
On the Hardness of Full Steiner Tree Problems∗

Ahmad Biniaz† Anil Maheshwari† Michiel Smid†

October 23, 2014

Abstract

Given a weighted graph G = (V,E) and a subset R of V , a Steiner tree in G is a
tree which spans all vertices in R. The vertices in V \R are called Steiner vertices. A
full Steiner tree is a Steiner tree in which each vertex of R is a leaf. The full Steiner tree
problem is to find a full Steiner tree with minimum weight. The bottleneck full Steiner
tree problem is to find a full Steiner tree which minimizes the length of the longest
edge. The k-bottleneck full Steiner tree problem is to find a bottleneck full Steiner tree
with at most k Steiner vertices. The smallest full Steiner tree problem is to find a full
Steiner tree with the minimum number of Steiner vertices.

We show that the full Steiner tree problem in general graphs cannot be approxi-
mated within a factor of O(log2−ε |R|) for any ε > 0. We also provide a polynomial-
time approximation factor preserving reduction from the full Steiner tree problem to
the group Steiner tree problem. Based on that, the first approximation algorithm for
the full Steiner tree problem in general graphs is obtained. Moreover, we show that
the same hardness result holds for the node-weighted version of the full Steiner tree
problem. We prove that it is NP-hard to approximate the k-bottleneck full Steiner tree
problem within a factor of 2− ε. The smallest full Steiner tree problem is shown to be
NP-complete and does not admit any polynomial-time O((1 − ε) lnn)-approximation
algorithm. The presented reductions show the connection between the full Steiner tree,
the group Steiner tree, and the connected set cover problems. In addition, we present
an O(|E| log |V |) time algorithm for the bottleneck full Steiner tree problem which
relaxes the assumption, that G is a complete graph, in Chen et al. [7] algorithm.

1 Introduction

Given a graph G = (V,E), a subset R of V , and a weight function w : E → R+, a Steiner
tree of G is a tree which spans all vertices in R. The vertices in R are called terminals; these
vertices must be in the tree. The vertices in S = V \ R are called Steiner vertices. A full
Steiner tree is defined as a Steiner tree in which each vertex of R is a leaf. The full Steiner

∗Research supported by NSERC.
†School of Computer Science, Carleton University, Ottawa, Canada.

1

tree (FST) problem is to find a full Steiner tree T with minimum weight w(T) =
∑

e∈T w(e).
This problem is NP-hard, and cannot be approximated within a factor of (1 − ε) lnn in
polynomial-time [9].

The bottleneck full Steiner tree (BFST) problem is to find a full Steiner tree T such that
the weight of the longest edge in T is minimized. We refer to the weight of the longest edge
in T as its bottleneck. This problem can be solved exactly in polynomial-time [7]. However,
the k-bottleneck full Steiner tree (k-BFST) problem which is to find a bottleneck full Steiner
tree which contains at most k Steiner vertices is NP-hard [1].

Another variant of the Steiner tree problem is the node-weighted Steiner tree (NST)
problem. Given a weight function w : V → R+ on the vertex set V , we are looking for a
minimum node-weighted Steiner tree T , where w(T) =

∑
v∈T w(v). Since any Steiner tree

contains all vertices in R, we may set w(r) = 0, for all nodes r ∈ R. This problem cannot
be approximated within a factor of (1− ε) lnn in polynomial-time (personal communication
with Berman; see the reference 2 in [20]). Symmetrically, the node-weighted full Steiner tree
(NFST) problem is defined to compute a full Steiner tree with minimum node-weight.

For an unweighted graph G, the smallest full Steiner tree (SFST) problem is to compute
a full Steiner tree with the minimum number of Steiner vertices. Clearly, the SFST problem
is a special case of the NFST problem, where all the Steiner vertices have the same weight.

We show a connection between the (node-weighted) full Steiner tree problems and the
(node-weighted) group Steiner tree problems. In addition, we show the connection between
the smallest full Steiner tree problem and the connected set cover problem. We define these
problems in Section 1.1. Based on that, we give new lower bounds on the inapproximablility
of the full Steiner tree problems, as well as the first approximation algorithms.

1.1 Preliminaries

Set Cover: Given a finite set U of elements, a family S of subsets of U , the set cover (SC)
problem is to find a smallest subset R of S such that every element of U is covered by at
least one set in R. We denote an instance of the SC problem by (U,S).

Connected Set Cover: Given a finite set U of elements, a family S of subsets of U , a graph
G on vertex set S, the connected set cover (CSC) problem is to find a smallest subset R
of S such that every element of U is covered by at least one set in R, and the subgraph
of G induced by R is connected. We denote an instance of the CSC problem by (U,S, G).
Clearly, by taking G to be a complete graph, the SC problem is a special case of the CSC
problem.

In an extension of the CSC problem, which is known as the weighted connected set cover
(WCSC) problem, there are real weights assigned to the elements of S, and we are looking
for a connected set cover which minimizes the total weight.

Group Steiner Tree: Given an edge-weighted graph G(V,E) with weight function w : E →
R+ and a set G = {g1, g2, · · · , gk}, where each gi is a subset of V . Each such subset gi is
called a “group” of terminals. The group Steiner tree (GST) problem is to find a minimum

2

weight Steiner tree in G that contains at least one terminal from each group.
Another variant of the group Steiner tree problem is the node-weighted group Steiner

tree (NGST) problem. Given a weight function w : V → R+ on the vertex set V , we are
looking for a minimum node-weighted Steiner tree that contains at least one terminal from
each group. We denote an instance of a weighted group Steiner tree problem by (G,G, w).

Directed Steiner Tree: This is the directed version of the (undirected) Steiner tree problem.
Given a directed graph G = (V,E) with a weight function w : E → R+, a root vertex r ∈ V ,
a subset R of V , the directed Steiner tree (DST) problem is to find a minimum weight
out-branching tree in G, rooted at r, that spans all vertices in R.

1.2 Previous Work

Drake and Hougardy [9] showed that approximating the FST problem is at least as hard
as approximating the set cover problem, and there is no polynomial time approximation
algorithm for the FST problem with performance ratio better than lnn unless NP = D̃.1

When the input graph is metric, i.e., it is a complete graph and edge weights satisfy the
triangle inequality, constant factor approximation algorithms are presented in [6, 7, 9, 13,
18, 21, 22]. Biniaz et al. [3] presented a 20-approximation algorithm for the FST problem in
unit disk graphs.

Chen et al. [7] presented an O(m log n) time algorithm which solves the BFST problem in
a complete graph G, where n is the number of vertices and m = Θ(n2) is the number of the
edges of G. The geometric version of this problem, where V is a set of points in the plane,
G is a complete graph over V , and the edge weights are equal to the Euclidean distances
between the points, was considered in [1]. Biniaz et al. [4] presented an algorithm which
solves the Euclidean BFST problem optimally in Θ(n log n) time. However, Abu-Affash [1]
proved that the k-BFST problem is NP-hard, and the geometric version of this problem
cannot be approximated better than

√
2, unless P=NP. For the metric version, he presented

an approximation algorithm which computes a k-BFST with bottleneck at most four times
the optimal bottleneck. He mentioned the improvement of the approximation ratio as an
open problem. He also left an interesting version of the k-BFST as an open problem: Given
a desired bottleneck, we are looking for a full Steiner tree which minimizes k to achieve that
bottleneck. In this paper we show some results on the inapproximablility of these problems.

In 1991, Berman (personal communication; see the reference 2 in [20]) proved that
unless P=NP, the NST problem cannot be approximated better than lnn by giving an
approximation-preserving reduction from the set cover problem [12]. Asymptotically opti-
mal approximation algorithms with performance ratio of O(lnn) are presented in [20, 16].
Zou et al. [26] gave a constant factor approximation algorithm for the NST problem in unit
disk graphs. Naor et al. [23] considered an online version of the NST problem where G is a
(node and edge) weighted graph which is known in advance, and the terminals appear on-

1Here we use D̃ to denote the complexity class deterministic quasi-polynomial time, or DTIME(npoly logn),
where DTIME(t) is the class of languages that have a deterministic algorithm that runs in time t.

3

line. They presented a polynomial-time randomized online algorithm for this problem with
a competitive ratio of O(log n log2 k), where k is the number of terminals.

Halperin and Krauthgamer [17] proved that the GST problem cannot be approximated
within a factor of O(log2-ε |G|), unless Z̃ ⊇ NP.2 Garg et al. [15] presented the first polylog-
arithmic approximation algorithm for the GST problem. They use a randomized algorithm
that solves the GST problem on trees with the approximation ratio of O(log k logN) where
k is the number of groups and N is the size of the largest group. For a general graph G,
they find a group Steiner tree of cost within O(log n log log n log k logN) of the cost of the
best group Steiner tree by reducing the problem to the case where G is a tree and then
applying the results of Bartal [2]. The improved approximation factor of O(log2 n log k) can
be achieved by applying the results of [11]. This result can even be improved to get an
algorithm with approximation factor O(log n log2 k) (personal communication with Gupta,
Halperin, Kortsarz, Krauthgamer, Ravi, Srinivasan, and Wang; see the reference 14 in [17]).

The NGST problem cannot be approximated within a factor of O(log2-ε n); this follows
from the result in [10] where WCSC and NGST problems are shown to be equivalent and
WCSC problem is Ω(log2-ε n)-hard.

Demaine et al. [8] showed that there is a polynomial-time 6-approximation algorithm
for the node-weighted Steiner tree problem in planar graphs. In general they proved that
node-weighted Steiner trees have polynomial-time O(1)-approximation algorithms for any
family of graphs that exclude a fixed minor. They also presented an O(log n poly log log n)
approximation algorithm for the special case where G is an embedded planar graph and each
group is the set of nodes on a face.

Khandekar et al. [19] studied the fault-tolerant versions of the group Steiner tree problem.
Given an edge or node-weighted graph G, a root vertex r, a set G of groups, the goal is to find
a minimum weight subgraph of G that contains two edge or vertex-disjoint paths from each
group in G to r. They showed that this problem cannot be approximated within a factor of
O(log2-ε k), where k is the number of groups. In addition, they presented a polynomial-time
O(
√
n log n)-approximation algorithm for this problem. The online version of the NGST

problem is also considered in [23].
Halperin and Krauthgamer [17] proved that the DST problem cannot be approximated

within a factor of O(log2-ε n), unless Z̃ ⊇ NP. Charikar et al. [5] presented an O(i2(i−1)k1/i)
approximation algorithm for the DST problem running in O(nik2i) time for any i > 1, where
k = |R|. It achieves an O(kε) approximation ratio in polynomial time for any ε > 0, and
O(log3 k) approximation ratio in quasi-polynomial time. Similar results are also obtained in
[24].

The SC problem is NP-hard [14], and cannot be approximated within a factor of (1 −
ε) lnn, unless D̃ ⊇ NP [12]. It is obvious that the SC problem is a special case of the CSC
problem, where the input graph G is complete. Thus, the CSC problem is NP-hard and
cannot be approximated within a factor of (1 − ε) lnn in polynomial-time. Shuai and Hu

2Here we use Z̃ to denote the complexity class Las-Vegas quasi-polynomial time, or ZTIME(npoly logn),
where ZTIME(t) denote the class of languages that have a probabilistic algorithm that runs in expected time
t (with zero error probability).

4

Table 1: Summary of results (note that the set cover problem is a special case of the connected
set cover problem where the input graph is complete).

Problem Inapproximability Reference
set cover (1− ε) lnn [12]
connected set cover (1− ε) lnn
weighted connected set cover log2-ε n [10]
group Steiner tree log2-ε |G| [17]
directed Steiner tree log2-ε n [17]

full Steiner tree
(1− ε) lnn [9]
log2-ε |R| Theorem 1

node-weighted full Steiner tree log2-ε |R| Theorem 2
k-bottleneck full Steiner tree 2− ε Theorem 5
smallest full Steiner tree (1− ε) lnn Theorem 6

[25] showed that even when G is a spider graph (a graph with exactly one vertex of degree
greater than two), the CSC problem is (1− ε) lnn-inapproximable, unless D̃ ⊇ NP. In that
case, they presented a (1 + lnn)-approximation algorithm. In the case where all the vertices
of G have degree at most two, they presented polynomial-time algorithms.

Elbassioni et al. [10] showed that the CSC problem is equivalent to the GST problem
with all edge weights set to 1. Hence, by applying the results of Garg et al. [15] on the
equivalent GST problem, a polylogarithmic approximation algorithm for CSC is obtained.

1.3 Our Results

Motivated by the open problems mentioned in [1] we present some results on the hardness of
the FST, NFST, k-BFST, and SFST problems. The presented reductions show the relation
between the full Steiner tree, the group Steiner tree, and the connected set cover problems.

In Section 2 we show that the FST problem cannot be approximated within a factor
of O(log2-ε |R|) unless Z̃ ⊇ NP, using a reduction from the group Steiner tree problem.
Then, we present a polynomial time approximation factor preserving reduction from the
FST problem to the group Steiner tree and the directed Steiner tree problems. This leads to
the first approximation algorithms for the FST problem in general graphs. In addition, we
show that the similar results are achievable for the node-weighted FST problem. In Section
3, we first introduce the largest full Steiner tree problem in a given graph G, and present
an algorithm which solves this problem in O(n + m) time. Then, we show how to use this
algorithm to solve the BFST problem in G in O(m log n) time. In addition we reduce the
connected set cover problem to the metric version of the k-BFST problem and prove that
it is NP-hard to approximate the k-BFST problem within a factor of 2 − ε, for any ε > 0.
Using a reduction from the connected set cover problem, in Section 4 we show that the SFST
problem is NP-complete and cannot be approximated within a factor of (1 − ε) lnn unless
D̃ ⊇ NP. Table 1 summarizes the inapproximability results. We conclude this paper in
Section 5.

5

2 Full Steiner Trees

Given a graph G = (V,E), a subset R of V , and a weight function w : E → R+, we
are interested to find a full Steiner tree T with minimum weight. This problem cannot be
approximated better than lnn unless NP = D̃ [9]. In this section we give a tighter bound
on the inapproximability of the FST problem, as well as the first approximation algorithm
for this problem in general graphs. Since in any full Steiner tree all the terminals are leaves,
we assume w.l.o.g. that there are no edges between the vertices of R. In [17], Halperin
and Krauthgamer proved that the GST problem cannot be approximated within a factor
of O(log2-ε |G|), unless Z̃ ⊇ NP. Using a reduction from the GST problem, we show that
the FST problem cannot be approximated within a factor of O(log2-ε |R|). For a tree T , we
define the skeleton tree of T , as a tree obtained by removing the leaves of T .

Theorem 1. There is no polynomial-time O(log2-ε |R|)-approximation for the FST problem
for any ε > 0 unless Z̃ ⊇ NP.

Proof. Using contradiction, suppose that there is a polynomial-timeO(log2-ε |R|)-approximation
algorithm for the FST problem.

We reduce the GST problem to the FST problem in the following way. Let (Ggst,G, w)
be an instance of the GST problem, where Ggst = (Vgst, Egst). We construct an instance
(Gfst, R, w) of the FST problem as follows.

gi
=⇒

r(gi)
0

0

0

0

GST FST

Figure 1: Reducing an instance of the GST problem to an instance of the FST problem.
Solid circles show the terminals and light circles show the Steiner vertices.

For each group gi ∈ G, create a new vertex r(gi). Let R denote the set of these new
vertices:

R = {r(gi) : gi ∈ G}.
Let Ei = {(u, r(gi)) : u ∈ gi} and E =

⋃
gi∈G Ei. For each edge e ∈ E let w(e) = 0.

Let Gfst = (Vfst, Efst), where Vfst = Vgst ∪ R and Efst = Egst ∪ E. This gives an instance
(Gfst, R, w) of the FST problem. See Figure 1. Since |R| = |G|, for simplicity of notation we
define k = |R|.

First, we show that the weight of an optimal solution for the FST problem is equal to
the weight of an optimal solution for the GST problem. Let T ∗fst be an optimal solution
for the FST problem. Let T ∗gst be the skeleton tree of T ∗fst, obtained by removing the leaves

6

of T ∗fst. Note that in T ∗fst all leaves are terminals (and vice versa), and the terminals are
incident on the edges of weight zero, thus, w(T ∗gst) = w(T ∗fst). We prove that T ∗gst is an
optimal solution for the GST problem. Each group gi in G has a corresponding vertex in
R. In T ∗fst, each vertex r(gi) ∈ R is connected to T ∗gst via a vertex belonging to gi. That
is, at least one vertex from each gi ∈ G is covered by the tree T ∗gst. Thus, T ∗gst is a group
Steiner tree. We prove the optimality of T ∗gst by contradiction. Suppose that there is a
solution Tgst for the GST problem, where w(Tgst) < w(T ∗gst). For each gi ∈ G, let ui ∈ gi be
a vertex that is covered by Tgst. By connecting ui to r(gi) we obtain a full Steiner tree Tfst
for the FST problem. Since w(ui, r(gi)) = 0 for all gi ∈ G, we have w(Tfst) = w(Tgst). Thus,
w(Tfst) = w(Tgst) < w(T ∗gst) = w(T ∗fst), which contradicts the optimality of T ∗fst. Therefore,
w(Tgst) ≥ w(T ∗gst), which implies that T ∗gst is an optimal solution for the GST problem.

Now, let T a
fst be the polynomial-time O(log2-ε k)-approximation solution for the FST

problem. Then

w(T a
fst) ≤ O(log2-ε k) · w(T ∗fst).

Let T a
gst be the skeleton tree of T a

fst. It is obvious that T a
gst is a group Steiner tree, and

w(T a
gst) = w(T a

fst). Therefore,

w(T a
gst) ≤ O(log2-ε k) · w(T ∗fst) = O(log2-ε k) · w(T ∗gst),

that is, T a
gst is a polynomial-time O(log2-ε k)-approximation tree for the GST problem, which

means that NP has quasi-polynomial Las-Vegas algorithms.

Now, we prove that there is a polynomial-time approximation factor preserving reduction
from the full Steiner tree problem to the group Steiner tree problem.

Lemma 1. Any polynomial time α-approximation algorithm for the GST problem yields a
polynomial time α-approximation algorithm for the FST problem.

Proof. We will transform, in polynomial time, an instance (Gfst, R, w) of the FST problem,
where Gfst = (Vfst, Efst) and S = Vfst \ R, to an instance (Ggst,G, w) of the GST problem
as follows. For each node r ∈ R, let N(r) denote the adjacent vertices of r in Gfst. For each
vertex u ∈ N(r), create a new vertex r(u). Let gr denote the set of these new vertices:

gr = {r(u) : u ∈ N(r)}.
We consider gr to be one “group”. Let G = {gr : r ∈ R}. Let E = {(u, r(u)) : r ∈

R, u ∈ N(r)}, and for each edge (u, r(u)) ∈ E let w(u, r(u)) = w(u, r) where r(u) ∈ gr.
Let Ggst = (Vgst, Egst), where Vgst = S ∪ {r(u) : r(u) ∈ gr, gr ∈ G} and Egst = Gfst[S] ∪ E,
where Gfst[S] denotes the subgraph of Gfst induced by vertex set S. This gives an instance
(Ggst,G, w) of the GST problem. See Figure 2.

First, we show that the weight of an optimal solution for the GST problem is equal to the
weight of an optimal solution for the FST problem. Let T ∗gst be an optimal solution for the
GST problem. Note that the groups in G are pairwise disjoint, and the vertices in each group

7

r

u1

5

4
u2

u3

u4

7

3
=⇒

r(u1)

r(u2)

r(u3)

r(u4) gr5

4

7

3

FST GST
u1

u2

u3

u4

Figure 2: Reducing an instance of the FST problem to an instance of the GST problem.
Solid circles show the terminals and light circles show the Steiner vertices.

have degree one. Thus, T ∗gst contains exactly one vertex r(u) from each group gr, where r(u)
is a leaf. Let T ∗fst be the tree obtained from T ∗gst by replacing each edge (u, r(u)) ∈ T ∗gst,
where r(u) ∈ gr, with its corresponding edge (u, r) ∈ Gfst. Clearly, T ∗fst is a full Steiner tree
in Gfst, and w(T ∗fst) = w(T ∗gst) because w(u, r) = w(u, r(u)). Now, we prove that T ∗fst is an
optimal full Steiner tree. Using contradiction, suppose that there is a solution Tfst for the
FST problem where w(Tfst) < w(T ∗fst). Consider the skeleton tree T of Tfst. Recall that each
group gr ∈ G corresponds to a terminal r ∈ R. For a terminal r ∈ R, let u be the neighbor of
r in T . Recall that for each u ∈ N(r) there is a vertex r(u) ∈ gr where w(u, r) = w(u, r(u)).
Let Tgst be the tree obtaining from T by connecting r(u) to u for all r ∈ R. That is, Tgst is
a group Steiner tree, and w(Tgst) = w(Tfst). Thus, w(Tgst) = w(Tfst) < w(T ∗fst) = w(T ∗gst),
which contradicts the optimality of T ∗gst. Therefore, w(Tfst) ≥ w(T ∗fst), which implies that
T ∗fst is an optimal solution for the FST problem.

Now, let T a
gst be an α-approximation for the GST problem. As described above we can

obtain a full Steiner tree T a
fst for the FST problem where w(T a

fst) = w(T a
gst). Therefore,

w(T a
fst) = w(T a

gst) ≤ α · w(T ∗gst) = α · w(T ∗fst),

and hence T a
fst is an α-approximation for the FST problem.

By Lemma 1, the improved version (see the reference 14 in [17]) of Garg et al. [15] algo-
rithm can be used to solve the FST problem (by reducing the FST problem to the equivalent
GST problem first). Hence, an O(log n log2 |R|)-approximation algorithm for the FST prob-
lem is obtained. Moreover, as a direct consequence of the following lemma, the polynomial-
timeO(kε)-approximation and the quasi-polynomial-timeO(log3 k)-approximation algorithms
of Charikar et al. [5] for the directed Steiner tree problem, carries over to the full Steiner
tree problem, where k = |R|.

Lemma 2. Any polynomial time α-approximation algorithm for the DST problem yields a
polynomial time α-approximation algorithm for the FST problem.

Proof. We will transform an instance of the FST problem on graph G to an instance of the
DST problem with the same number of terminals. Replace each Steiner edge (an edge both
of whose endpoints are Steiner vertices) in G with a pair of anti-parallel directed edges of

8

the same weight. Then replace each terminal edge (s, r), where s ∈ S and r ∈ R, with a
directed edge of the same weight from s to r. Let G′ be the resulting directed graph. It is
easy to verify that an out-going directed Steiner tree originating from a Steiner node to any
terminal in G′ can be converted to a full Steiner tree of the same weight in G. Let T ∗dst be the
minimum weight directed Steiner tree among all the directed Steiner trees in G′ obtained by
picking any of the Steiner vertices as the root vertex. Clearly, the weight of an optimal full
Steiner tree T ∗fst in G is at least the weight of T ∗dst, i.e., w(T ∗fst) ≥ w(T ∗dst).

Now, consider an α-approximation algorithm Adst for the DST problem. Let T a
dst be

the minimum weight tree among all the trees obtained by running Adst on all the Steiner
vertices of G′. Let T a

fst be the tree obtained from T a
dst by replacing the directed edges with

undirected edges of the same weight. It is obvious that T a
fst is a full Steiner tree in G and

w(T a
fst) = w(T a

dst). Therefore,

w(T a
fst) = w(T a

dst) ≤ α · w(T ∗dst) ≤ α · w(T ∗fst),

which implies that T a
fst is an α-approximation for the FST problem.

2.1 Node Weighted Full Steiner Trees

Given a graph G = (V,E), a subset R of V , and a weight function w : V → R+, we are
interested in finding a full Steiner tree T with minimum node weight. Since any full Steiner
tree contains all the vertices in R, we assign w.l.o.g. w(r) = 0 for each r in R. In this section
we show that the same inapproximability results presented in Section 2 for the FST problem,
hold for the NFST problem, using a reduction from the node-weighted GST problem. The
NGST problem cannot be approximated within a factor of O(log2-ε n); this follows from
the result in [10] where WCSC and NGST problems are equivalent and WCSC problem is
Ω(log2-ε n)-hard.

Theorem 2. There is no polynomial-time O(log2-ε n)-approximation for the NFST problem
for any ε > 0 unless Z̃ ⊇ NP.

Proof. We reduce the NGST problem to the NFST problem. Given an instance of the NGST
problem, we construct an instance (Gfst, R, w) of the NFST problem with the same node
weight function, as described in the proof of Theorem 1. For each r(gi) in R corresponding
to a group gi ∈ G we assign w(ri) = 0. Each solution Tnfst for the NFST problem gives a
solution Tngst for the NGST problem of the same weight, where Tngst is the skeleton tree of
Tnfst. Using the same analysis as in the proof of Theorem 1, the statement of the lemma
holds.

Using the same reduction as described in the proof of Lemma 1, and by assigning weight
zero to each node r(u) ∈ gr, we have the following lemma. Note that for each terminal r,
we have w(r) = 0.

Lemma 3. Any polynomial time α-approximation algorithm for the NGST problem yields a
polynomial time α-approximation algorithm for the NFST problem.

9

3 Bottleneck Full Steiner Trees

Given a graph G = (V,E), a subset R of V , and a weight function w : E → R+, the
bottleneck full Steiner tree (BFST) problem is to find a full Steiner tree Tbot in G such that
the weight of the maximum-weight edge in Tbot is minimized. This problem can be solved
exactly in polynomial time [1, 4, 7]. Chen et al. [7] presented an O(m log n) time algorithm
that solves the BFST problem in a complete graph. Their algorithm maintains a forest F of
the full Steiner trees and a tree which contains the bottleneck edge. Initially, for each Steiner
vertex u, they add to F a star Tu centered at u which contains all vertices of R as its leaves.
Each star is a full Steiner tree. Let T ∗ be the tree in F with minimum bottleneck. Then,
they consider the Steiner edges iteratively in the increasing order of their weights. If the
addition of a Steiner edge (p, q) reduces the current bottleneck, they add (p, q) to F—which
results in merging the trees containing p and q—and update T ∗. In order to merge the trees,
disjoint-set operations are used. Since in each iteration F is a forest of full Steiner trees, the
input to their algorithm is a complete graph, thus, the running time of their algorithm is
O(n2 log n). We relax the assumption that G is a complete graph, and present an algorithm
for the BFST problem running in O(m log n) time. The geometric version of the BFST
problem is also of interest; in [1], the authors presented an O(n log2 n) time algorithm for
this problem which was improved to O(n log n) [4].

The k-BFST problem is to find a bottleneck full Steiner tree which contains at most k
Steiner vertices. This problem is NP-hard. For metric graphs, a 4-approximation algorithm
is presented by Abu-Affash [1].

The rest of this section is organized as follows. In Section 3.1 we define the largest full
Steiner tree problem, and present a linear time algorithm for this problem. In Section 3.2
we show how to use the largest full Steiner tree algorithm to solve the BFST problem in
O(m log n) time. In Section 3.3 we show that it is NP-hard to approximate the k-BFST
problem in metric graphs within a factor of two.

3.1 Largest Full Steiner Tree Problem

Let G = (V,E) be a graph with n vertices and m edges. Given a terminal vertex set R ⊂ V ;
in the case that G does not have a full Steiner tree which spans all the terminals in R, we
define a largest full Steiner tree as a full Steiner tree in G with maximum cardinality. The
cardinality of a tree T is the number of terminal vertices in T , i.e., car(T) = |T ∩ R|. The
largest full Steiner tree (LFST) problem is to find a largest full Steiner tree.

We present an algorithm which computes a largest full Steiner tree Tmax in G in O(n+m)
time. Algorithm 1 receives a graph G and a set R as input and returns a largest full Steiner
tree. It computes a forest F containing all the maximal full Steiner trees of G. A full Steiner
tree T in G is maximal if by adding any vertex of G (terminal or Steiner) to T , the resulting
tree is not a full Steiner tree. A largest full Steiner tree in G is a maximal tree Tmax in F
which has the maximum cardinality (recall that the cardinality of a tree is defined as the
number of its terminal vertices). Now we describe how to compute F . We run a modified
version of the depth first search algorithm (ModifiedDFS) on the Steiner vertices, and

10

add the tree returned by the ModifiedDFS to F . Note that the DFS algorithm explores
the graph from a given vertex by first exploring all the children of that vertex. To avoid
looping through cycles, DFS marks each vertex upon first visiting it and does not explore
the children of a previously visited vertex. In the ModifiedDFS algorithm, we mark all
the terminal vertices as “visited” in advance, and start exploring G from a Steiner vertex,
say u. That is, while exploring G, if we see a Steiner vertex s, we visit and explore s, but,
if we see a terminal vertex r, we visit r but we do not explore it. Since the ModifiedDFS
does not explore the terminal vertices, the resulting tree, say Tu, is a full Steiner tree in G.
If G contains some unvisited Steiner vertices, we repeatedly run the ModifiedDFS on an
unvisited Steiner vertex. See Algorithm 1.

Algorithm 1 LFST(G,R)

Input: an undirected graph G(V,E), and a set R ⊂ V .
Output: a largest full Steiner tree Tmax in G.

1: S ← V \R
2: F ← ∅
3: while S is not empty do
4: u← a vertex of S
5: Tu ←ModifiedDFS(G, u)
6: F ← F ∪ {Tu}
7: S ← S \ S(Tu)

8: Tmax ← a tree in F with the maximum cardinality
9: return Tmax

For a full Steiner tree T we define R(T) and S(T) as the set of terminals and Steiner
vertices of T , respectively. In addition, we define T (R) as the set of all terminal edges in
T (recall that a terminal edge is an edge incident on a terminal vertex), and T (S) as the
skeleton tree obtained from T by removing T (R). Actually, T (S) is the induced subgraph
of T by S(T), and contains all the Steiner edges of T . For two vertices p and q in G, we
say that p is accessible from q if there is path in G between p and q which does not contain
any terminal vertex as an internal node. It is obvious that in an undirected graph G, the
accessibility of p and q is symmetric.

Observation 1. In a full Steiner tree T , each terminal in R(T) is accessible from each
Steiner vertex in S(T).

Observation 2. Consider a Steiner vertex u ∈ G and the tree Tu obtained by running the
ModifiedDFS on u. Then, R(Tu) ∪ S(Tu) is the set of all vertices accessible from u in G.

Theorem 3. The algorithm LFST returns a largest full Steiner tree of G in O(m) time.

Proof. The ModifiedDFS subroutine in algorithm LFST, does not explore any terminal
vertex, and hence the resulting tree Tu does not contain any terminal vertex as an internal
node. Thus, Tu is a full Steiner tree in G. Now we prove the maximality of Tu. While

11

exploring a Steiner vertex u, the ModifiedDFS visits all the unvisited vertices (terminals
and Steiners) adjacent to u, and explore all the unexplored Steiner vertices. By this argument
and by Observation 2 the ModifiedDFS visits all the vertices accessible from u, and hence
Tu is a maximal full Steiner tree in G. In addition, we repeatedly run ModifiedDFS on
unvisited Steiner vertices. According to the symmetry of the accessibility in G, any choice
of u in line 4, in any order, results in the same full Steiner trees. Therefore, after the while
loop, F contains all the maximal full Steiner trees of G.

Now we show that the tree Tmax returned by the algorithm LFST has the maximum
cardinality. Let T be a full Steiner tree in G. Consider the skeleton tree T (S) with the
vertex set S(T). Let u be the first vertex of S(T) that is visited by ModifiedDFS. Clearly,
R(T) is accessible by u. In algorithm LFST, let Tu be the tree in F which contains u. By
Observation 1, Tu contains all the terminals accessible from u. Thus, R(T) ⊆ R(Tu), and
hence, car(T) ≤ car(Tu). In line 9, Tmax is a tree in F with maximum cardinality, then,
car(Tu) ≤ car(Tmax). Therefore, car(T) ≤ car(Tmax), implies that Tmax is a maximum full
Steiner tree of G.

Now we analyze the time complexity of the algorithm. In the while loop, when we run
the ModifiedDFS starting at a Steiner vertex u, it visits all the vertices that are accessible
from u, but explores only the Steiner vertices. In the successor iterations of the while loop,
the Steiner vertices accessible by u are never visited again. Thus, LFST explores each
Steiner vertex exactly once. The total number of times that the ModifiedDFS visits a
vertex (terminal or Steiner vertex) is at most the number of edges incident on that vertex.
Therefore, the total running time of the algorithm is O(n+m).

3.2 Bottleneck Full Steiner Tree Problem

In this section we are looking for a bottleneck full Steiner tree Tbot in G, i.e., a largest
full Steiner tree in which the weight of the longest edge is minimized. We combine the
binary search algorithm with the LFST algorithm—presented in Section 3.1—to compute
Tbot in O(m log n) time. We define the cardinality of a graph G, car(G), as the cardinality
of a maximum full Steiner tree in G. Using the LFST algorithm, we compute car(G) in
O(n+m) time. The first step is to sort the edges by weight. This takes O(m log n) time. Let
e1, e2, . . . , em be the edges of G, in nondecreasing order by their weight. Let Gi = (V,Ei) be
the graph with vertex set V and edge set Ei, where Ei = {e1, e2, . . . , ei}. Then, we use binary
search to find the minimum value i∗ of i such that Gi∗ has the same cardinality as G, i.e.,
car(Gi∗) = car(G). Therefore, the largest full Steiner tree in Gi∗ is a bottleneck full Steiner
tree in G. In each iteration of the binary search we run the algorithm LFST to compute
a maximum full Steiner tree in Gi with cardinality car(Gi) and test whether the “guess” i
for i∗ is too high or too low. The LFST algorithm takes O(n + m) time per execution and
the total number of times we execute LFST is O(log n), thus, the total running time of this
algorithm is O((n+m) log n). W.l.o.g. one may only consider a connected component of G
which contains all the terminals, that is n = O(m), which results in the following theorem.

Theorem 4. The BFST problem can be solved exactly in O(m log n) time.

12

3.3 k-Bottleneck Full Steiner Tree Problem

In this section we show that it is NP-hard to approximate the k-BFST problem in metric
graphs within a factor of two. This is achieved by providing a reduction from the connected
set cover problem, which is known to be NP-complete.

Connected Set Cover: Given a finite set U of elements, a family S of subsets of U , a graph
G on vertex set S, does there exist a set S∗ ⊆ S, such that |S∗| ≤ k and the subgraph G[S∗]
is a connected cover?

Theorem 5. It is NP-hard to approximate the metric version of the k-BFST problem within
a factor of 2− ε, for any ε > 0.

Proof. We present a reduction from the CSC problem. Consider an instance (U,S, Gcsc, k)
of the CSC problem, where Gcsc = (Vcsc, Ecsc) and Vcsc = S. We construct an instance
(Gfst, R, w, k) of the metric k-BFST problem, such that Gcsc has a connected set cover of
size at most k if and only if Gfst has a full Steiner tree with at most k Steiner vertices and
bottleneck at most 2− ε, for some ε > 0.

Let R = {u : u ∈ U}, Vfst = S ∪ R, and E = Ecsc ∪ {(S, u) : S ∈ S, u ∈ S}. Let
Gfst = (Vfst, Efst) be the complete graph over Vfst. For each edge e ∈ E, let w(e) = 1 if
e ∈ E, and w(e) = 2, otherwise. This gives an instance of the metric k-BFST problem. Note
that the vertices in Gcsc are analogous to Steiner vertices in Gfst. The induced subgraph of
Gfst by S which contains the edges of weight 1 is isomorphic to Gcsc[S].

Let S∗ ⊆ S be a connected vertex cover of size at most k in Gcsc. Clearly, Gfst[S∗] is
connected. Let T be a spanning tree in Gfst[S∗]. By connecting each u ∈ R to one of its
neighbors in T we obtain a full Steiner tree T ∗fst in Gfst with at most k Steiner vertices and
the length of each edge is exactly 1.

Conversely, suppose that there exists a full Steiner tree T a
fst in Gfst with at most k Steiner

vertices and bottleneck at most 2 − ε. It is obvious that T a
fst does not contain any edge in

Efst \E. Let Sa denote the set of the Steiner vertices of T a
fst, and let T denote the skeleton

tree of T a
fst which contains only the edges of weight 1. Clearly, Gcsc[Sa] is connected. Each

element u ∈ U corresponding to a terminal vertex in R, is covered by at least one set in Sa,
and hence Sa is a connected set cover in Gcsc. On the other hand, |Sa| = k, thus, Sa is a
solution for the CSC problem.

4 Smallest Full Steiner Trees

Abu-Affash [1] introduced a variant, or dual version, of the k-BFST as an open problem.
Given a fixed desired bottleneck λ, we are interested in finding a full Steiner tree with the
minimum number of Steiner points to achieve this bottleneck. In this section, we show
that this problem is NP-complete and Ω((1 − ε) lnn)-hard, for all ε > 0. Without loss of
generality, we can remove all edges of weight greater than λ from the input graph, and look
for the full Steiner tree with the minimum number of Steiner vertices in the resulting graph.
Hence, we define the smallest full Steiner tree (SFST) problem to compute a full Steiner tree

13

which contains the smallest number of Steiner vertices. In the SFST problem we can assume
that the input graph G is unweighted, or all edges of G have equal weight. W.l.o.g. assume
that G is a unit-weighted graph, where all edge weights are set to 1.

Lemma 4. An optimal solution for the FST problem on a unit-weighted graph G can be
reconstructed from an optimal solution of the SFST problem on G, and vice versa.

Proof. Consider a unit-weight instance (G,R) of the FST problem. Consider any full Steiner
tree T of G. Partition the edges of T into two sets A and B, where A is the set of all edges
incident to terminals in R, and B is the set of all edges in the skeleton tree of T . Clearly,
|A| = |R|, and

w(T) = w(A) + w(B) = |R|+ |B| − 1.

Since w(A) is fixed for all full Steiner trees of G, an optimal full Steiner tree in G (say
T ∗) minimizes w(B), which is the number of edges in B, and consequently it is the number
of Steiner vertices of T ∗. Therefore, to compute an optimal full Steiner tree in G, one can
compute a smallest full Steiner tree in G, and vice versa.

To prove the hardness of the problem, we present a reduction from the connected set
cover problem. First, we introduce the decision version of the SFST problem: Given a graph
G = (V,E) and a subset R of V , does there exist a full Steiner tree in G which contains at
most k Steiner vertices?

Lemma 5. The smallest full Steiner tree problem is NP-complete.

Proof. It is easy to see that smallest full Steiner tree problem belongs to NP. Now, we present
a reduction from the connected set cover problem. Consider an instance (U,S, Gcsc, k) of the
CSC problem, where Gcsc = (Vcsc, Ecsc) and Vcsc = S. We construct an instance (Gsfst, R, k)
of the SFST problem, such that Gcsc has a connected set cover of size at most k if and only
if Gsfst has a full Steiner tree with at most k Steiner vertices.

Define R = {u : u ∈ U}, Gsfst = (Vsfst, Esfst), where Vsfst = S ∪ R and Esfst =
Ecsc ∪ {(S, u) : S ∈ S, u ∈ S}. This gives an instance of the SFST problem. Note that the
vertices in Gcsc are analogous to Steiner vertices in Gsfst, and the induced subgraphs by S
are isomorphic, i.e., Gsfst[S] ∼= Gcsc[S]. Let T be a full Steiner tree with k Steiner vertices
in Gsfst. It is obvious that the skeleton tree of T (obtained by removing its leaves) is a
connected set cover of size k for the CSC problem. On the other hand, if S∗ is a connected
set cover of size k in Gcsc, then any spanning tree of Gcsc[S∗] is the skeleton tree of a full
Steiner tree with k Steiner vertices in Gsfst. Therefore, Gcsc has a connected set cover of size
at most k, if and only if, G contains a full Steiner tree with at most k Steiner vertices.

By the reduction in the proof of Lemma 5, we have the following corollary.

Corollary 1. There is a polynomial-time approximation factor preserving reduction from
the smallest full Steiner tree problem to the connected set cover problem.

14

Thus, the inapproximability results for the CSC problem hold for the SFST problem.

Theorem 6. There is no polynomial-time (1−ε) lnn-approximation algorithm for the SFST
problem for any ε > 0 unless D̃ ⊇ NP.

As a direct result of Lemma 4 and Theorem 6 we have the following corollary.

Corollary 2. There is no polynomial-time (1− ε) lnn-approximation algorithm for the FST
problem on a unit-weighted graph, for any ε > 0, unless D̃ ⊇ NP.

5 Conclusion

We considered full Steiner tree problems and presented their hardness results. We proved
that the full Steiner tree problem is Ω(log2-ε |R|)-hard, and the node-weighted full Steiner tree
problem is Ω(log2-ε n)-hard. We also presented approximation factor preserving reductions
from the FST and NFST problems to the GST and NGST problems, respectively. We
presented an O(|E| log |V |) time algorithm for the bottleneck full Steiner tree problem; which
relaxes the assumption in Chen et al. [7] algorithm that the input graph is complete. As for
the k-bottleneck full Steiner tree problem we showed that it cannot be approximated within
a factor 2− ε on metric graphs. We introduced the unweighted (or smallest) full Steiner tree
problem and proved that this problem is NP-complete, and Ω((1 − ε) lnn)-hard. We also
presented an approximation factor preserving reduction from this problem to the connected
set cover problem. The presented reductions in this paper, show the connection between the
full Steiner tree, the group Steiner tree, and the connected set cover problems.

References

[1] A. K. Abu-Affash. The Euclidean bottleneck full Steiner tree problem. To appear in
Algorithmica.

[2] Y. Bartal. On approximating arbitrary metrices by tree metrics. In Proceedings of the
Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas, Texas, USA,
May 23-26, 1998, pages 161–168, 1998.

[3] A. Biniaz, A. Maheshwari, and M. Smid. Approximating full Steiner tree in a unit disk
graph. In the Proceedings of the 26th Canadian Conference in Computational Geometry
(CCCG 2014), 2014.

[4] A. Biniaz, A. Maheshwari, and M. Smid. An optimal algorithm for the Euclidean bot-
tleneck full Steiner tree problem. Computational Geometry: Theory and Applications,
47(3):377–380, 2014.

[5] M. Charikar, C. Chekuri, T.-Y. Cheung, Z. Dai, A. Goel, S. Guha, and M. Li. Approx-
imation algorithms for directed Steiner problems. J. Algorithms, 33(1):73–91, 1999.

15

[6] Y. H. Chen. An improved approximation algorithm for the terminal Steiner tree prob-
lem. In ICCSA (3), pages 141–151, 2011.

[7] Y. H. Chen, C. L. Lu, and C. Y. Tang. On the full and bottleneck full Steiner tree
problems. In COCOON, pages 122–129, 2003.

[8] E. D. Demaine, M. Hajiaghayi, and P. N. Klein. Node-weighted Steiner tree and group
Steiner tree in planar graphs. In ICALP (1), pages 328–340, 2009.

[9] D. E. Drake and S. Hougardy. On approximation algorithms for the terminal Steiner
tree problem. Inf. Process. Lett., 89(1):15–18, 2004.

[10] K. M. Elbassioni, S. Jelic, and D. Matijevic. The relation of connected set cover and
group Steiner tree. Theor. Comput. Sci., 438:96–101, 2012.

[11] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary
metrics by tree metrics. J. Comput. Syst. Sci., 69(3):485–497, 2004.

[12] U. Feige. A threshold of lnn for approximating set cover. J. ACM, 45(4):634–652, 1998.

[13] B. Fuchs. A note on the terminal Steiner tree problem. Inf. Process. Lett., 87(4):219–220,
2003.

[14] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

[15] N. Garg, G. Konjevod, and R. Ravi. A polylogarithmic approximation algorithm for
the group Steiner tree problem. J. Algorithms, 37(1):66–84, 2000.

[16] S. Guha and S. Khuller. Improved methods for approximating node weighted Steiner
trees and connected dominating sets. Inf. Comput., 150(1):57–74, 1999.

[17] E. Halperin and R. Krauthgamer. Polylogarithmic inapproximability. In STOC, pages
585–594, 2003.

[18] S.-Y. Hsieh and W.-H. Pi. On the partial-terminal Steiner tree problem. In ISPAN,
pages 173–177, 2008.

[19] R. Khandekar, G. Kortsarz, and Z. Nutov. Approximating fault-tolerant group-Steiner
problems. Theor. Comput. Sci., 416:55–64, 2012.

[20] P. N. Klein and R. Ravi. A nearly best-possible approximation algorithm for node-
weighted Steiner trees. J. Algorithms, 19(1):104–115, 1995.

[21] G.-H. Lin and G. Xue. On the terminal Steiner tree problem. Inf. Process. Lett.,
84(2):103–107, 2002.

16

[22] F. V. Martinez, J. C. de Pina, and J. Soares. Algorithms for terminal Steiner trees.
Theor. Comput. Sci., 389(1-2):133–142, 2007.

[23] J. Naor, D. Panigrahi, and M. Singh. Online node-weighted Steiner tree and related
problems. In IEEE 52nd Annual Symposium on Foundations of Computer Science,
FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 210–219, 2011.

[24] T. Rothvoß. Directed Steiner tree and the Lasserre hierarchy. CoRR, abs/1111.5473,
2011.

[25] T. Shuai and X.-D. Hu. Connected set cover problem and its applications. In AAIM,
pages 243–254, 2006.

[26] F. Zou, X. Li, S. Gao, and W. Wu. Node-weighted Steiner tree approximation in unit
disk graphs. J. Comb. Optim., 18(4):342–349, 2009.

17

