always returns one
simply connected circular list for a polyhedron of genus 0.
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Induction step: Given that a polyhedron P, with genus g is robustly castable with respect to [
if every cross section Pé is castable with respect to I’, we show that a polyhedron P, with genus
g + 1 is robustly castable with respect to [ if every cross section P, is castable with respect to [’.
Adding a handle to the castable polyhedron P, yields P, . Hence, only event points incident to
the hole adjacent to the newly created handle are relevant. The first event point that occurs is of
type 3, i.e. a new list L, is created. As long as only event points of type 5 and 6 occur, no new
lists are created. It is impossible that an event point of type 1 or 2 occurs incident to a hole. If
multiple event points of type 3 occur, the polygons in P, ; can therefore only merge again. Hence,
one simply connected circular list representing a cycle on 0P, is returned when the sweep plane
passed the hole. As all of the event points are incident to the hole adjacent to the newly created
handle, the cycle does not intersect any of the existing cycles. Hence, P, is partitioned into
exactly two connected sets by the points in L, and is therefore robustly castable with respect to
[. It remains to prove that by adding a handle to P,, every possible polyhedron P, of genus
g + 1 can be created. The Principal Theorem of surface topology [25, §39] states that two closed
orientable surfaces are topologically equivalent if and only if they have the same genus. Hence,
any polyhedron of genus ¢ + 1 is topologically equivalent to P, ; and can therefore be created by
adding a handle to P,. O

For the two dimensional casting problem, Bose et al. [8] define black regions for edges and
reflex vertices of a simple polygon as follows.

Definition 7. Let e be an edge of a simple polygon with vertices a and b and denote the inner
normal of e by 7i(e). The open strip

{p+ti(e)|p € e\ {a,b},t >0}

is called the black region of e.
Let v be a reflex vertex of a simple polygon. Denote the two edges adjacent to v by e; and es
and denote their inner normals by 7i(e;) and 7i(ey) respectively. The near cone of v is defined as

{v+ tifi(er) + tori(e2)|t1, t2 > 0, t1t2 # 0}
and the far cone of v is defined as
{0+ t17i(e1) + tori(ea)|t1, t2 < 0}.
The black region of v is the union of the near cone and the far cone of v.

If the center of rotation r is located in the black region of an edge e, e is not removable with
respect to r. Similarly, if r is located in the black region of a reflex vertex v, v can not be rotated
by an infinitesimal angle around r without penetrating the interior of the polygon. Bose et al. [8]
prove that a polygon is castable with respect to a point r in the plane if and only if r is not contained
in the black region induced by edges and reflex vertices of the polygon.

In analogy to the 2-dimensional casting problem discussed by Bose et al. [8], it is possible
to define black regions. For a polyhedron, black regions exist for faces, reflex edges, and reflex
vertices.

Definition 8. For a face f of P, the black region of f is defined as S™(f).
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Note that there is no valid casting line for f that properly intersects the black region of f (see
Lemma 1). Figure 2 shows the black region of f, which is the prism that is swept when translating
f along its inner normal vector.

Definition 9. Let e be a reflex edge of P and denote the inner normals of its two adjacent faces by
ny and n5. Define the near wedge of e as

St(e) = {p+ timy + tony = p € cl(e) and t1,ts > 0}
and the far wedge of e as

S7(e) ={p+tin1 + tana : p € cl(e) and t1,ty < 0}.
The black region of a reflex edge e is defined as (S*(e) U S~ (e)) \ e.

For every point r contained in the black region of a reflex edge e, there exists a point ¢ € e that
locally minimizes or maximizes the distance from r to 0P, respectively.

Definition 10. A vertex v of P is a reflex vertex of P if and only if all of v’s adjacent edges are reflex
edges of P. Let v be a reflex vertex of P and denote the inner normals of its » adjacent faces by
ni,...,n,. Define the near cone of v as

ST)={T+> tii: t;>0Vi=1,...,r}
i=1
and the far cone of v as
S~ (v) :{U+Ztiﬁi: ti<0Vi=1,...,7}
i=1

The black region of a reflex vertex v is defined as S™(v) U S~ (v).

For every point r contained in the black region of a reflex vertex v, v locally minimizes or
maximizes the distance from r to 9P, respectively. Figure 4 illustrates the black region of a reflex
edge and of a reflex vertex.

The black regions of faces, reflex edges, and reflex vertices of P are the black regions induced by
P.

Lemma 7. A polyhedron P is robustly castable with respect to a line of rotation I, if and only if | does
not intersect any of the black regions induced by P.

Proof. The proof consists of two parts. First, we prove that P is not robustly castable with respect
to [ if [ intersects any of the black regions induced by P. If [ intersects the black region induced
by a face f of P, 1N ST (f) # 0 and Lemma 1 states that P is not castable with respect to [. If ]
intersects the black region of a reflex edge e of P, there exists a point ¢ on e that locally minimizes
or maximizes the Euclidean distance from 0P to [. If [ is parallel to e, this is true for every point
on e. Consider the intersection of P with the plane 7 perpendicular to [ passing through ¢. In the
cross-section, g is a reflex vertex that has extremal distance to w N l. Hence, m N[ is contained in
the two-dimensional black region of ¢q. The results by Bose et al. [8] and Lemma 6 ensure that P
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Figure 4: Left: The near and far wedge of e. Right: The near and far cone of v.

is not robustly castable with respect to [. If [ intersects the black region induced by a reflex vertex
v of P, v locally minimizes or maximizes the Euclidean distance from 0P to [. With an argument
similar to the one we used for reflex edges, we can then show that P is not robustly castable with
respect to [.

Second, we prove that P is robustly castable with respect to [ if [ does not intersect the union
of black regions induced by P. We prove this by contradiction and assume that / does not intersect
the union of black regions induced by P and that P is not robustly castable with respect to /. Since
P is not robustly castable with respect to [, Lemma 6 ensures that there exists a cross section of
P with a plane 7 perpendicular to [ that is not castable with respect to = N [. Hence, there exists
a cross section, such that = N[ is contained in the 2-dimensional black region of the cross section.
Three cases are possible:

1. The point I’ = 7w N is contained in the black region of an edge /' = = N f, where f is a face
of P with normal 7 not parallel to the direction [ of /. Denote the perpendicular projection of
I’ on int(f’) by g. Since the normal vector of f’ is the projection of 7 onto the plane =, there

exists a ¢ > 0, such that
. s
I'=q¢+ (ﬁ—l) t.

— -

=1+t

1

=
!

Consider the point [* with

l

1

[= q+ ti.

!

I
Clearly, I* € [, as I’ reaches [* by being moved in direction [ only. Since ¢ € f, I* is also
contained in the black region of f. This contradicts the initial assumption.

2. The point I’ = w N[ is contained in the black region of a reflex vertex ¢’ = 7 N e, where e is a
reflex edge of P. Since w N e is a vertex, none of the two faces adjacent to e is perpendicular
to [. Denote the normal vectors of ¢’s two adjacent faces by 7] and n5 respectively. There
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exist two constants ¢, to with t1, ¢ > 0,1ty # 0 or t1,t2 < 0, such that

F=d i (n— 22T 4+ [y — 2220 6
I i

Consider the point [* with

—

. oo T
F=U+t l_l,l_.l—l-tQ ; l.,lzd—l—h?ﬁ-l—tz?fz-

Clearly, I* € I, as I reaches [* by being moved in direction [ only. Since ¢’ € e, I* is also
contained in the black region of e. This contradicts the initial assumption.

3. The point I’ = 7 N1 is contained in the black region of a reflex vertex v' = 7 N v, where v is
a reflex vertex of P. Since v’ is a reflex vertex, = intersects exactly two of v’s adjacent faces
and neither of those faces is perpendicular to /. Hence, a proof similar to the previous proof
shows that [ intersects the black region of v. This contradicts the initial assumption.

Since every possible case yields a contradiction, the initial statement is proven to be true. O

Consider all the planes bounding black regions of faces, reflex edges, and reflex vertices of P.
The black region of a face f of P is bounded by deg(f) planes and can be expressed using deg( f)
lines perpendicular to f passing through vertices of f. The black region of a reflex edge ¢ of P can
be expressed using five lines: four lines perpendicular to the adjacent faces of e passing through the
vertices of e and the supporting line of e. Finally, the black region of a reflex vertex v of P can be
expressed using deg(v) lines perpendicular to the faces adjacent to v passing through v. Hence, the
arrangement A in R? containing for every face f of P the lines perpendicular to f passing through
vertices of f and the supporting lines of the reflex edges of P describes all of P’s black regions. The
arrangement A contains O(n) lines, since 3 ;. p deg(f) = 2E, where E is the number of edges of
P. Two distinct lines g;, g2 € A are in the same equivalence class of A if and only if it is possible
to move g; to go without crossing any of the lines forming A. If g; does not cross any of the lines
forming A during the transformation, it can not enter or leave any of the black regions induced by
P. Assume that g; and g are in the same equivalence class of A. Lemma 7 ensures that g, is a
valid casting line for P if and only if ¢; is a valid casting line for P.

4.1.1 Reporting all valid casting lines

In this section, we find and report a representative for each class of combinatorially distinct valid
robust casting lines for a given polyhedron P with combinatorial complexity n in time O(n*a(n)),
where a(n) is the inverse Ackermann function. The main idea used in this section is the fact that a
line [ in space is a valid robust casting line for P if and only if I does not intersect any black region
induced by P, see Lemma 7.

Theorem 3. Given a polyhedron P with combinatorial complexity n, it is possible to report all of
the valid robust casting lines for P in R3 in time O(n*«(n)), where a(n) is the inverse Ackermann
function.
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Proof. To report all of the valid casting lines for P in R3, we construct the arrangement A of the
lines defined as intersections of the planes bounding black regions induced by P. Every cell of A
corresponds to exactly one equivalence class of A. Therefore, it is possible to label each cell ¢ of A
as an equivalence class of valid or invalid casting lines for P. Finally, a representing line for each
equivalence class labeled as valid is reported.

The arrangement A of O(n) lines is constructed using a method by McKenna and O’Rourke [22].
They represent k lines in R3 using four parameters per line and construct O(k?) planar arrange-
ments of hyperbolas in O(k?a(k)) time each. They show that the arrangement has complexity
O(k*) and can be constructed in time O(k*a(k)). The arrangement is represented as a graph G,
where every line touching four of the k& given lines or parallel to one of the k given lines and touch-
ing two of the remaining & — 1 given lines is represented as a node of G. Using this method, A has
complexity O(n*) and can be constructed in time O(n*a(n)).

Once A and G have been constructed, every face of G needs to be labeled as valid or invalid.
For this purpose, a boolean value is associated with every face f, reflex edge e, and reflex vertex v
of P that indicates whether the current equivalence class of lines intersects the black region of f,
e, or v respectively. We start at an arbitrary face f; of G and test for each face, reflex edge, and
reflex vertex of P whether it causes the equivalence class of lines represented by fs to be invalid.
After testing, we set the boolean value of each face, reflex edge, and reflex vertex appropriately and
compute the number b of faces, reflex edges, and reflex vertices that cause f to be invalid. Clearly,
fc is valid if and only if b = 0. This computation takes O(n) time as every face, reflex edge, and
reflex vertex of P needs to be considered. Next, GG is traversed in depth-first order. Each time, an
edge eq of G is crossed, we update the boolean values of the face, the reflex edge, and the reflex
vertex of P that induce e; and the counter b. This way, every face of G is labeled in constant time
a piece. The edge e and its incident nodes represent valid casting lines of P if and only if one
or more of es’s adjacent faces is labeled valid. Hence, all of the equivalence classes of A can be
labeled in time O(n*) and it is possible to report a representative for each class of combinatorially
distinct valid casting lines for P in time O(n*a(n)). O

After computing A and G in O(n*a(n)) preprocessing time, it is possible to perform line location
in A, i.e. answer the question whether a given line [ is a valid robust casting line for P. However,
this query takes O(n) time [22]. Note that it is possible to report whether P is robustly castable
with respect to a line [ in time O(n) without preprocessing using Theorem 1. Therefore, a query
time of O(logn) is preferable. Hence, we use another approach to preprocess space for fast line
location.

4.1.2 Preprocessing space for fast line location

In this section, we preprocess the polyhedron P in O(n**¢) expected time in a way that allows to
answer whether a query line is a valid casting line for P in time O(logn), where ¢ is an arbitrarily
small positive constant.

Using the same main idea as above, consider all the planes bounding black regions of faces,
reflex edges, and reflex vertices of P and their O(n) intersecting lines. The arrangement of the
lines is now represented in a way that allows fast queries.

For this purpose, each line is represented using Pliicker coordinates, proposed in 1868 by
Pliicker [23]. In Pliicker space, an oriented 3-dimensional line is described as a point called Pliicker
point in oriented projective 5-dimensional space using six coordinates. Dually, each line can also be
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represented as a hyperplane called Pliicker hyperplane in oriented projective 5-dimensional space.
For two lines | and g, the Pliicker point of [ is located on the Pliicker hyperplane of g if and only
if [ and ¢ intersect and vice versa. That way, intersection tests of lines are linearized at the cost of
operating in projective 5-dimensional space.

Consider a line [ passing through two points p = (pg, py, -, Pw) and ¢ = (¢z, 9y, 4=, qw) given
in homogeneous space. The Pliicker coordinates of the Pliicker point corresponding to [ are
[lo,11,12,13,14,15] and the Pliicker coefficients of the Pliicker hyperplane corresponding to [ are
ls, —l4, 13,12, =11, lo]) with Iy = prqy — PyGz, 11 = Pelz — P2Ga, l2 = PyGz — P2Qy, 13 = PeGu — Pwle, la =
PyGw — Pwly, and I5 = p.quw — Pwy:-

Note that the vector [, = [lo, —l1, lQ]T

is the cross product p x ¢, which is the normal vector of

the plane passing through the line [ and the origin. Furthermore, the vector l; = (13, 14,15)" is the
difference vector p'— ¢, which is the direction of the oriented line /.
The coordinates [ly, [1, 2,13, 14, 5] specify a line in Pliicker space if and only if
lols — 111y + 1513 = 0. 1)

This implies that not every set of 6-dimensional coordinates corresponds to a line in 3-dimensional
space. In fact, in Pliicker space, the set of all the lines corresponds to a 4-dimensional hypersurface.
Two lines [ and g intersect if and only if

logs — 1194 + lags + 1392 — lag1 + I5g0 = 0. (2)

If the Pliicker point of [ is not located on the Pliicker hyperplane of g, the sign of Equation (2)
indicates the orientation of [ in relation to g.

A survey on Pliicker coordinates can be found in Stolfi’s book [26, Chapter 19]. Chazelle et
al. [12] applied Pliicker coordinates in Computational Geometry to represent arrangements of
lines in space. However, as they are only interested in small parts of the full arrangement, such as
the envelope of the arrangement or single cells of the arrangement, they do not construct the full
arrangement of lines in space.

Theorem 4. A polyhedron P with combinatorial complexity n can be preprocessed in O(n**€) expected
time into a data structure of size O(n**¢) such that for any given line [, we can decide in O(logn) time
if P is robustly castable with respect to I, where ¢ is an arbitrarily small positive constant.

Proof. In a first step, all of the faces of P are triangulated. Since each face f of P is a possibly non-
simple polygon, finding the constrained Delaunay triangulation and ignoring edges in the exterior
of f yields a triangulation of f. Chew [13] and Wang and Schubert [28] independently proposed
methods to find the constrained Delaunay triangulation of k vertices in time O(k log k). Since each
edge has exactly two adjacent faces, it requires total time O(nlogn) to triangulate all of P’s faces.
Since the triangulation adds O(k) new edges to each face, the combinatorial complexity of the
triangulated polyhedron is O(n).

The black regions of the triangular faces of P are defined in analogy to the black regions of faces
of P before the triangulation. Let parallel lines intersect at infinity and augment the boundary of
the black regions induced by P by vertices at infinity in every direction. The black region of a
face of P is now bounded by four triangles. Furthermore, the black region of a reflex edge of P is
bounded by eight triangles and the black region of a reflex vertex of P is bounded by s triangles,
where s equals twice the degree of the vertex.
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Observe that any line intersecting the black region induced by P must intersect the boundary
of the black region induced by P, since none of the black regions induced by faces, reflex edges,
and reflex vertices of P are unbounded along a line. As explained above, the boundary of the black
region induced by P can be represented by O(n) triangles.

The question of whether a given query line intersects the black region induced by P is equivalent
to the question of whether the query line intersects any of the bounding triangles of the black
regions induced by P. Note that this problem is similar to the ray shooting problem arising in
computer graphics, where a query ray is shot into a scene containing a set of triangles and the aim
is to report the first triangle of the set hit by the query ray. However, our problem is easier than ray
shooting, because we are only interested in knowing whether the query line intersects any of the
triangles bounding the black regions induced by P.

For each of the O(n) edges of bounding triangles of the black region induced by P, the support-
ing lines are represented as hyperplanes in Pliicker space. We then follow the approach proposed
by de Berg et al. [16] to answer whether a given query line intersects any of the bounding triangles
of the black region induced by P. Aronov et al. [4] showed that the complexity of the intersection
of the arrangement of n Pliicker hyperplanes in projective 5-dimensional space with the Pliicker
quadric expressed in Equation (1) is O(n*logn). Since we know that every query line is repre-
sented by a point inside the Pliicker quadric, it suffices to consider the arrangement of hyperplanes
representing supporting lines of triangles in the zone of the Pliicker quadric. De Berg et al. use
the randomized approach by Clarkson [14] to construct this 4-dimensional arrangement. Denote
by H the set of hyperplanes representing supporting lines of triangles bounding the black regions
induced by P. Let R C H be a sample of size O(r) with the property that any cell of the triangu-
lated arrangement in projective 5-dimensional space is intersected by at most 7 log r hyperplanes
of R. Clarkson proved that such a sample can be obtained in O(nr®) expected time by sampling
repeatedly until the condition is met. A tree is built recursively as follows. The root of the tree is
the arrangement A(R) induced by R in the zone of the Pliicker quadric. Each of the O(r*logr)
children of the root corresponds to a cell of A(R). If for a child of the root, there exists a triangle
that is intersected by any line represented by a Pliicker point in that cell, the child is labeled as
invalid region and the recursion stops. Otherwise, the cell is recursively split and labeled. De Berg
et al. [16] show that, by choosing r appropriately, the expected time and total space requirement
to build this tree is O(n**¢), where ¢ is an arbitrarily small positive constant.

A given query line is represented as a point in Pliicker space and point location is performed in
the tree. When a leaf is reached, the label of the leaf reports whether the line intersects any of the
triangles bounding the black region induced by P. Since a search in the tree requires O(logn) time
and the label can be read in constant time, the query time of the algorithm is O(logn). O

4.2 General rotational casting

In this section, we solve the problem of finding all lines / in 3-dimensional space, such that a given
polyhedron P is castable with respect to . Since the situation is identical to the situation in Section
4.1 if lines perpendicular to a face or an edge of P are neglected, this section focuses on lines
perpendicular to a face or an edge of P.

As in Section 4.1, consider a plane = perpendicular to the line of rotation [ and intersect = with
P. The intersection P’ = 7 N P consists of proper intersections, edges of P and faces of P. If a
cross section P’ does not contain any faces perpendicular to P, P’ can still be examined as before.
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Recall that if P’ contains a face of P, we need to test whether that face is removable with respect
to I’. The test can be performed using Lemma 5. Hence, Lemma 6 can be changed to the following:

Lemma 8. A polyhedron P in R? is castable with respect to a line of rotation [ if and only if every
cross section P’ of P with a plane 7 perpendicular to | consists of castable and removable polygons
with respect to I’ = 7N L.

Proof. The main part of this Lemma was proven in the proof of Lemma 6. Hence, only faces
perpendicular to [ are discussed here. The proof of Lemma 5 shows that P is not castable if any
face of P perpendicular to [ is not removable with respect to /. Hence, P is not castable with respect
to [ if any of the cross sections P’ contains a polygon that is not castable or not removable with
respect to ['.

Next, we show that P is castable with respect to [ if every cross section P’ consists of castable
and removable polygons with respect to I’. The same approach as in the proof of Lemma 6 is used
and only faces perpendicular to [ are discussed. If a cross section contains a face f perpendicular
to I, we know that there exists a valid partitioning of f. If a new polygon occurs in P’ as face f,
treat the face like a vertex of type 1. If an existing polygon disappears in P’ as face f, treat the face
like a vertex of type 2. If an existing polygon splits into two or more polygons in P’, f contains
holes. Every arc contributing to a valid partitioning of f (see Lemma 5) that connects two holes of
f is treated as a vertex of type 3. Arcs connecting to the outer face of f are treated as vertices of
type 6. If two or more polygons merge into one in P’, f contains holes. Every arc contributing to a
valid partitioning of f that connects two holes of f is treated as a vertex of type 4. Arcs connecting
to the outer face of f are treated as vertices of type 6. In each of the cases, the set of edges and
arcs yielding a valid partitioning of f can be treated in sequential order. Hence, every case can be
represented as a vertex of type 1 to 6. Therefore, the proof of Lemma 6 holds even when the line
of rotation is perpendicular to a face or reflex edge of P. O

After introducing lines perpendicular to a face or edge of P, Lemma 7 does not hold any more.
There are two reasons for this. First, there exist situations where P is castable with respect to [
although [ intersects black regions induced by P. As this cannot happen when faces and edges
orthogonal to [ are neglected (see Lemma 7), only those two situations need to be considered. If |
intersects the black region of a face f perpendicular to I, f is not removable with respect to [ (see
Lemma 1). Hence, P is not castable with respect to /. If [ intersects the near wedge of a reflex edge
e perpendicular to /, consider the cross-section of P with the plane 7 perpendicular to / containing
e. The point I’ = [ N 7 is contained in the 2D black region of e. Hence, Lemma 6 implies that P
is not castable with respect to . However, if [ only intersects the far wedge of a reflex edge e of
P perpendicular to I/, P is castable with respect to [, because e can be split on the perpendicular
projection of [ on e and one part of e is removable in cw orientation with respect to / and the other
part of e is removable in ccw orientation with respect to I. Second, there exist lines of rotation
[, such that [ does not intersect any of the black regions induced by P and P is not castable with
respect to [. This can only occur, if P contains a face perpendicular to [ that is not removable with
respect to [ (see Lemma 7). An example where a face perpendicular to [ prevents P from being
castable although I does not intersect any of the black regions induced by P is shown in Figure 5.
This is an example where all of the faces can be removed, but the front face, which perpendicular
to the line of rotation, cannot be split to allow its removal without intersecting one of the two
protrusions.

Hence, Lemma 7 can be restated the following way:
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Figure 5: Example of polyhedron P that is not castable with respect to | although | does not intersect
the black regions induced by P. Figure shows perspective view and front view.

Lemma 9. Let P be a polyhedron and let [ be a line in space. The polyhedron P is castable with respect
to [ if I does not intersect any of the black regions induced by P and if every face of P perpendicular
to [ is removable with respect to . If | intersects the black region induced by any face of P, the black
region induced by any reflex vertex of P, or the near wedge of any reflex edge of P, P is not castable
with respect to I.

In analogy to Section 4.1, the aim is now to construct an arrangement A with the property that
every equivalence class of A represents exactly one class of combinatorially distinct lines. To achieve
this, the arrangement A used in Section 4.1 needs to be augmented to handle lines perpendicular
to reflex edges and faces of P.

4.2.1 Reporting all valid casting lines

In this section, we modify the results of Section 4.1 to find and report a representative for each
class of combinatorially distinct valid casting lines for a given polyhedron P in time O(n*logn).

Theorem 5. Given a polyhedron P with combinatorial complexity n, it is possible to report all of the
valid casting lines for P in R? in time O(n*logn).

Proof. In Section 4.1, the arrangement A represented by the graph G introduced by McKenna and
O’Rourke [22] is constructed to represent all the classes of combinatorially distinct lines in space.
The lines that are not perpendicular to a reflex edge or face of P can still be categorized and labeled
using this technique. However, the arrangement needs to be extended to handle lines perpendicular
to reflex edges and faces of P.

We will first discuss how to augment the arrangement to represent lines perpendicular to reflex
edges of P. Recall that for any line perpendicular to a reflex edge of P, the far wedge of the reflex
edge does not induce a black region. Hence, we need to insert all of the lines in space that are
perpendicular to an edge of P into the arrangement A. The aim is to insert nodes into G, such
that any time a line g that is not perpendicular to an edge e of P is moved continuously until g is
perpendicular to e, a node of G is passed. McKenna and O’Rourke [22] prove that a line restricted
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to intersect three skew lines has one degree of freedom. This degree of freedom can be used
to move the line until it is perpendicular to e, unless every line touching the three skew lines is
perpendicular to e. Consider a line touching three of the lines in the arrangement A. If every line
touching the three skew lines is perpendicular to e, no node is inserted to GG. The reason is that G
already contains nodes that ensure that any time a line g that is not perpendicular to e is moved
continuously until g is perpendicular to e, a node of GG is passed. If there exists a line touching the
three skew lines that is not perpendicular to e, the line touching the three skew lines perpendicular
to e is inserted as node in G. For three given skew lines and an edge e, this line can be found
in constant time, since every line touching three skew lines has one degree of freedom. To insert
all of these nodes in G, the edges of G are traversed in depth-first order. An edge of G describes
lines that are touching three skew lines. For each edge of G, find the O(n) nodes describing a line
touching three skew lines and perpendicular to an edge e of P. This requires O(n) time. Then, sort
the nodes according to their appearance on the edge in O(nlogn) time and insert them in order. It
takes O(nlogn) time to insert the new nodes for one edge of G. Since G has O(n?) edges, the total
time to construct this arrangement is O(n*logn).

This arrangement needs to be augmented further to handle lines perpendicular to faces of P
correctly. Lemma 9 implies that for any line [ perpendicular to a face f of P, P is only castable if f
is removable with respect to [. For each face f of P, the arrangement A contains at least three lines
perpendicular to f that bound the black region of f. Furthermore, the arrangement A contains
every line touching four given lines or touching three given lines, where the third line is touched at
infinity. Hence, G already contains all the nodes that represent lines perpendicular to faces of P.

It remains to label the faces of the new graph G we constructed. To label every face of G,
traverse GG in depth-first order. We store all the counters explained in Section 4.1 and an additional
counter ¢ of the number of far wedges of reflex edges perpendicular to lines in fi that intersect
the lines in f;. This counter can be updated in constant time, if we store three boolean values
with each reflex edge e: one value indicating whether the current line is in the near wedge of e,
one value indicating whether the current line is in the far wedge of ¢, and one value indicating
whether the current line is perpendicular to e. Furthermore, we store a boolean variable indicating
whether the lines in fs are perpendicular to a face f of P. If the lines represented by fs are not
perpendicular to any face of P, simply proceed as in Section 4.1. Initialize the counters once in
O(n) time and update them in constant time per face. After subtracting ¢ from the total number
of black regions for fi, we label f; as valid if and only if the total number of black regions equals
zero. If the lines represented by f are perpendicular to a face f of P, it is required to test whether
f is removable with respect to the lines represented by f. For this purpose, we need to construct a
planar arrangement for each face of P. Then, if the total number of black regions computed before
equals zero, we need to look in the planar arrangement whether f is removable with respect to [.

For each set of faces F' of P with f € F has inner normal +7i, we construct a planar arrangement
that subdivides a plane 7 with inner normal 7 into points I’ = [ N 7 that are intersections of lines
[ in direction i, such that each f € F' is removable with respect to / and points I’ = [ N 7 that
are intersections of lines [ in direction 7, such that 3f € F that is not removable with respect
to [. Hence, every point !’ in the plane 7 represents the line / perpendicular to 7 that intersects
7 in I’. To subdivide 7 into valid and invalid regions, several steps are required. First, the O(n)
lines bounding black regions of P are projected to w. The planar arrangement has complexity
O(n?). Every face of this arrangement can be labeled as black or non-black region, respectively, in
O(n?) time by walking through the arrangement and maintaining a counter of all intersected black

26



regions using a similar technique as explained in Theorem 3. For every face of the arrangement
labeled non-black, we need to test for each f € F whether f is removable with respect to lines
represented by that face. Let p; and ps; denote two arbitrary points inside the same face labeled
as non-black of the arrangement. Since p; and p, are in the same face of the arrangement, all the
faces of P have the same valid orientation with respect to the two lines represented by p; and po,
that is, the faces are either removable in cw orientation with respect to both lines, removable in
ccw orientation with respect to both lines, or need to be split with respect to both lines. Hence, if
the algorithm described in Lemma 5 is used to determine whether f is removable with respect to
the line represented by p; and po, respectively, all the edges of f are labeled in the same way in
the first step. Hence, the two transformed polar planes with origins p; and p,, respectively, have
the same structure. Although the actual distances to p; and p, are different, the same sequence of
monotone curves with monotone derivatives occurs in the transformed plane. Furthermore, if an
edge is split, the actual split vertex is different, but the situation in the transformed plane remains
the same. Therefore, f is removable with respect to p» if and only if f is removable with respect
to p1. This implies that for each face of the arrangement labeled as non-black, we need to test one
representative using the algorithm of Lemma 5 in O(rlogr) time, where r is the number of edges
of f. Let s denote the cardinality of F. In O(rslogr) time, it is tested whether each f € F'is
removable with respect to lines represented by one face of the arrangement labeled as non-black.
Hence, it requires O(n?rslogr) time to construct and label the arrangement for the faces F. This
step needs to be done for each of the O(n) sets of faces with codirectional inner normals. In the
worst case, both s and r are in the order of n. This seems to imply that the time complexity to
construct and label the arrangements for all faces of P is O(n®logn). However, each face of P is
represented in exactly one planar arrangement and each edge of P is shared by exactly two faces.
Therefore, the sum of all the cardinalities and the sum of all the edges are both in the order of n.
This implies that the total time complexity to construct and label the arrangements for all faces of
P is O(n*logn).

This implies that in O(n*logn) time, we can find and report all of the combinatorially distinct
valid casting lines for P. O

After computing A and G in O(n* log n) preprocessing time, it is possible to perform line location
in A, i.e. answer the question whether a given line [ is a valid casting line for P. A query in A
requires O(n) time [22]. If the face of A contains the information that [ is perpendicular to a set
F of faces of P, it is necessary to query the arrangement induced by F' to determine whether each
f € F is removable with respect to [. It is possible to determine !’ = = N[ in constant time and to
determine the face of the arrangement induced by F' that contains I’ in O(logn) time [21]. Hence,
it takes O(n + logn) = O(n) time to report whether P is castable with respect to /. Note that this
implies that we can report faster whether P is castable with respect to [ than without preprocessing
(see Theorem 2). However, a query time of O(logn) is preferable. Hence, we use another approach
to preprocess space for fast line location.

4.2.2 Preprocessing space for fast line location

In this section, we preprocess P in expected time O(n**¢) in a way that allows to answer whether
a query line is a valid casting line for P in time O(logn), where € is an arbitrarily small positive
constant.
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As before, consider all of the planes bounding the black regions induced by P and their O(n)
intersecting lines. Again, we use ray shooting in Pliicker space to determine whether the boundary
of any black region is intersected by the query line. However, the data structures become more
complex, since lines perpendicular to faces and reflex edges of P need to be taken into considera-
tion.

Theorem 6. A polyhedron P with combinatorial complexity n can be preprocessed in O(n**€) expected
time into a data structure of size O(n**€) such that, for any given line I, we can decide in O(logn)
time if P is castable with respect to I, where € is an arbitrarily small positive constant.

Proof. We employ three data structures to answer whether a query line [ is a valid casting line for
P. The first data structure represents the black regions induced by faces of P, the black regions
induced by reflex vertices of P, and the near wedges induced by reflex edges of P. By Lemma 9,
any query line intersecting the boundary of the black regions represented in the first data structure
is an invalid casting line for P. Hence, we can use the same approach as in the proof of Lemma 4
to build a data structure of size O(n**¢) in expected time O(n**¢) that answers whether [ intersects
any of the boundaries of black regions represented in the first data structure in O(logn) time. If
the answer to the query reports that [ intersects any of the black regions represented by the first
data structure, [ is an invalid casting line and we are done. Otherwise, the second data structure is
queried.

The second data structure considers the far wedges of the reflex edges of P. For all of the far
wedges of reflex edges of P that are not perpendicular to [, de Berg et al.’s data structure [16]
can be used as in the proof of Lemma 4 to answer whether [ intersects the boundary of those far
wedges. Recall that de Berg et al.’s data structure has size O(n**¢) and answers queries in O(logn)
time.

Each reflex edge of P is associated with four triangles bounding the far wedge of that reflex
edge. The direction of a reflex edge of P can be represented as a point on the upper unit hemisphere
of directions, because the orientation of the edge can be neglected. Using central projection from
the upper unit hemisphere onto the plane 7 : z = 1 with the origin as center of projection yields
a representation of the directions of the reflex edges of P in 2-dimensional Euclidean space. Note
that each reflex edge is represented as a point in 7, which may lead to more than one reflex edge
mapping to one point in 7. This representation has the property that directions that lie on a great
arc of the upper unit hemisphere of directions correspond to points lying on a line in n. The
directions in the upper unit hemisphere perpendicular to [ can be represented as a great arc of the
upper unit hemisphere of directions or as a line I’ in 7. Hence, all of the reflex edges of P that
are not perpendicular to [ can be found using two half-space queries in = with the two open half-
spaces bounded by /’. The triangles bounding the far wedges of the reflex edges of P that are not
perpendicular to [ can be used in de Berg et al.’s data structure [16] to answer whether [ intersects
the boundary of those far wedges.

For the second data structure, note that we have a set of O(n) points in 2-dimensional Euclidean
space associated with four triangles each. We can therefore use a two-level data structure based on
a cutting tree [17, Chapter 16]. A %-cutting in the plane is a collection of pairwise disjoint planar
simplices that cover the entire plane with the property that each simplex intersects at most 7 of
the n given lines. A cutting tree on n lines in the plane is recursively defined as follows: if n = 1,
then the tree consists of a single node storing the line. Otherwise, a %—cutting is found and for each
simplex of the %-cutting, we store a child of the current node. That child contains the simplex that
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created the child, a list of all of the lines located completely above the simplex, and a list of all of
the lines located completely below the simplex. Furthermore, each child is recursively defined as
the root of a cutting tree on the lines crossing the simplex associated with the child [17, Chapter
16]. Chazelle [11] proved that a 1-cutting in the plane of size O(r?) can be found in O(nr) time.

The cutting tree used in the two-level data structure stores the set H of lines dual to the 2-
dimensional points representing the reflex edges of P. Every node of the cutting tree stores a set
H' C H of lines corresponding to a set of triangles bounding the far wedges of the reflex edges
associated with the lines H'. These triangles are stored in de Berg et al.’s data structure [16]. Van
Kreveld’s results [27, Theorem 5.8] imply that, for an appropriate choice of r, the total size of the
cutting tree storing de Berg et al.’s data structure in each node is O(nn**¢) for any ¢ > 0. Replacing
e by § yields the space requirement O(n2n**3) = O(n**e).

To analyze the time requirement to build the second data structure, we use that a %—cutting in
the plane of size O(r?) can be found in O(nr) time [11]. We use the fact that by a similar analysis
as the one used by van Kreveld [27, Theorem 5.8], this yields the following recurrence for the
expected construction time P(n) of the data structure: P(n) < ¢172P(%) 4 cor®g(n) + cynr, where
c1,...cy are constants and where g(n) = n?*¢ is the expected preprocessing time required to build
de Berg et al.’s data structure [16]. By choosing r to be a sufficiently large constant, this recurrence
solves to O(nf(n? + g(n)) +n*log n) for any e > 0. If we replace € by §, the data structure therefore
requires O(n**¢) expected construction time.

For a query line /, we perform two queries in that data structure. The line I’ in 7 that represents
all the directions perpendicular to [ is found. We query the data structure with both open half-
spaces bounded by !’. This is done by querying the data structure twice with the dual point of !’
and by reporting all of the nodes of the cutting tree representing only lines of H that lie on the
correct side of the dual query point, respectively. Then, [ is represented as Pliicker point and a
query is performed in each of the secondary structures corresponding to the reported nodes. Van
Kreveld’s results [27, Theorem 5.8] imply that this data structure supports queries in O(logn) time.

If the answer to the query reports that [ intersects any of the black regions represented by
the second data structure, [ is an invalid casting line and we are done. Otherwise, the third data
structure is queried.

The third data structure tests whether each face of P perpendicular to the query line [ is remov-
able with respect to [. As in the proof of Theorem 5, for each set of faces F' of P with f € F has
inner normal +7, we construct a planar arrangement that subdivides a plane with inner normal
7 into points I’ = [ N 7 that are intersections of lines / in direction 7, such that each f € F is
removable with respect to [ and points I’ = [ N« that are intersections of lines [ in direction 7, such
that 3f € F that is not removable with respect to [. We know from the proof of Theorem 5 that in
O(n*logn) time, we can build the planar arrangements with total space requirement O(n?) for all
the sets F'. For each set F, represent the directions +7i in a dictionary with the property that the
set F' defined by a given direction d can found in O(logn) time, if it exists.

Querying this data structure is slightly more complicated than in the proof of Theorem 5. For
a query line [, query the dictionary with the direction of the query line to find the set of faces F'
of P perpendicular to [. If there are no faces perpendicular to [, [ is a valid casting line for P.
Otherwise, compute the intersection !’ of [ with the planar arrangement associated with F' and
perform point location. This requires O(logn) time [21]. Retrieving the label of the face of the
planar arrangement containing !’ answers whether all of the faces of F' are removable with respect
to [. Hence, querying the third data structure takes time O(logn).
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Hence, the total space requirement and expected preprocessing time for the three data struc-
tures is O(n**). Queries can be answered in O(logn) total time. O

4.3 A Class of Polyhedra with Q(n') Combinatorially Distinct Valid Casting Lines

In this section, we examine the complexity of all the combinatorially distinct valid (robust) casting
lines for P. We show that there exists a class of polyhedra where the number of combinatorially dis-
tinct valid (robust) casting lines is Q(n*). This implies that the algorithms summarized in Theorems
3 and 5 are almost worst case optimal. We now outline the construction of the lower bound.

First, we construct a cylinder C in z-direction. The cross section of C' with a plane z = z
perpendicular to the z-axis is a simple polygon C’ consisting of » = 3s — 1 vertices located on two
different polygonal chains. Let s vertices of C’ be evenly distributed on the upper half of the unit
circle. The coordinates of those vertices are

(cos((i — 1)¢p1),sin((i — 1)p1),20), i =1,...,s,

where ¢; = ["5. Hence, the vertices form a convex polygonal chain c;. The black regions of the
faces of C' inducing the cross section ¢; can be projected onto the plane z = z;. The projected
black regions induce valid regions that are cones whose apexes a are on the unit circle and whose
opening angles are %, see Figure 6.

The second polygonal chain ¢y of C’ consists of 2s — 1 vertices. Let s vertices of ¢y be evenly
distributed on the arc of the circle with center (—%, 0, zo) and radius 1 starting at 37“ and ending at

27 The coordinates of those vertices are

<—;+cos <327T+(i—1)¢2> ,sin<32ﬂ+(’i—1)¢2> ,Zo>, i=1,...,s,

where ¢y = ﬁ. Denote the vertices by vy, ..., vs and note that v; is not located in the interior

of the unit disk fori = 1,..., s. Define the vertices vg, vsy1 as

1 3T . 3T 1 3T . 3T
<—2 + cos (2 — q§2> ,sin <2 - ¢2> ,zo> , <—2 + cos <2 + sq§2> ,sin <2 + sq§2> ,zo> ,

respectively. Let s — 1 vertices of ¢, be defined as the intersections of the line passing through
v;—1 and v; with the line passing through v;;; and v;;2, where i = 1,...,s — 1. These vertices are
located on a circle. The polygonal chain ¢, consists of s — 2 reflex, s — 1 convex, and 2 boundary
vertices. Note that ¢y consists of sides of isosceles triangles, i.e. all the edges have the same length,
see Figure 7. The black regions of the faces of C' inducing the cross section ¢, can be projected onto
the plane z = zy. The projected black regions induce valid regions bounded by part of ¢, and two
parallel half lines.

In C’, the two polygonal chains ¢; and ¢; can now be connected by two edges. This does not
introduce further reflex vertices to C’, but only two black regions of the two faces of C' inducing
the new edges of C’. Those black regions have no influence on further considerations. Each of
the black regions induced by the reflex edges with cross section c; induces a bounded valid region
in the plane z = 2y, when intersecting the valid region induced by the faces with cross section ¢;
starting at %‘ and ending at 7. Hence, thgre are at least (s —2)| 3| bounded valid regions. Since C’

.

consist of r = 3s—1 vertices, there are 252 | ZH | = Q(r?) bounded valid regions in the plane z = z.
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Figure 6: Approximation of half circle

An example of a cross section C’ with s = 10 is shown in Figure 8. Note that the described cross
section C’ gives a quadratic lower bound in two dimensions. This lower bound was first published
by Bose et al. [8].

The polyhedron P consists of n = 4r + 8 vertices. Two of the cylinders explained above are
joined by a small cylinder whose cross section is a square. The first cylinder C; with cross section
(' is located between the two planes z = 0 and z = 1. The second cylinder C; is located between
the two planes z = 2 and z = 3. The two cylinders C; and C are joined by a box with the corners
(=3:0:1), (=15:0.1), (=16 160 1)> (=3 160 1)> (=3,0,2), (= 15:0,2), (=16 15, 2)> and (=3, 55, 2)-
For an illustration of P, refer to Figure 9.

The black regions induced by the faces and reflex edges of the box needed to join the two
cylinders C; and C, are completely located in z = dy,d; € [-2,— ] and y = da,d € [0, 3].
Hence, any line passing through one of the Q(r?) bounded valid regions induced by C; and passing
through one of the Q(r?) bounded valid regions induced by C; is a valid casting line for P. Hence,
there exist (r*) combinatorially distinct valid casting lines for P. Since none of the bounded valid
regions induced by C; and C) restricts a line passing through the valid region to be perpendicular
to a face of P, there are also Q(r*) combinatorially distinct valid robust casting lines for P. Since

r= "T_S, there exist Q(n?) combinatorially distinct valid (robust) casting lines for P.
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Figure 7: Polygonal chain

5 Conclusion and Future Work

We have studied the problem of clamshell casting in three dimensions. An algorithm was developed
to solve the problem of determining whether a polyhedron of arbitrary genus with combinatorial
complexity n is castable with respect to a given line in space with running time O(nlogn). If
the lines are restricted not to be perpendicular to a reflex edge or a face of the polyhedron, the
algorithm’s running time becomes O(n). Furthermore, it is possible to report all of the valid casting
lines for a given polyhedron in space in time O(n*logn). If the lines are restricted not to be
perpendicular to a reflex edge or a face of the polyhedron, the algorithm’s running time becomes
O(n*a(n)). Alternatively, the polyhedron can be preprocessed in O(n**<) expected time into a data
structure of size O(n**¢), such that for any given line I, we can decide in O(logn) time if [ is a valid
casting line. The running times are shown to be almost worst case optimal if the aim is to report
all of the combinatorially distinct valid casting lines.
The following interesting related problems require further research.

e The definition of clamshell casting only tests whether the cast of an object with piecewise
linear boundary can be opened by an arbitrarily small angle without breaking the object or
the cast. To physically manufacture the object, it is required that the cast can be opened by a
sufficiently large angle to remove the object from the cast without breaking the object or the
cast. This problem is difficult, since the object can be removed from the cast by an arbitrary
sequence of transformations.

e The boundary of the object is defined to be the cast. In case of rotations around arbitrarily
small angles, this model is sufficient. However, when considering larger angles of rotations,
the thickness of the cast has an influence on the maximum angle of rotation that does not
break the object or the cast. Hence, the cast needs to be assigned a thickness.
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Figure 8: Example with s = 10. (a) shows the cross section, (b) shows an enlargement of the polygonal

chain cs.

e The control of the physical casting machinery is imperfect. This yields to surface defects if
the cast of the object slides along the boundary of the object. The algorithms we presented
should therefore be extended to determine whether an object is castable in a way that the
cast does not slide along the boundary of the object.

e Since many objects do not have a piecewise linear boundary, the algorithms should be ex-
tended to handle more general object boundaries.
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