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Abstract. We study data structures to answer window queries using stochastic input sequences.
The first problem is the most likely maximal point in a query window: Let α1, . . . , αc be constants,
with 0 < α1 < α2 < . . . < αc < 1. Let P = P1 ∪ P2 ∪ . . . ∪ Pc be a set of n points in Rd, for some
fixed d. For i = 1, 2, . . . , c, each point in Pi is associated with a probability αi of existence. A point
p = (x1, . . . , xd) in P is on the maximal layer of P if there is no other point q = (x′1, . . . , x

′
d) in P

such that x′1 > x1, x
′
2 > x2, . . . , and x′d > xd. Consider a random subset of P obtained by includ-

ing, for i = 1, 2, . . . , c, each point of Pi independently with probability αi. For a query interval [i, j],
with i ≤ j, we report the point in Pi,j = (pi, . . . , pj) that has the highest probability to be on the
maximal layer of Pi,j in O(1) time using O(n logn) space. We solve a special problem as follows.
A sequence P of n points in Rd is given (d ≥ 2), where each point P has a probability ∈ (0, 1] of
existence associated with it. Given a query interval [i, j] and an integer t with i ≤ t ≤ j, we report
the probability of pt to be on the maximal layer of Pi,j in O(logd n) time using O(n logd n) space.

The second problem we consider is the most likely common element problem. Let U = {1, 2, . . . , n}
be the universe. Let S1, S1, . . . , Sm be a sequence of random subsets of U such that for p = 1, . . . ,m
and i = 1, . . . , n, element i is added to Sp with probability αpi (independently of other choices).
Let τ be a fixed real number with 0 < τ ≤ 1. For query indices p, q, i and j, with 1 ≤ p ≤ q ≤ m
and 1 ≤ i ≤ j ≤ n, we decide whether there exists an element k with i ≤ k ≤ j such that
Pr(k ∈ ∩q

r=pSr) ≥ τ in O(1) time using O(mn) space and report these elements in O(logn + w)
time, where w is the size of the output.
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1 Introduction

Recent developments in real-world data acquisition methods (for example, reading data through sen-
sor networking), other scientific measurements, and subsequent data management techniques (such as
cleaning and integrating datasets) have led to a massive data generation with some inherent uncertainty.
Various models of uncertainty have been devised to categorize and study these data. These models are
studied not just in the field of data structures and algorithms, but also in data mining [6, 31], database
management [18], statistics [28], physics [26], GIS and remote sensing [19].

In a window query we are given a sequence of input data and a predicate P. We want to preprocess
the input into a suitable data structure such that given a query window, it can efficiently answer the
query based on only the input elements that lie in the query window and matches P. Let i and j be
two positive integers, with i ≤ j, such that the interval [i, j] represents a query window. In this paper we
study window queries for stochastic input sequences such as geometric objects like points and elements
of sets. We present data structures for solving two window problems, namely the most likely maximal
point problem and the most likely common element problem. The problem definitions are as follows.

MLMP: Most Likely Maximal Point problem. Let P = (p1, . . . , pn) be a sequence of n points
in Rd with d ≥ 1. For a point p = (x1, . . . , xd) ∈ P , we define D(p) to be the set of points of P that
dominate p, i.e., D(p) = {q = (x′1, . . . , x

′
d) of P: x′1 > x1, . . . , x

′
d > xd}. A point p is dominated by q if

q ∈ D(p). A point p ∈ P is a maximal point if D(p)∩P = ∅. The maximal layer is the set of all maximal
points in P .

Let α1 and α2 be constants with 0 < α1 < α2 < 1. Recall that P is a sequence of n points in Rd. Let
each point of P be either colored blue or red. Let B ⊆ P be the set of all blue points and let R ⊆ P be
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Fig. 1. An instance of MLMP(B,α1;R,α2) in R2 is given. Pr(pb is on maximal layer in P ) = α1(1−α1)(1−α2)2

and Pr(pr is on maximal layer in P ) = α2(1− α1)2(1− α2).

the set of all red points. Furthermore, each blue point is associated with a probability α1 of existence
and each red point is associated with a probability α2 of existence. Note that P = B ∪R and we denote
this instance of P as (B,α1;R,α2). Let Z be a random subset of P given by including each blue point of
P in Z independently with probability α1 and each red point of P in Z independently with probability
α2.

For a point p′ ∈ P , let s be the number of blue points in P in D(p′). Similarly let t be the number of
red points in P in D(p′). If p′ itself is a blue point then the probability that p′ is on the maximal layer
in Z is α1(1− α1)s(1− α2)t. Similarly if p′ is a red point then the probability that p′ is on the maximal
layer in Z is α2(1− α1)s(1− α2)t. See Fig. 1 for an example.

For 1 ≤ i < j ≤ n, let Pi,j denote the subsequence of stochastic points (pi, pi+1, . . . , pj). Given a
query interval [i, j], with i ≤ j, we report the most likely maximal point (MLMP) defined to be the point
with the highest probability to be on the maximal layer of the sequence of stochastic points in Pi,j .

Given a query interval [i, j], we define Pi,j = Bi,j ∪ Ri,j , where Bi,j = B ∩ Pi,j and Ri,j = R ∩ Pi,j .
We present data structures that can answer window queries for the most likely maximal point in the
above mentioned instance of P . Now the window problem of the most likely maximal point is denoted
as MLMP(Bi,j , α1;Ri,j , α2).

Next we show how to extend this technique to solve the c-colored MLMP problem defined as follows.
Let α1, . . . , αc be constants, with 0 < α1 < α2 < . . . < αc < 1. Given a sequence of stochastic points
P = P1 ∪ P2 ∪ . . . ∪ Pc in Rd, where c is a constant and for r = 1, . . . , c, each r-colored point belongs to
Pr has a probability αr associated with it and d ≥ 1. P can be preprocessed into a data structure that
can report the most likely maximal point within Pi,j , with 1 ≤ i ≤ j ≤ n.

We also answer the following query. Suppose a sequence of stochastic points P = (p1, p2, . . . , pn) in R2

is given such that for k = 1, 2, . . . , n, point pk exists with probability γk, with 0 ≤ γk ≤ 1, independently
of the other points. Given a query interval [i, j], with i ≤ j, and an additional integer t ∈ [i, j], we can
report the probability of the point pt is on the maximal layer in Pi,j .

MLCE: Most Likely Common Element problem. Let U = {1, 2, . . . , n} be the universe. Let
S1, S2, . . . , Sm be a sequence of random subsets of U such that for p = 1, . . . ,m and i = 1, . . . , n, element
i is added to Sp with probability αpi (independently of other choices). Let τ be a fixed real number
with 0 < τ ≤ 1. We answer queries of the following type: Given query indices p, q, i and j, with
1 ≤ p ≤ q ≤ m and 1 ≤ i ≤ j ≤ n, decide if there exists an element k ∈ {i, i+ 1, . . . , j} that is contained
in Sp ∩ Sp+1 ∩ . . . ,∩Sq with probability at least τ .

Observe that Pr(k ∈ ∩qr=pSr) =
∏q
r=p αrk. Thus, the problem is equivalent to the following: Let S be

an m× n matrix in which each entry S[p, i] is a real number αpi ∈ [0, 1]. We want to preprocess S into
a data structure such that for any query values p, q, i and j, we can decide if there exists some integer
k for which i ≤ k ≤ j and

∏q
r=p αrk ≥ τ .

1.1 Related Work

The window data structures have been considered in many recent studies including [8, 9, 12–17]. These
studies solve window queries for various geometric and graph problems and use sequences of geometric
objects (such as, points, line segments and polygons) or graph edges as input. To the best of our knowl-
edge, none of these papers have considered any model of uncertainty in their studies. Typically, models
of uncertainty describe a distribution or regions for each point’s location in the input sequence. Many
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papers have studied (offline) geometric problems with one or more of these models. The most widely
studied models of uncertainty are stochastic points, where each point pk has a fixed location which only
exists with a probability αk, with 0 < αk ≤ 1 (see [7, 22, 23, 32]); uncertain points, where each point
pk’s location is described by a probability distribution αk (see [21, 2, 29]); indecisive points or multipoint
model, where each point can take one of a finite number of locations (see [4, 21, 30]) and imprecise points,
where each point’s location is not known precisely but it is restricted to a region (see [20, 25]).

Although, again to the best of our knowledge, these uncertainty models have not been studied so far
in the window query setting, various authors presented range searching data structures on stochastic or
uncertain geometric objects (e.g., points and line segments) such as range counting coresets for uncertain
data [1], range reporting with a query interval and a probability threshold [3], range-maximum query on
uncertain data [5], range queries (i.e., report top-k points with highest probabilities) given some query
interval [24].

1.2 New Results

The main contributions of this paper are listed below.

1. Window queries for c-colored MLMP problem: We show how to preprocess a sequence of n stochastic
points in Rd, for a fixed d ≥ 1, into a data structure of size O(n log n) so that given a query interval
[i, j] with 1 ≤ i ≤ j ≤ n, it can report the most likely maximal point of Pi,j in O(1) time.

2. Window queries for MLCE problem: We show how to preprocess a matrix S of size m × n with a
fixed real number 0 < τ ≤ 1 into a data structure of size O(mn) in O(mn) time such that for any
query values p, q, i and j, we can decide if there exists some integer k for which i ≤ k ≤ j and∏q
r=p αrk ≥ τ in O(1) time. The reporting version of the query can be answered in O(log n + w)

time, where w is the total number of all elements k for which i ≤ k ≤ j and
∏q
r=p αrk ≥ τ .

1.3 Organization

The rest of this paper is organized as follows. Section 2 presents results for the c-colored windowed most
likely maximal point problem. This section also outlines a data structure that can report the probability
with which a given point can exist on the maximal layer of the queried points. In Section 3, we present
algorithms and data structures for the most likely common element problem. Section 4 concludes this
paper.

2 Most Likely Maximal Points

The point that has the highest probability to be on the maximal layer in P is defined to be the most
likely maximal point in P . The window problem of finding the most likely maximal point is as follows.
Given a query interval q = [i, j], with 1 ≤ i < j ≤ n, report the point that has the highest probability to
be on the maximal layer in Pi,j .

In this section, we initially present the MLMP problem where the points of P are only colored by
two colors. We later extend to c-colored MLMP, where c ≥ 2 is a constant. We further present the data
structure for computing the probability for a point to be on the maximal layer in Pi,j .

2.1 Blue-Red Stochastic Points

Let α1 and α2 be constants with 0 < α1 < α2 < 1. Given a query interval [i, j], 1 ≤ i ≤ j ≤ n, we define
Pi,j = {pi, pi+1, . . . , pj}, Bi,j is the set of blue points in B∩Pi,j and Ri,j is the set of blue points in R∩Pi,j .
We denote the windowed version of the most likely maximal point problem as MLMP(Bi,j , α1;Ri,j , α2).

Lemma 1. Consider a query interval [i, j] with i < j. If the answer to the most likely maximal point
problem is a blue point then it is a maximal point of all points in Pi,j. If the answer to the most likely
maximal point problem is a red point then it is a maximal points in Ri,j.
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Proof. Suppose the answer to our query is a blue point pb. We show, by contradiction, that pb is a
maximal point of Pi,j . Suppose it is not. Then D(pb) ∩ Pi,j 6= ∅ and assume that there are s points of
color blue and t points of color red in D(pb), such that s + t > 0. Then the probability that pb is the
most likely maximal point is α1(1 − α1)s(1 − α2)t but that is strictly less than α1. It contradicts the
assumption that pb is the most likely maximal point in Pi,j .

By a similar argument the second statement can also be proved. Suppose the answer to our query is
a red point pr but there exists t other red points in D(pr) in Ri,j . Then the probability that pr is the
most likely maximal point in Pi,j is α2(1− α2)t which is strictly less than α2.

First we discuss the case where points of P = B∪R lie on the line. Without loss of generality, we assume
P lies on a horizontal line.

Points are in 1-dimension. Let P̂ [1. . n] be an array such that for k = 1 to n, P̂ [k] = pk,x, where
pk,x is the x-coordinate of the point pk. Fig. 2 illustrates an example with 10 points on the line. Now
given a query interval [i, j] the problem of computing the most likely maximal point in Pi,j reduces to

the problem of computing the most likely maximum value in P̂ [i], . . . , P̂ [j].

Data structure: We can directly use the data structure of Agarwal et al.’s result for a set of uncertain
points [5] to find the most likely maximum value in the range [i, j] in O(n1−t+log n) time using O(n1+t)
space for any t ∈ [0, 1]. Let the most likely maximum value be X. Then the point at position X is the
most likely maximal point in Pi,j . However, we present a simpler data structure here.

Recall that we consider (B,α1;R,α2) to be an instance of P , where B contains all the blue points of
P and R contains all the red points of P . Let B̂ be the array similar to P̂ for all blue points and let R̂
be the array similar to P̂ for all red points. We build two separate 1-dimensional range maximum data
structures on B̂ and R̂. Given a 1-dimensional array A with N entries, the range maximum (RM) query
asks for the maximum element within a contiguous subarray of A. Linear time and space preprocessing
algorithms are known for the 1-dimensional case that can answer queries in constant time (see for exam-
ple [10]). Let RMB be the 1-dimensional RM structure built on B̂ and let RMR be the 1-dimensional
RM structure built on R̂. Both RMB and RMR require O(n) space in total. In addition, we map each
blue point pb in B̂ to a 2-dimensional point (b, B̂[b]), where b is the position of pb in P . Suppose B̄ is
the set of all 2-dimensional points obtained in this way. Now we build a 2-dimensional range tree TB̄ on
these points. Total space and time required for constructing this range tree is O(n log n) [11].

Now we discuss how we answer a query. Recall that 0 < α1 < α2 < 1. Given a query interval [i, j] in P̂ ,
we first search RMR data structure to find the maximum value for a red point in the range [i, j]. Let this
point be Rmax with the value Vmax. Then we search TB̄ with a three sided range query [i, j]×[Vmax,+∞)
and count the total number of blue points in this range. Let this number be m. That is, these are the m
blue points that exist in the interval [i, j] and have values greater than Vmax. In other words, these m
blue points in Pi,j have higher x-coordinate value than that of the red point Rmax. Then the probability
that the point Rmax is the most likely maximum point in Pi,j is α2(1−α1)m. Now we have the following
two cases to consider.

– Case 1 : If α2(1 − α1)m > α1 then the red point Rmax at position max is the most likely maximal
point with probability α2(1− α1)m. We report this point as the answer to our query.

– Case 2 : Otherwise, the most likely maximum point in Pi,j is the blue point with maximum x-
coordinate in [i, j]. To find this blue point with the maximum value we search the range maximum
data structure RMB and report the output point to be the maximum point with probability α1.

RMR and RMB can answer queries in O(1) time. Range counting query can be answered in O(log n)
time. So the total query time is bounded by O(log n). Therefore we obtain the following theorem.

Theorem 1. Let α1 and α2 be constants with 0 < α1 < α2 < 1. Given an instance of MLMP(B,α1;R,α2)
in 1-dimension, P = B∪R can be preprocessed into a data structure of size O(n log n) in O(n log n) time
such that given a query interval [i, j], with 1 ≤ i < j ≤ n, it can report the most likely maximal point in
Pi,j in O(log n) time.

Now we present an efficient data structure that can report the window query Q for the most likely
maximal point, where the points (B,α1;R,α2) are in Rd, with d ≥ 1, and Q: Given a query interval
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Fig. 2. An example illustrating the 1-dimensional MLMP query. (a) Points P = (p1, . . . , p10) are on the line.
Each blue (respectively, red) point of P has an existential probability α1 = 0.3 (respectively, α2 = 0.7) associated
with it. (b) Each array cell P̂ [k] stores the x-coordinate value of the point pk. B̂ and R̂ are respectively the
arrays for all blue and red points. (c) Each blue point pb is mapped to a 2-dimensional point (b, B̂[b]). Given a
query interval [2, 6] we first find the red point p5 (Rmax) with the maximum value 6.5 (Vmax). Now we query
the range tree with [2, 6]× [6.5,+∞) and count that there are three blue points p2, p4 and p6 in the query range
with values larger than 6.5. Since 0.7 · (1 − 0.3)3 = 0.24 < 0.3, we report that a blue point p6 (with value 9.5)
to be the MLMP in P2,6 with probability 0.3. Similarly, we can show that for a query interval [5, 9], point p7 is
the Rmax with value Vmax = 7.5. There is exactly on blue point p6 in the query range [5, 9] × [7.5,+∞). Since
0.7 · (1− 0.3) = 0.49 > 0.3, the red point p7 is the MLMP in P5,9 with probability 0.7.

q = [i, j] with 1 ≤ i < j ≤ n, report the most likely maximal point in Pi,j.

Points are in d-dimension. Let A[1 · · ·n] be an array such that A[k] = pk for all k = 1, . . . , n. We
assume that all n points have distinct coordinates in all dimensions. Let D(p; i, j) be the number of
points in D(p) in Pi,j , i.e.,

D(p; i, j) = |D(p) ∩ {pi, pi+1, · · · , pj}|.

By Lemma 1, we have to consider two cases for answering the most likely maximal point query. Either
a blue point that is on the maximal layer of all points in Pi,j can be the most likely maximal point in
Pi,j with probability α1 or a red point in Ri,j with minimum m blue points to its D-region can be the
most likely maximal point in Pi,j with probability α2(1− α1)m. Thus we report the answer to query Q
as max{α1, α2(1− α1)m}.

5



Now we present solutions for the case where the most likely maximal point is a red point. Ob-
serve that if the answer to query Q is a red point with probability α2(1 − α1)m ≥ α1 then m ≤
blog(α2/α1)/ log(1/1−α1)c. Therefore, for a fixed integer λ, with 0 ≤ λ ≤ n, we ask query Q′ as follows.
Given ` and r with 1 ≤ ` ≤ r ≤ n, is there a red point p in A[`, r] for which D(p; `, r) ≤ λ?

We first solve two simpler queries.

1. Q′1: For fixed indices ` and k with 1 ≤ ` ≤ k ≤ n, given an integer r with r ≥ k, is there a red point
p in A[`, · · · , k] for which D(p; `, r) ≤ λ?

2. Q′2: For fixed indices k and r with 1 ≤ k ≤ r ≤ n, given an integer ` with ` ≤ k, is there a red point
p in A[k, · · · , r] for which D(p; `, r) ≤ λ?

Solution for Q′1: Observe that if p is a red point in A[` · · · k] for which D(p; `, k) ≥ λ+ 1, then p does
not satisfy the query Q′1. Therefore, let p be a red point in A[` · · · k] for which D(p; `, k) ≤ λ. We define

rp = max{r : r ≤ n and D(p; `, r) ≤ λ}

i.e., for a fixed `, [`, rp] is the largest query interval for which point p satisfies the query. Note that, we
assume here the maximum of an empty set is max{} = −∞. We also define the following.

R`k = max{rp : p is a red point in A[` · · · k] and D(p; `, k) ≤ λ}

We answer the query as follows. Given an integer r with r ≥ k, if r ≤ R`k then return yes, otherwise
return no. Since we only store the value of R`k for fixed indices ` and k, the total space required is O(1).
We answer the query in O(1) time.

Solution for Q′2: The solution is symmetric to the one discussed above for Q′1. Let p be a red point in
A[k · · · r] for which D(p; k, r) ≤ λ. We define

`p = min{` : ` ≥ 1 and D(p; `, r) ≤ λ}

We assume that minimum of an empty set min{} =∞. We define

Lkr = min{`p : p is a red point in A[k · · · r] and D(p; k, r) ≤ λ}

We answer the query as follows. Given an integer ` with ` ≤ k, if Lkr ≤ ` then return yes, otherwise
return no. For the similar reasoning, both the space and the query bound is O(1).

Answering Q′: We now describe how we answer query Q′ using results of queries Q′1 and Q′2. For all
` = 1, 2, · · · , n, we store the solutions for Q′1 for intervals of width j = 0, 1, · · · , blog(n − ` + 1)c. More
formally, we store the following.

for ` = 1, 2, · · · , n:
for j = 0, 1, · · · , blog(n− `+ 1)c:

store R`,`+2j−1

Similarly, we also store the following.
for r = 1, 2, · · · , n:

for j = 0, 1, · · · , blog rc:
store Lr−2j+1,r

For every point in A[1 · · ·n] we store at most O(log n) many L and R values. Therefore the total
space required is O(n log n). For a given query with integers ` and r, with 1 ≤ ` ≤ r ≤ n, we answer the
query as follows.

1. If ` = r: if p` is a red point then we return yes, else we return no.
2. If ` < r: let h = blog(r− `)c. Observe that {`, `+ 1, · · · , r} = {`, · · · , `+ 2h−1}∪{r−2h+ 1, · · · , r}.

If r ≤ R`,`+2h−1 or Lr−2h+1,r ≤ ` then we return yes, else we return no.
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Algorithm 1: Compute Log Values

Input : An array L[1 . . . n].
1 Initialize ` = 0 and x = 1. //x = 2`.
2 while x ≤ n do
3 for i = x to min(2x− 1, n) do
4 Set L[i] = `. //L[i] = blog ic
5 Set x = 2x.

6 Set ` = `+ 1. // x = 2`

The query Q′ can be answered in O(1) time.
We also present an alternative method for computing blog(r − `)c in O(1) time. We precompute the

values of blog(r − `)c and store them in an array so that the corresponding value can be fetched when
required. Let L[1 . . . n] be an array that is initially empty. We initialize ` = 0 and x = 2`. See Algorithm 1
for details on how to compute L[i] for i = 1, . . . , n.

We summarize the result for querying Q′ in the following theorem.

Theorem 2. Let α1 and α2 be constants with 0 < α1 < α2 < 1, and let λ be a fixed integer with
0 ≤ λ ≤ n. Suppose A[1 · · ·n] is an array such that for k = 1 to n each A[k] is either a blue point with
existential probability α1 or a red point with existential probability α2. A can be preprocessed into a data
structure of size O(n log n) such that given a query interval [`, r] with 1 ≤ ` ≤ r ≤ n, one can report
whether there exists a red point in A[` · · · r] with at most λ blue points in its D-region in O(1) time.

Answering Q: Finally given a query interval [i, j], with 1 ≤ i < j ≤ n, we answer query Q as fol-
lows. Recall that m is a constant with value at most β = blog(α2/α1)/ log(1/(1 − α1))c. We build
our data structures for solving query Q′ for λ = 0, 1, · · · , β. Given a query interval [i, j], we query
these data structures sequentially starting with λ = 0 and onwards. If any of these queries with
0 ≤ λ ≤ blog(α2/α1)/ log(1/1 − α1)c returns yes, then we stop and report that a red point to be
the most likely maximal point with probability α2(1 − α1)λ. Otherwise we report that a blue point is
the most likely maximal point with probability α1. Thus we obtain the following result.

Theorem 3. Let P be a sequence of n points in Rd. Let each point of P be either colored blue or red.
Let B ⊆ P be the set of all blue points and let R ⊆ P be the set of all red points. Let α1 and α2 be
constants with 0 < α1 < α2 < 1. Given an instance of MLMP(B,α1;R,α2), P can be preprocessed into
a data structure of size O(n log n), such that given a query interval [i, j] with 1 ≤ i < j ≤ n, one can
report the most likely maximal point in Pi,j in O(1) time.

2.2 c-colored MLMP

In this section, we generalize our algorithm so that it can answer the c-colored MLMP query defined as
follows. Let α1, . . . , αc be constants, with 0 < α1 < α2 < . . . < αc < 1. Let P = P1 ∪ P2 ∪ . . . ∪ Pc be a
set of n points in Rd, for some fixed d. For i = 1, 2, . . . , c, let all points in Pi be colored by the ith color.
Furthermore, for i = 1, 2, . . . , c, each point in Pi is associated with a probability αi of existence.

We first describe the extension for c = 3. Let α1, α2 and α3 be constants with 0 < α1 < α2 < α3 < 1.
Let P = B ∪ R ∪ G be a subsequence of B blue, R red and G green points, where each blue point
has a probability α1 associated with it, each red point has a probability α2 associated with it and each
green point has a probability α3 associated with it. Let Z be a random subset of P where each blue
(respectively, red and green) point of P is added to Z with probability α1 (respectively, α2 and α3)
independently of other points. For a query window [i, j], we define Pi,j = {pi, . . . , pj}, Bi,j = B ∩ Pi,j ,
Ri,j = R ∩ Pi,j and Gi,j = G ∩ Pi,j . Lemma 1 can be extended as follows.

Lemma 2.

1. A blue point is the answer to our query with probability α1 if it is on the maximal layer of all points
in Pi,j.
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2. A red point p′ is the answer to our query with probability α2(1−α1)m if it is on the maximal layer of
Ri,j such that at most m blue points exist in Bi,j ∩D(p′), with 0 ≤ m ≤ blog(α2/α1)/ log(1/1−α1)c,
and no green points exist in in Gi,j ∩ D(p′).

3. A green point p′′ is the answer to our query with probability α3(1−α1)k(1−α2)` if it is on the maximal
layer of Gi,j such that at most k blue points exist in Bi,j∩D(p′′), with 0 ≤ k ≤ blog(α3/α1)/ log(1/(1−
α1))c, and at most ` red points exist in Ri,j ∩ D(p′′), with 0 ≤ ` ≤ blog(α3/α2)/ log(1/(1− α2))c.

The proof is similar to that of Lemma 1 and hence omitted.

Answering queries: The final answer to our query in this setting can be obtained by computing the
max{α1, α2(1−α1)m, α3(1−α1)k(1−α2)`}. Note that the data structures we presented in the previous
section can answer for the first two cases of Lemma 2.

For case 3, similar to the analysis presented earlier, we can show that if ` = 0 then k ≤ blog(α3/α1)/ log(1/(1−
α1))c and if k = 0 then ` ≤ blog(α3/α2)/ log(1/(1− α2))c. Since α1 < α2, the maximum possible value
of k is larger than the maximum possible value of `. So, a green point pg can be the most likely maximal
point if there are at most λ′ = blog(α3/α1)/ log(1/(1 − α1))c points in D(pg). So we ask this query: ‘Is
there a green point pg with at most λ′ points in D(pg) in Pi,j?’. The data structure for Q′ (see Section 2.1)
can answer this query. Since we assume that all probability values α1, α2 and α3 are constants, we obtain
constant number of pairs (k, `), with k + ` ≤ λ′, to query for case 3. Now we query the data structure
for Q′ with λ = 0, 1, . . . , λ′. As mentioned above, the final answer for the 3-colored MLMP point can
be answered by computing the maximum of all probabilities obtained for all the three cases in constant
time. Total space required is O(n log n) and query can be answered in O(1) time. We can generalize this
to a constant number of colors. The result is summarized as follows.

Theorem 4. For a fixed integer c > 0, let α1, . . . , αc be constant real numbers with 0 < α1 < . . . <
αc < 1. Let P = P1 ∪ P2 ∪ . . . ∪ Pc be a sequence of n stochastic points such that for r = 1, . . . , c, each
r-colored point belongs to Pr and has a probability αr associated with it. P can be preprocessed into a
data structure so that given a query window [i, j], with 1 ≤ i ≤ j ≤ n, it can report the c-colored MLMP
in Pi,j in O(1) time using O(n log n) space.

2.3 Report Pr(pt is on the Maximal Layer in Pi,j)

Let P = (p1, p2, . . . , pn) be a sequence of n points in R2, where for k = 1 to n each point pk ∈ P has
a probability γk ∈ (0, 1] of existence associated with it. In this section we solve the following problem:
‘Given three integers i, j and t, with 1 ≤ i ≤ t ≤ j ≤ n, report the probability that pt is on the maximal
layer in Pi,j).

For k=1 to n, let each point pk be represented as (pk,x1
, pk,x2

), where x1 and x2 are the coordinates
of pk. We build a 3-dimensional range tree T on the points in P , where the first level is on the sequence
of the points 1 . . . n from left to right. At each of the canonical nodes of this tree we build two more levels
based on, respectively, the x1 and the x2 coordinates of the points that are stored in this node. Now at
each canonical node w of the third level of T , we store the probability that none of the points stored in
the subtree Tw exist. We denote this value by ρ(w) =

∏
p`∈Tw

(1 − γ`). The time and space required to

build the range tree T is O(n log2 n) [11].

Answering a query. Given i, j and t, with 1 ≤ i ≤ t ≤ j ≤ n, we want to report the probability of
pt to be on the maximal layer in Pi,j . This requires us to find all points p`, with i ≤ ` ≤ j, such that
p` ∈ D(pt). Recall that D(pt) is the set of points in Pi,j that dominates pt. We obtain the following
lemma.

Lemma 3. Suppose 1 ≤ i ≤ t ≤ j ≤ n. The point pt is on the maximal layer in Pi,j if pt exists and
none of the points p` ∈ D(pt) exist, where i ≤ ` ≤ j.

Therefore, the probability that pt belongs to the maximal layer in Pi,j is the value γt·
∏
p`∈D(pt)

(1−γ`).
To find all points in the D-region of a given point pt = (pt,x1, pt,x2), we query T with [i, j]× [pt,x1,+∞)×
[pt,x2,+∞). As the result, we obtain O(log2 n) number of ρ values from O(log2 n) canonical nodes that

8



1

5 .7

4

3

2

1 2 3 4 5 6 7

.4 .4 .6 .9 .6 .8

.6 .1 .8 .5 .7 .5 .9

.8 .5 .6 .7 .9 .5 .5

.6 .1 .9 .2 .5 .8 .9

.2 .3 .7 .5 .6 .3 .8

1 1 1 1 1 1 1

2 0 2 2 2 2 2

3 1 2 2 3 1 3

2 0 3 0 3 2 4

0 1 1 4 2 1 41

5

4

3

2

1 2 3 4 5 6 7

(a) (b)

Fig. 3. (a) S is a matrix of size 5× 7 and τ = 0.3. (b) The data structure S ′. An example illustrating the query
with indices 1, 7, 1 and 3 (corresponding elements are blue in S and S ′). The range maximum data structure for
row 1 of S ′ returns the maximum value 4, which is greater than 3 − 1 + 1 = 3, so there exists some element (4
& 7) in [1, 7] for which the answer is positive. Whereas, the query with indices 3, 5, 2 and 5 returns a negative
result (highlighted with green). In row 2 of S ′ the maximum valueM(x3,5) = 3, which is less than 5− 2 + 1 = 4.

cover all points in Pi,j . We denote these ρ-values by ρ1, . . . , ρlog2 n. We report γt · (
∏log2 n
m=1 ρm) as the

probability that point pt is on the maximal layer in Pi,j . Therefore, it takes O(log2 n) time to answer a
query. We can generalize this data structure for points in d-dimension, for any fixed d ≥ 2.

Theorem 5. A sequence P = (p1, p2, . . . , pn) of n points in Rd is given, with a fixed d ≥ 2, where
for k = 1 to n each point pk ∈ P has a probability γk ∈ (0, 1] of existence associated with it. P can be
preprocessed into a data structure of size O(n logd n) in O(n logd n) time such that given a query interval
[i, j] and an integer t with i ≤ t ≤ j, the probability that pt to be on the maximal layer of Pi,j can be

reported in O(logd n) time.

3 Most Likely Common Elements

Let S be an m×n matrix in which each entry S[p, i] is a real number αpi ∈ [0, 1]. We want to preprocess
S into a data structure such that for query values p, q, i and j, with 1 ≤ p ≤ q ≤ m and 1 ≤ i ≤ j ≤ n,
it can decide if there exists some integer k (the most likely common element) for which i ≤ k ≤ j and∏q
r=p αrk ≥ τ . We also present a data structure that can report all common elements in the query window.

Preprocessing: Let S ′ be the matrix of size m × n. For p = 1, . . . ,m and for i = 1, . . . , n, we store
S′[p, i] = r − p + 1, where r = max{h :

∏h
`=p α`i ≥ τ}, i.e., the length of the maximum subsequence of

rows such that the product of the entries S[`, i], with p ≤ ` ≤ h, is greater than τ . Fig. 3 illustrates an
example. For i = 1, . . . , n, we scan each column i and find the values of S′[p, i]. See Algorithm 2 for the
preprocessing step. For each row p = 1, . . . ,m, we build the range maximum data structure RMp using
linear space [10], so that for any query interval [i, j], with 1 ≤ i < j ≤ n, it can report the maximum
value stored in S ′[p, i], . . . ,S ′[p, j] in O(1) time. The total preprocessing requires O(mn) time.

To report all common elements that satisfy the condition, we build the data structure described as
follows. For p = 1, . . . ,m and for i = 1, . . . , n, we map the values S ′[p, i] to a point (i,S ′[p, i]) ∈ R2. Let
Xp be the set of points obtained in this way for the row p of S ′. For p = 1, . . . ,m we create a priority
search tree (PST) (see [27]) Tp for the points in Xp. Hence the first level of Tp is based on the values of i.
For each canonical node of this tree, we build a second level on the sorted values of S ′[p, i]. For each row p,
this can be done in O(n log n) time and using O(n) space. So the total space requirement becomes O(mn).

Answering Queries: Given query indices p, q, i and j, we query the range maximum data structureRMp

with interval [i, j]. Suppose we obtain the maximum value and denote it byMp,i,j . IfMp,i,j ≥ q− p+ 1
then there exists at least an element k in [i, j] such that

∏q
r=p αrk ≥ τ . Otherwise the answer is negative.

To report the common elements for the same query indices i, j, p and q, we query Tp using a query range
[i, j] × [q − p + 1,+∞). The output of this query is the set of all those elements k in S[p, i], . . . ,S[q, j]
such that

∏q
r=p αrk ≥ τ . Each query can be answered in O(log n + w) time, where w is the size of the

output. Therefore, we obtain the following.
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Algorithm 2: Compute S ′

Input : A matrix S of size m× n and a fixed value τ ∈ [0, 1]
1 for p = 1 to m do
2 for i = 1 to n do
3 Initialize S ′[p, i] with value −1.

4 for i = 1 to n do
5 Set p← 1 and top← 0.
6 for ` = 1 to m do
7 case ` = 1 : do
8 if S[`, i] < τ then
9 Set S ′[`, i] = 0.

10 else
11 Set p = p ∗ S[`, i].
12 Set top = 1.

13 Set `+ +.

14 case ` ≥ 2 : do
15 if p ∗ S[`, i] ≥ τ then
16 Set p← p ∗ S[`, i] and `+ +.

17 else
18 Set S ′[top, i] = `− top.
19 Set p← (p/S[top, i]).
20 Set top+ +.

Theorem 6. Let S be a matrix of size m × n, where m and n are positive integers. Suppose for
p = 1, . . . ,m and i = 1, . . . , n, each element of S[p, i] is a real number αpi ∈ (0, 1). Let τ be a fixed
threshold in [0, 1]. S can be preprocessed into data structures of size O(mn) so that given query indices
i, j, p and q, with 1 ≤ i < j ≤ n and 1 ≤ p < q ≤ m, it can answer the MLCE queries in O(1) time and
report these common elements in O(log n+ w) time, where w is the size of the output.

3.1 A Special Case

We consider a special case of MLCE problem where S is an m × n matrix and each entry S[p, i] is
αpi ∈ {0, 1} and τ = 1. We want to preprocess S into a data structure such that for query values p, q,
i and j, with 1 ≤ p ≤ q ≤ m and 1 ≤ i ≤ j ≤ n, it can decide if there exists some integer k for which
i ≤ k ≤ j and

∏q
r=p αrk = τ .

We remove all entries of S that contain zero. Let N be the total number of elements in S that have
value 1, that is

∑m
p=1

∑n
i=1 αp,i = N . Fig. 4 illustrates an example. After removal of all zeros the re-

maining elements in S are represented by xk (see Fig. 4(b)), where k represents its original column index.

Preprocessing step: For each p = 1 to m and xk ∈ S[p], we define βp(k) = r − p, where r is the smallest
integer such that r ≥ p + 1 and xk /∈ S[r]. Let S ′ be a matrix of the same size as S. For each row p
and for each xk ∈ S[p], let S ′[p] store the value of βp(k). As before, for each row p of S ′[p] we build the
range maximum data structure RMp so that for any query interval [i, j], with 1 ≤ i < j ≤ |S ′[p]|, it can
report the maximum value stored in S ′[p, i], . . . ,S ′[p, j] in O(1) time using linear space [10]. See Fig. 4(c).

Algorithm for computing βp(k): For each element k ∈ {1, 2, . . . , n}, we maintain an array Xk that con-
tains the sorted indices (in the non-decreasing order) of the rows p such that xk ∈ S[p]. For k = 1 to n,
we scan each element of the array Xk sequentially to find the maximum subsequence of sets that contain
element xk. Then for each of these sets we compute βp(k) according to Algorithm 3. Initialization of m
empty lists S ′[p], with 1 ≤ p ≤ m, (lines 1 and 2) takes O(N) time. From line 3 to 13, every element
of lists X1 . . . Xn is scanned exactly once to find the maximum subsequence of sets as discussed above.
Therefore the total time required for this algorithm is O(N). The total space required for S ′ is also
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S S ′

Fig. 4. (a) A matrix S of size 5 × 9. (b) S after removing all zero’s. (c) The data structure S ′. Suppose, we
query S with query indices 1, 7, 1 and 3. All corresponding elements are highlighted with green. The query range
[1, 7] in S ′ is also highlighted with green. We query the range maximum data structure in S ′[1] for the maximum
element within [1, 7]. Since M(x1,7) = 3 is equal to 3 − 1 + 1 = 3, we answer: Yes, there exists an element x5
such that

∏7
r=1 αr,5 = 1. Similarly the answer to the query with indices 3, 8, 2 and 5 (corresponding elements

are similarly highlighted with blue in S and in S ′) is negative. The maximum value M(x3,8) in S ′[2] is 2 that is
less than 5− 2 + 1 = 4, so there does not exist any element in [3, 8] that satisfies the condition.

Algorithm 3: Compute βp(k)

Input : A matrix S of size N
1 for ` = 1 to m do
2 Initialize empty rows S ′[`] of size |S[`]|
3 for k = 1 to n do
4 for p = 1 to |Xk| do
5 Let z ← Xk[p]
6 Let top← Xk[p]
7 while Xk[p+ 1] == z + 1 do
8 Increase p+ +
9 Increase z + +

10 for ` = top to z do
11 Insert z − `+ 1 to the next empty cell of row S ′[`]
12 Increase `+ +

13 Increase p+ +

∑n
k=1 |Xk| = N . Thus the total space requirement is linear.

Answering queries: The query process is similar to the previous section. Since S ′ is not a matrix in this
case, we use binary searches before querying for the range maximum value. For query indices p, q, i and
j, we query S ′[p] using the interval [i, j] to find the range xi′j′ = xi′ , . . . , xj′ with the smallest index
i′ ≥ i and the largest index j′ ≤ j. We query the range maximum data structure RMp for the maximum
value in the range xi′j′ and follow the same process. The query time is dominated by the binary searches
that require O(logN) time.

Theorem 7. Let S be a matrix of size m × n, where m and n are positive integers. Suppose for
p = 1, . . . ,m and i = 1, . . . , n, each element of S[p, i] is a number αpi ∈ {0, 1} and τ = 1. Let N be the
total number of elements in S that have value 1. S can be preprocessed into data structures of size O(N)
so that given query indices i, j, p and q, with 1 ≤ i < j ≤ n and 1 ≤ p < q ≤ m, it can answer the
MLCE queries in O(logN) time and report these common elements in O(logN +w), where w is the size
of the output.

4 Conclusion

We present data structures to answer two types of window queries for stochastic input sequences. The
first problem is a c-colored most likely maximal point problem (MLMP) where given an instance of
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MLMP(P1, α1;P2, α2; . . . ;Pc, αc), with P = P1 ∪ . . .∪Pc, and a pair of query indices our data structures
can report the most likely maximal point within a query interval in P in O(1) time using O(n log n)
space, where n is the number of points in the input sequence. Secondly, we solve the most likely common
element (MLCE) problem, where a matrix of size m×n, with all entries being real numbers in [0, 1] and
a fixed real number τ in [0, 1] are given. For query indices p, q, i and j, our data structure can decide if
there exists some integer k for which i ≤ k ≤ j and

∏q
r=p αrk ≥ τ in O(1) time using O(mn) space. The

reporting version takes O(log n+ w) time, where w is the size of the output.

The following are natural problems that require further explorations.

Problem 1. Given an instance of (B,α1;R,α2), construct a data structure that can report the most likely
maximal point in a given query interval in logarithmic query time using linear space.

Problem 2.
Given a sequence P = (p1, . . . , pn) of n stochastic points in Rd, with d ≥ 1, such that for k = 1 . . . n,
each point pk exists with probability γk ∈ [0, 1], report the most likely maximal point in a given query
interval.

Problem 3.
Given a sequence of random subsets S1, S1, . . . , Sm of U = {1, . . . , n} and query indices p, q, i and j,
with 1 ≤ p ≤ q ≤ m and 1 ≤ i ≤ j ≤ n, find the element k ∈ {i, . . . , j} that is most likely to be in
Sp ∩ Sp+1 ∩ . . . ,∩Sq.
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