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IMPROVED ROUTING ON THE DELAUNAY TRIANGULATION*

NICOLAS BONICHON', PROSENJIT BOSE?, JEAN-LOU DE CARUFELS, VINCENT
DESPREY, DARRYL HILL!, AND MICHIEL SMID#

Abstract. A geometric graph G = (P, E) is a set of points P in the plane and a set E of edges
between pairs of points, where the weight of an edge is equal to the Euclidean distance between its
two endpoints. In local routing we find a path in G from a source vertex s to a destination vertex ¢,
using only knowledge of the current vertex, its incident edges, and the locations of s and t. We present
an algorithm for local routing on the Delaunay triangulation, and show that it finds a path between a
source vertex s and a target vertex ¢ that is not longer than 3.56|st|, improving the previous bound
of 5.9|st|.

1. Introduction. A Euclidean geometric graph G = (P, F) is a set P of points
embedded in the plane, and a set E of edges, where each e € E is segment joining a
pair of points (u,v) in P, and the weight of e is the Euclidean distance |uv|.

A local routing algorithm A is an algorithm that routes a packet in the geometric
graph G from a source vertex s to a target vertex ¢ using only knowledge of the
locations of s and ¢, as well as the location of the current vertex and its adjacent
vertices. Let P(s, t) be the path found in G from s to ¢ using A. The routing ratio of A
for any two points s and ¢ in the geometric graph G is the ratio of the length of P(s,t)
to the Euclidean distance from s to . An algorithm A has a routing ratio u for a class
of geometric graphs G, if, for any two vertices s and ¢ in G € G, |P(s,t)| < p - |st|.

A graph G = (P, E) is a c-spanner if for any pair of points v and v in P, the
shortest path in G not longer than c|uv|. The value ¢ is referred to as the stretch factor
or spanning ratio of G. The stretch factor of G is thus a lower bound on the routing
ratio of G for any routing algorithm A, and the routing ratio is an upper bound on
the spanning ratio of G. Geometric spanners are described in detail in the book by
Narasimhan and Smid [14].

A notable geometric graph is the Delaunay triangulation. Given a set P of points
in the plane, we construct the Delaunay triangulation of P as follows. For each triple
(p,q,r) of points in P, let C be the unique circle through p, ¢, and r. If there are no
points of P in the interior of C, then we connect p, g, and r by edges to form a triangle.
In this paper we assume that P is in general position: no 3 points are colinar and no
4 points are cocircular.

The Delaunay triangulation was first proven to be a spanner by Dobkin et al. [12],
who showed an upper bound of 5.08 on the spanning ratio. This was subsequently
improved to 2.42 by Keil and Gutwin [13], and then to 1.998 by Xia [15]. Bose et.
al [6] initially showed that nearly all Delaunay triangulations have spanning ratio
greater than 7/2. Xia and Zhang then proved that there exist Delaunay triangulations
with spanning ratio greater than 1.59 [16].
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Bose and Morin [8] explored some of the theoretical limitations of routing, and
provided some of the first deterministic routing algorithms with constant routing ratio
on the Delaunay triangulation. They denoted the spanning ratio found by Dobkin et
al. [12] as cqrs =~ 5.08. They showed that it is possible to locally route on the Delaunay
triangulation with a routing ratio of 9 - cgrs &~ 45.749. Bose et al. [5] further improved
this bound to ~ 15.479. Then, Bonichon et al. [3] showed that we can locally route on
the Delaunay triangulation with a routing ratio of at most 5.9. In the same paper it
was shown that the routing ratio of any deterministic local algorithm is at least 1.70
for the Delaunay triangulation.

Efforts to evaluate the spanning ratio and routing ratio have been made for
Delaunay triangulations defined on other metrics. We can define these metrics by
taking a convex shape and translating and scaling it until it intersects three vertices
but contains no points of P in its interior. When we use a circle we obtain the Lo, or
classical Delaunay triangulation. When the metric is not specified (as in the rest of
this paper), then we are referring to the Lo-Delaunay triangulation. The L;-Delaunay
triangulation uses an axis aligned square, while the L..-Delaunay triangulation uses a
square tipped at 45 degrees. By rotating the point set 45 degrees, it is easy to show the
Ly and L, triangulations are equivalent. Bonichon et al. [4] showed that the L; and

L+ Delaunay triangulations are v/4 + 2v/2 ~ 2.61-spanners, and they showed that
this bound was tight. On this triangulation, Chew [9] proposed a routing algorithm
with routing ratio at most 1/10. Moreover, the routing ratio of any deterministic local
algorithm is at least 2.70 for this class of graphs [1]. The TD-Delaunay triangulation is
constructed using an equilateral triangle. Chew [10] showed that they are 2-spanners
and Bose et al. [7] proposed a routing algorithm with routing ratio 1/5/3 ~ 2.89 and
they show that this ratio is the best possible. Recently Dennis, Perkovic and Duru [11]
showed that the stretch factor of the Delaunay triangulation where the empty circle is
a hexagon is 2 and this is tight.

Table 1.1: Spanning and Routing Ratios of Delaunay Triangulations. Tight results are
shown in bold.

Graph Spanning Ratio Routing Ratio
T D-Delaunay 2 [10] 5/v/3 ~ 2.89 [7]
Ly and L. -Delaunay 4+2y2~261[4] +/10~3.16[9
Hexagon-Delaunay 2 [11]

Lo-Delaunay 1.998 [15] 3.56 (this paper)

In this paper we present a local routing algorithm, called MizedChordArc, for the
Ly-Delaunay triangulation, with a routing ratio of 3.56. This improves the current
best routing ratio of 5.9 [1]. Table 1.1 shows our result in the context of spanning and
routing ratios of other Delaunay triangulations.

In Section 2 we define a local algorithm that achieves this routing ratio. In
Section 3 we first prove the result for a special case, called balanced configurations.
In Section 4 we extend the technique presented in Section 3 to prove the main result
for the general case. In Section 5 we present our conclusions and our ideas for future
directions.
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2. The MixedChordArc Algorithm. Let P be a finite set of points in the
plane, and let DT(P) be the Delaunay triangulation of P. We want to route a packet
between two vertices of P along edges of DT'(P) using only local knowledge and
knowledge of the location of our start and destination vertices.

Let s and ¢ be the start and destination vertices respectively, and assume, without
loss of generality, that s and ¢ are on the z-axis with s to the left of t. Consider two
triangles T and T that have non-empty intersections with st. We say that T is to the
left of T", and T” is to the right of T', if a walk from s to ¢ along st intersects T" before
T.

Let C be a circle that intersects st. We denote by t& the rightmost point of C' on
st. Let w and v be two points on C. We denote by A¢(u,v) the clockwise arc of C
from u to v, and by B¢ (u,v) the counter-clockwise arc of C' from u to v. We denote
the length of a geometric structure S by |S].

Let p # t be the vertex representing the current location of the packet. Let T be
the rightmost triangle with p as a vertex that has a non-empty intersection with st.
Let a # p be the vertex of T' that is above st, and let b # p be the vertex of T that is
below st. Let C be the circumcircle of T. We assume s to be above st, and we assume
t to be on the opposite side of st from the current vertex. This ensures that when ¢ is
a neighbour of the current vertex, the algorithm will forward the packet directly to ¢.

Here is the algorithm MixedChordArc. First assume that p = s. If |Ac(s,t¢)| <
|Bc(s,tc)|, set p = a, otherwise set p = b. See Fig. 2.1a. If p # s, we repeat the
following until p = t.

1. If p is above st:
(a) If [Ac(p, to)| < [pbl + |Be (b tc)l, set p=a
(b) Else set p =10.

2. If p is below st:
(a) If |Bo(p, to)| < |pal + |Ac(a, to)], set p=10
(b) Else set p = a.

The possible choices are illustrated in Fig. 2.1. Let P(s,t) = (s = po,P1,---sPn = 1)
be the sequence of vertices produced by the algorithm. In this paper we prove the
following theorem.

THEOREM 2.1. The MizedChordArc Algorithm finds a path P(s,t) from s tot

whose length |P(s,t)| is not more than u|st|, where p = |/ —=2— < 3.56.

1—sin(1)
We present a complete trace of the algorithm in Fig. A.la of Appendix A. In the
remaining figures of Appendix A, we illustrate the proof of Theorem 2.1 on a complete
example.

In some cases, the path produced by our algorithm is a balanced configuration. In
such cases, the analysis of the length of P(s,t) is much easier. In Section 3 we define
what a balanced configuration is, and analyze the length of P(s,t) for this specific
case. Then, in Section 4, we analyze the length of P(s,t) for the general case.

3. Bounding |P(s,t)| in a Balanced Configuration. Let us consider a path
P(s,t) of vertices such that py = s,p, = t and p;_1p; is an edge of the rightmost
triangle T; of p;_; that has a non-empty intersection with st. Let a; and b; be the other
two vertices of T;, where a; is above st, and b; is below st. Thus p; = a; or p; = b;,
forall 1 <i<n. Let s =pg =ag = by and let t = p,,. Let C; be the circumcircle of

3
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(a) From p = s, the blue (b) From p, the blue path is (c) From p, the blue path is
arc is shorter than the red shorter than the red path, shorter than the red path,
arc, so we forward to a. so we forward to a. so we forward to a.

Figure 2.1: Illustrating one step of the algorithm.

p1,a1

90, Po; to, s bs, ps, ts, t

b1,b2,b3,q1, g2, q3

as

Figure 3.1: Sequence of circles in a balanced configuration and the path in blue. The
dotted circles are circumcircles of triangles intersected by st but not in 7.

T;, let r; be its radius and let ¢; be its center. Let Cy be the circle centered at s with
radius 9 = 0. Let T = (Th, T3, ..., Tp), and let C = (Cy, C1, ..., Cy,) be the sequence of
circles starting at Cy, followed by the circumcircles of 7. Note that the vertex of T;
that is on the opposite side of st to p;—; may not be at the intersection of C;_; and
C; because we always consider the rightmost triangle at each step. Thus we define a
second intersection point of C;_1 and C; as follows (p;—1 being one intersection point).
If p;_1 is above st, then ¢; is the lowest intersection of C; and C;_1. If p;_ is below
st, let g; be the highest intersection of C;_; and C;. Observe that if T; and T;_; share
an edge, then ¢; is the vertex of T; on the opposite side of st from p;_;. See Fig. 3.1.
To simplify the notation, we write ¢; instead of t¢,, and we write A;(u, v) and B;(u, v)
instead of A¢, (u,v) and Be, (u,v), respectively.

We say that a pair of consecutive circles C;_1 and C; is balanced if |A;(p;—1,t;)| =
Ipi—1¢i| + |Bi(qi, ;)| when p;_1 is above st, and if [Bi(pi—1,t:)| = |pi—14i| + | Ai(qs, t3)]
when p;_; is below st. A path P(s,t) on a point set P is a balanced configuration
when C;_1 and C; are balanced for all 1 <1 < n.

4
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3.1. Analysis Technique.
LEMMA 3.1. Let C;_1 and C; be arbitrary circles of C, where 1 < i < n. Then

L |pi—1bi| + [Bi(bis ti)| < |pi—1Gil + |Bi(qi, ti)| when p;—1 is above st, and
2. |pi—1ai| + |Ai(ai, )| < [pi—1¢i] + | Ai(gi, ti)| when p;—y is below st.

Proof. By the triangle inequality we have |p;—1b;| < |pi—1¢:| + |Bi(q:, b;)|, from
which 1 follows. Case 2 is symmetric. O

For the rest of this section, we assume that P(s,t) is a balanced configuration.
Consider the case when p;_1 is above st (the case when p;_; is below st is symmetric).
If ¢; = b; then IAi(pi—la ti)| = |pi—1bi‘ + ‘Bz(b“ ti)|, and the algorithm proceeds to a;. If
qi # b;, observe that |p;—1b;| < |pi—1qi|+|Bi(q:, b;)| by the triangle inequality (see circles
C4 and C5 in Flg 31) Thus we have |p2,1bl| + |B74(bz,tl)‘ < |p74,1q1| + |Bz(Qz,tz)| =
|A;i(pi—1,t;)|, and the algorithm proceeds to b;. Thus a balanced configuration allows
for steps that cross st and steps that do not cross st. It also allows us to use | A;(p;—1, ;)]
as an upper bound on |p;—1b;| + |B;(b;, t;)| in the case where p;_1p; crosses st.

Let z(v) and y(v) be the z and y-coordinates of a point v, respectively. Let s; be
a point on st such that x(s;) = z(t;) — 2r;. We define the following potential function
that we use to bound the length of P(s,t).

DEFINITION 3.2. If p;_1 is above st, then
O(Ci—1,Cs) = |Ai(pi—1,ts)| = [Aic1(pic1ti—1)| — Msi—18s| — (10— N)|ti—1ts].
Otherwise, if p;—1 is below st, then

O(Ci—1,C;) = |Bi(pi—1,ti)| — |Bici(pi—1ti—1)| — Asi—18i| — (0 — N |ti—1ti],

where A = (1'::;?1()1) —7/2 — 1) /2~ 0.42 (see (C.11) in Lemma C./, Appendiz

C.2.3) and p = 1/% < 3.56 (see (C.10) in Lemma C.3, Appendiz C.2.3).

See Fig. 3.1 and 3.2 for a complete example and an illustration of the potential
functions. See Fig. 3.3 for an illustration of ®(C;_1,C;). Three lemmas are used to
prove Theorem 2.1 for balanced configurations. The proof of Lemma 3.3 is found in
Section 3.3 while the proof of Lemma 3.4 is in Section 3.2.

LEMMA 3.3. Giwen a pair of balanced circles C;_1 and C;,

®(Ci—1,C;) <0.

LEMMA 3.4. For any balanced configuration P(s,t), > i [si—1s;| < |st].

LEMMA 3.5. For any C, Y., |ti—1ts| <|st|.

Proof. We have tg = s and t,, = t. We claim that xz(t;—1) < z(¢;) for all 1 <i <mn.
If this is true, the lemma follows. We prove the claim by contradiction. Assume that
x(ti—1) > x(t;). If ¢; is to the same side of st as p;_1, then C;_; must contain the
vertex of T; on the opposite side of st. If ¢; is on the opposite side of st as p;_1, then
C;_1 contains the vertex of T; on the same side of st as p;_1. Both cases contradict
the construction of a Delaunay triangulation. ]

LEMMA 3.6. For 1 <1 <mn, if pj_1 is above st, then

5
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580,81, to

Figure 3.2: Potential functions of a balanced configuration.

173 L. (a) [Ai(pi-1, )| > |[pi—1pi| + [Ai(pi, ti)| if pi is above st, and

174 (b) | Ai(piz1,ti)| > |pi—1pi| + |Bi(pi, t:)| if pi is below st

175 otherwise p;_1 is below st and

176 2. (a) |Bi(pi—1,t:)| > |pi—1pil + |Bi(pi, ti)| if pi is below st, and

177 (b) [Bi(pi-1,t:)| > [pi—1pi| + [Ai(pi, t:)| if pi is above st.

178 Proof. Case 1a is because |A;(pi—1,pi)| > |pi—1pi|, and Case 1b is because if p; is

179 below st, then the algorithm chose to cross st, which implies 1b. Case 2 is symmetric.0

180 Theorem 2.1 follows from Lemmas 3.3, 3.4, 3.5, and 3.6:

Proof. We first analyze the case when p;_; is above st. Recall that in this case,
O(C;-1,C;) is defined as

O(Ci—1,C;) = |Ai(pi—1,ti)| — |Aic1(Pi—1tiz1)| — Alsi—isi] — (e — A)|ti—1ts].

181 If p; is above st (same side of st as p;—1), then |A;(pi—1,t:)| > |pi—1pi| + |A¢(pi,tl-)|
182 by Lemma 3.6. In this case, let Z; = A;(p;,t;). If p; is below st, then |A;(p;—1,t;)] >
183 |pi—1pi| + |Bi(pi, t;)| by Lemma 3.6. In this case,]l et 9; = B; (pl, t;). In both cases we
184 have [Ai(pi—1,t:)| > |pi—1pi| + %l

Let ®'(C;_1,C;) be the function defined by

'(Ciz1, Ci) = picpil + |Zil = |Zi1| = Alsicisil — (n — N[ti1tal.

185  Observe that ®'(C;
186 thus ®'(Ci—1,C;)
187 that ®'(C;—1,C;)

~1,C;) < ®(C;-1,C;). Lemma 3.3 tells us that ®(C;_1,C;) <
0. When p;_; is below st, a symmetric proof again shows us
0.

<
< Recall that pg = tg = s, and p, = t, = ¢, which means

6
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Figure 3.3: ®(C;_1,C}).

|Z0| = |Zn| = 0. Therefore we have

n

Z(I)/(Ci—laci) <0
i=1
from which we get:

> (picapil + 125 = 12i1]) < (Alsicasil + (= Nti-1til)
i=1 i=1
(3.1) [P (s, )l =1%ol + |Zn| < (A4 1= A)lst]
[P (s, )] < plst].
The right hand side of (3.1) is due to Lemmas 3.4 and 3.5. d

Lemma 3.4 is discussed in the next section. Lemma 3.3 is discussed in Section 3.3.

3.2. Proof of Lemma 3.4. Lemma 3.4 uses the following supporting result:

LEMMA 3.7. Let C;_1 and C; be balanced. Let s;_1 be the point on st where
x(8i—1) = x(t;—1) — 2r;—1 and let s; be the point on st where x(s;) = x(t;) — 2r;. Then
x(si—1) < x(sy).

Proof. See Fig. 3.4. Let u;_1 be the point on C;_; that is diametrically opposed
to t;—1 and let u; be the point on C; that is diametrically opposed to t;. We will show
the case when p;_; is above st; the case when it is below st is symmetric. Since C;_1
and C; are balanced, we have that |A;(p;—1, ;)| = |pi—14i| + |Bi(gi, t;)| which implies
that |A1(p74,1,t1)| S r; and |Bz(q7,7 )| < ;. Since |Al(u“tl)| = |Bl(u1,t2)| = 7Ty,
u; is not on the open interval A;(p;—1,t;) or B;(qi,t;), which implies that either wu; is
to the left of p;_1¢q;, or u; = p;_1 = ¢;, which implies that u; is on or inside C;_1.

Let O; be the circle centered at ¢; with radius |t;u;| = 2r;. Thus O; and C; are
tangent at u;, and O; intersects st at s;. Let O;_1 be the circle centered at ¢;_; with
radius 2r;_1. Thus O;_; and C;_; are tangent at u;_1, and O;_1 intersects st at s;_1.

We prove the lemma by contradiction, thus assume that z(s;) < z(s;—1). In the
proof of Lemma 3.5, we showed that x(t;) > z(t;—1). Therefore, it must be that O;_1
is in the interior of Ol, and thus they do not intersect. Since u; is on or inside C;_1,

7
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Figure 3.4: O; must intersect O;_; if C;_1 and C; are path balanced, which implies
that z(s;—1) < z(s;).

Ci1

Ai(pi-1,ts)

Figure 3.5: Coordinate system for analyzing ®(C;_1, C;).

214 and O; intersects u;, O; must intersect C;_1. But C;_; is contained in O;_; except
215 for the point u;_1, and O;_1 is contained in O;, and thus O; cannot intersect C;_1,

216 which is a contradiction. See Fig. 3.4. a

217 We can now prove Lemma 3.4:

218 Proof of Lemma 3.4. Follows from Lemma 3.7 and the fact that z(sg) = x(s) and

219 x(sy) < x(t). O
8
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3.3. Proof of Lemma 3.3. To show that ®(C;_1,C;) < 0 when C;_; and C;
are balanced, we set up the following coordinate system. We show the proof for the
case when p; 1 is above st; the case when p;_1 is below st is symmetric. Let ¢;_; and
¢; lie along the z-axis, and let p;_1 and g¢; lie along the y-axis. See Fig. 3.5. Lemma
3.3 follows from the following two lemmas:

LEMMA 3.8. When C;—1 and C; are balanced, if y(t;—1) <0, then ®(C;_1,C;) < 0.
LEMMA 3.9. When C;—1 and C; are balanced, if y(t;—1) > 0, then ®(C;_1,C;) < 0.

The main tool to prove these two lemmas is the following transformation, which
is similar to a transformation used by Xia [15].

TRANSFORMATION 3.10. Fiz p;_1 and q;, and translate c; to the left along the
x-axis until ¢; = ¢;_1. Moreover keep C;_1 unchanged and maintain C; as the circle
with center ¢; with p;_1 on its boundary.

Observe that, after we have completed Transformation 3.10, we have C; = C;_1
and thus ®(C;_1,C;) = 0. If we can show that ®(C;_1,C;) is increasing while z(c;)
decreases, then it must be that ®(C;_;1,C;) < 0 before Transformation 3.10. Thus
we wish to find the change in ®(C;_1, C;) with respect to the change in z(¢;) during
Transformation 3.10. Formally:

LEmMA 3.11. If %}BC") < 0 during Transformation 3.10, then ®(C;—1,C;) <

Proof. At the end of Transformation 3.10 we have that ®(C;_1,C;) = 0. If
% < 0 then ®(C;_1,C;) is not decreasing during Transformation 3.10, and

thus ®(C;_1, C;) < 0 before Transformation 3.10. O

The analysis of this function is similar to Xia’s approach[15]. Full details of this
analysis and the proofs for Lemmas 3.8 and 3.9 can be found in Appendix C.

4. Bounding P(s,t) in the General Case. In Section 3, we proved Theorem
2.1 for the case when the path produced by our algorithm results in a balanced
configuration. In this section, we prove Theorem 2.1 for the general case. Given a
sequence C of circles that intersect st, no series of transformations were found that
could achieve a balanced configuration, while simultaneously providing a provable
upper bound on the length of |p;_1,p;|. However, we were able to find two sequences of
circles to substitute for C. To represent each C; in C, we have a potential circle CE and
a bounding circle CP. Like C;, both CF’ and CP have t; as their rightmost intersection
with st. However, C; intersects both p; and p;_1, while CiB is only required to intersect
pi—1, and CF is only required to intersect p;. If we look at a bounding circle C¥ and
the previous potential circle C£ |, which intersect at p;_1, they are balanced, and
we can thus apply the function ®(CF |, CB) to relate the lengths of the arcs of these
circles to |st|. Finally, when analyzed properly, they provide an upper bound on the
length |p;p;—1].

Formally, let CF be the circle centered at s = py with radius rf’ = 0, and let
CYF be the circle centered at t with radius 7 = 0. Assuming we have defined CF |,
we will define CP and CF. If p;_; is above st, let CZ be the circle through p;_;
and ¢; for which [Ags (pi—1,t:)| = |pi-1¢i| + |Ber(¢;, )|, where g; is the bottommost
intersection of Cf | and CP. If p;_; is below st, let CZ be the circle through p;_;
and t; for which [Bes (pi-1,t:)| = |pi-1g;| + [Acz(g;, ti)], where ¢; is the topmost

9
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(a) The triangles and the respective circumcircles of a Delaunay triangulation intersected by
st, as well as the path P(s,t) found by the algorithm.

AB (p1, 1)

B (ps, ta)

(b) The complete set of bounding arcs and potential arcs.

Figure 4.1: The construction of the potential circles and bounding circles in the general
case.

intersection of CF | and CP. That is, C£ ; and CP are balanced. Let rZ be the radius
of CB. The potential circle CF is the circle through p;, whose rightmost intersection
with st is ¢;, and whose radius is given by rf = min{r;,r?} (with the exception of
rP =0). Let s’ be the point on st with x(s’) = 2(t;) — 2rF, and let s? be the point
on st with z(s2) = x(t;) — 2rE.

To simplify notation, for points u and v on CF, instead of writing .Acf (u,v)
and Bgr (u,v) to indicate clockwise and counter-clockwise arcs of CF from u to v,
respectively, we write AL (u,v) and B (u,v). Likewise, for points u and v on CZ,
instead of writing Acz (u,v) and Bes (u, v), we write AB (u,v) and BE (u,v).

See Figs. 4.1a and 4.1 for an example of the initial sequences 7 and C and the
resulting bounding and potential arcs that we are interested in. See Appendix A for a
series of diagrams walking through a complete example.

10
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Since CF | and CP are balanced, ® can be extended to C£ | and C¥, and thus
we have

(CL,,CP) = [ AP (i1, ti)| = AL (pi1s ti1)| = AlsfZysP| — pltiats]
when p;_1 is above st and

O(Cl 1, CP) = |BP (piz1,ti)| — IBL 1 (pic1, tic1)| — Alsi 8P| — plti—ats]

276 when p;_1 is below st. Lemma 3.3 tells us that ®(CZ ;,C2) < 0. To prove Theorem 2.1
277 in the general case, it is sufficient to prove the following two lemmas. Lemma 4.1 is a
278 generalization of Lemma 3.4, whereas Lemma 4.2 is a generalization of Lemma 3.6.
279 LeEMMA 4.1. 00 |sF sB| < |st|.
280 Proof. Since Cilil and CP are balanced7 Lemma 3.7 tells us that z(sZ ;) < x(sP).
281 We know that z(s¥) = z(t;) — 2rf and z(sP) = z(t;) — 2r2, thus the fact that
282 rf = min{r;, 78} 1mphes that z(sP) < z(sF). Thus \5%15?| § |sF 18P, and it is
283 Sufﬁ(nent to show that Y ., |sz_151 | < |st|. The fact that (s’ ) < z(sP) implies
284 that x(sf” ;) < z(sF), and CF is the circle centered at s with radius 0, and thus
285 s’ = s. Since z(s 5) < x(t), this completes the proof. 0
286 Due to space constraints, the following lemma will be proved in Appendix B.
287 LEMMA 4.2. For 1 <i<mn, if pj_1 is above st, then
288 Lo (a) |AP(pi-1,ti)| > |pieapil + [A] (pi,ti)| if ps is above st, and
289 (b) AP (pi—1,t:)| = [pi—1pi| + |BF (pis ti)] if pi is below st
290 otherwise p;_1 s below st and
291 2. (a) |BB(pi_1,t:)| > |pic1pi| + |BP(pZ, t;)| if pi is below st, and
292 () 1BB(pi-1,t:i)| > |pi—1pil + | AL (pi, ti)| if pi is above st.
293  Theorem 2.1 follows from Lemmas 3.3, 3.5, 4.1, and 4.2.
294 Proof of Theorem 2.1. If p; is above st, let 2F = AP(pz,t,). If p; is below st,
205 let 9P = B (pi.ts). Let ®'(CF,.CP) = [pimpil +197| — |27 1| = Ms? ysP| — (u
296 )\tl 1t;|. Lemmas 4.2 and 3.3 imply that ®'(CF |, CB) < <I>(CZ 1,CP) <0. Using
207 ®'(CE |, CB) we get:
298 Z ' (Ci—1,C;) <0

n n
200 S (Ipicamil 1271 = 12741) < SO(AsP 452+ (1 — Mlti1ti)

i=1 i=1
300 (4.1) [P(s, )| — 28|+ |2F| < A+ — N)|st]
i [Ps, 0] < plst].
303 Line (4.1) follows from Lemmas 3.5 and 4.1. o
304 We give some insight into the selection of 7f. Assume that p;_; is above st (when
305 p;—1 is below st the explanation is symmetric).
306 The purpose of |AZ(p;_1,t;)| is to bound |p;_1pi| + |AF (pi,t;)], as expressed
307 in Lemma 4.2. This lemma is also the reason for selecting the radius of C{ as
308 P = min{r;,rB}. Tt would be simpler to let rf’ = rZ, since then we would have
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324
325
326

327

328
329
330
331
332
333
334
335
336

337

ti ti
or
[

ai, pi
Pi-1 Pi-1f AP (pi_y,t;) AL (pisti)
er, e |
cP

cr

(a) Ci—1,Ci, and CF 4. (b) CF and its intersection (c) AP (pi—1,ts)| <
Notice that 7 ; > r;_1. with CF ;. Ipi—1,pi| + |AF (i, t:)].

Figure 4.2: The reasoning behind rf = min{r;,7%}. In this diagram, ¥ > r,,
and we show why it is detrimental to our analysis. Notice that |AP(p;_1,t;)| <
Ipi—1,pi| + |AF (pi, t;)|. Thus the arc AB(p;_1,t;) of the bounding circle is not long
enough to pay for |p;_1,p;| + |AF (pi, t:)] -

sP’ = sP. However, if we allow 7/ > r;, it can happen that the arc |AZ, (p;,ti41)| on
the next bounding circle is not large enough to cover |p;p; 41| + [AL 1 (pit1,ti1)]. See
Fig. 4.2. Thus Lemma 4.2 would not hold. To account for this, we ensure that C¥

has radius at most r;.

P B
5

5. Conclusion and Future Work. Consider the algorithm presented in Sec-
tion 2, along with two variations. To keep the algorithms simple, assume we are at a
vertex p above st. Otherwise all assumptions are the same as in Section 2.

e BestChord: If |pa| + |Ac(a,tc)| < |pb| + |Ac(b,tc)| then p = a else p = b.
e MixedChordArc: If |Ac(p, to)| < |pb| + |Ac (b, tc)| then p = a else p = b.
e MinArc: If |[Ac(p,tc)| < 7mr then p = a else p = b.

The algorithm presented in this paper is MizedChordArc. Following the tech-
niques used in [1] we show that the routing ratio of MinArc is between 3.20 and 3.96.
Since the routing ratio of 3.56 of MixedChordArc is better the details of MinArc
analysis are left in Appendix D.

We suspect that BestChord is an improvement on MizedChordArc. It seems
plausible that we can modify the proofs presented in this paper to obtain the
same upper bound for BestChord as for MixedChordArc, but for now that remains
unverified. Whether or not BestC'hord is asymptotically superior to MizedChordArc,
or whether they are asymptotically the same is still unknown.

Although we have improved the upper bound of the routing ratio on the Lo-
Delaunay triangulation, it is not clear how tight our analysis is. The upper bound on
the analysis is where our potential function is the weakest. A more clever potential
function could lower the routing ratio using a comparable analysis. Or perhaps one of
the algorithms above would respond to a completely different style of analysis.

Furthermore, the lower bound on MizedChordArc is still the same as the lower
bound on routing on the Lo-Delaunay triangulation in general, which is approximately
1.70 [1]. So it seems there is still much room for improvement. The question remains,
what other algorithms or analysis can we use to improve the routing ratio of the
Delaunay triangulation? And given that the upper and lower bounds on the spanning

12
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338
339

ratio of the Lo-Delaunay triangulation are 1.998 [15] and 1.5932 [16] respectively, is
there a separation of the spanning and routing ratios of the Delaunay triangulation?

(4]

(6]

(8]
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100 Appendix A. A Trace of MixedChordArc and an Illustration of the
401 Proof of Theorem 2.1.

402 In these figures we illustrate the proof of Theorem 2.1.

403 Figure A.la illustrates the triangles and their respective circumcircles of the
104 Delaunay triangulation intersected by st, as well as the path P(s,t). In figure A.1b,
405 recall that C¥ is the circle centered at s with radius rf = 0. We see that C7 is the circle
406 through ¢; that is balanced with respect to C{, i.e., | AP (po,t1)| = |[BE (b} = po,t1)| =

407 mrB.

s t

(a) T,C, and P(s,t).
AP (po, t1) °
P1y
5,10, 40 t J t
8\ B taht) )
(b) CF and CF are balanced.

Figure A.1: Initial configuration and construction of C¥ given CF.

408 In Figure A.2a we see C¥ through p; and t; with radius ¥ = r£ < r,. In this

109 example it is clear that [A (po,t1)| > |pop1| + AT (p1,t1)| since they are both convex
110 and AP (pg,t1) contains pop; + AL (p1,t1).
15
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414
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416
417
418
419
120
421
422
423
424
425

426

AP (po, 1) °

PN AL (1. 11)

S, 81, Po ty o t

(a) Cf with radius ¥ = r£.

Figure A.2

In Figure A.3a, CF is balanced with respect to Cf, that is, |AP(p1,t2)| =
Ip1gb| + |BE (gh,t2)|. If Figure A.3b we show the placement of C¥ .

In Figure A.3c, CP is balanced with CZ’, but note that this time r£ > r3. Thus
in Figure A.4a, we note that r{ = r3 < 7£, and therefore CI = Cs.

In Figure A.4b, CP is balanced with C{’, with ps3 is under st, thus |BZ (ps,t4)| =
Ipady| + |AZ(dy,t1)|. In Figure A.dc, psps and AL (py,ts) are not convex. Thus
|BE (ps, ta)| = |p3di| + |AZ(d}, ta)| > |pspa| + | AL (pa,ta)| is proven by other means.
See Appendix B.

In Figures A.5a and A.5b, the path of psqi and BZ (g}, t5) does not contain the
path of pyps and BE (ps, ts), thus we cannot use a simple proof to show |AZ (p4,t5)| =
pags| + [BF (g5, t5) = |paps| + |BS (s, t5)|. See Appendix B.

In Figure A.5c, note that ps = g5. Thus CF being balanced with C¥ implies
that |AZ (ps,te)| = |BE (ps = gi,te)|. Since pg = t, CL is the circle centered at t with
radius rf = 0, and thus degenerate.

In Figure A.6a, we see the arcs in ®(CL ,,CP), for all 0 < i < 6. For example,
(CL,CF) = A7 (p1, t2)| — 21 — Als{'s3| — (@ = N|tata].

16
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A (p1,t2)

(a) C# is balanced with CT .

AB (p1,t2)

AZ (p2:ta

(b) C¥ with radius r§ = 7.

py AT (p2,ts)

17
(c) CF is balanced with C4.

Figure A.3
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(a) Since r3 < ¥, we set r¥ = r3, and thus C¥ = Cs.

BE (ps, ta)

(b) CF is balanced with C% .

(c) Cf with radius r§ = 7.

Figuts A.4
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Appendix B. Proof of Lemma 4.2.

We will prove part 1 of Lemma 4.2; the proof of part 2 is symmetric. Thus we
assume that p;_1 is above st. Let C be any circle with p;_; and t;_; on its boundary.
Let C’ be any circle with p; 1 and ¢; on its boundary. Let ¢ be the lowest intersection
point of C and C’.

Of the following two paths from p;_1 to t;, |pi—1q|+|Bc/(q,t:)| and |Acr (pi—1,t:)],
let Ps(C,C") be the shorter and let P, (C,C’) be the longer. If the paths have equal
length label both paths Ps(C, C").

LEMMA B.1. Let C be a fixed circle with p;—1 and t;—1 on its boundary. Of all
circles C' with p;—1 and t; on its boundary, |Ps(C,C")| is mazimized when C' and C’
are balanced.

Proof. Note that Ps(C,C") and P.(C,C") are both convex. We prove the lemma
by contradiction. Let C’ be the circle through p; 1 and t; such that C' and C’ are
balanced. Let C” be a circle through p;_; and ¢; such that |Ps(C,C")| > |Ps(C,C")|.
Since C’ and C"” intersect in p;_1 and ¢;, the part of C’ on one side of p;_1t; is contained
in C”, and the part of C’ to the other side of p;_1t; contains C”. Consider the path
Ps(C,C") to the side of p;_1t; where C’ contains C”. Observe that Ps(C,C") is convex
and either contains Ps(C,C") or P, (C,C"). In either case, |Ps(C,C")| > |Ps(C,C")],
a contradiction. See Fig. B.1. O

Recall that in this section, p;_; is assumed to be above st. Therefore ¢; denotes
the lowest intersection point of C;_; and C;. Let ¢; be the lowest intersection point of
CF | and C;. Then we have the following lemma.

LEMMA B.2. |pi—1qi| + |Bi(qi, t:)| < |pic1@| + |1Bi(i, ts)].

Proof. Let l; be the leftmost intersection of C; with st. We know ¢; is on the
opposite side of st as p;_1. If ¢; is on the same side of st as p;_1, then it must be on
the arc B;(p;—1,1;) (by construction), thus ¢; is on B;(g;, t;), and the lemma is true by
the triangle inequality.

Assume that ; is below st. If r” |, = 7,1, then CF' |, = C;_; and @ = ¢;, from
which the inequality becomes trivial. Assume that rZ ;| = min{r; 1,72} =72, <
Ti—1-

Since CiP_1 and C;_ intersect p;_1 and ¢;_1, and since rﬁl < ri_1, the convex
hull of AZ | (p;_1,t;—1) contains the convex hull of A;_1(p;—1,t;—1). That means that
the part of CL | to the left of p;_1#;_; is contained in C;_;. Therefore g; is on B;(q;, t;),
and thus |p;—1q;| < |pi—1Gi| + |Bi(@i, ¢;)| by the triangle inequality, which implies the
lemma. 0

LEMMA B.3. |pi—1pi| + %] < |Ps(Ci—1,Ci)| < |Ps(CE1,C)| < |AB(pi-1,ti)|.

Proof. For the first inequality, we consider two cases: Either p; is above st,
or p; is below st. If p; is above st, then the path does not cross st, therefore
[pi—1pi| + |Zi| = [pi—1pil + | Ai(pi, ti)| < |Ai(pi-1,t:)| = [Ps(Ci—1, C;)| by the triangle
inequality. If p; is below st, then the path does cross st, therefore |p;_1p;| + |%;| =
[pi—1pil + [Bilpi, t:)] < min{|Ai(pi—1, )], [pi-16i| + [Bi(ai, t:)|} = [Ps(Ci-1,C3)| by
the triangle inequality.
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By Lemma B.2, we have

[Ps(Ci-1,Ci)| = min{|A;(pi—1, )|, [Pi—14:] + |Bi(gi, i) [}
< min{[As(pi 1, )l [pi 1@+ [Bi(@ )}
=|Ps(CL41,Ci)l.
For the last inequality, |Ps(CL ;, C;)| is equal to the smallest of |p;—1i|+|Bi(a, ;)|
and |Ai(pi-1,t;)]. Therefore, [Ps(C{",Ci)| < [Ps(C{,CF)| = |AP (pi-1.ti)| by
Lemma B.1, since C¥ ; and C¥ are balanced. This proves the lemma. d

Proof of Lemma /.2. Assume that p;_1 is above st. We have to prove that
(B.1) |AP (pi-1,t:)| > [pi1pil + | 2]

If 1P =r; < rP, then CF = C;, and the right-hand side of (B.1) is equal to |p;_1p;| +
|2;|. Lemma 4.2 then follows from Lemma B.3. Otherwise 7 = min{r;, 72} =B < r,.
We consider two cases:

1. |Al(p1,1,tl)| < 7r; and
2. |.Ai(pi,1,ti)| > ;.
Note that if | A4;(p;i—1,t;)| = 7r;, then r; is the smallest radius of any circle through
p;_1 and t;, and thus TZ-B > r;. Thus these two cases cover all possibilities.

OBSERVATION B.4. We have the following two inequalities

(B.2 [pi—1ti| > |pits| and
(B.3) | Ai(piz1,t:)| > |pi—ipil + |2

Given a circle C' and two points u and v on C, let ' (u,v) be the shorter of the
two arcs Ac(u,v) and Be(u,v). For a given radius r, let

Z(r) = |Te(pi-1,ti)| = [pi—1pi| — [T (ps, i),

where C (respectively C”) is any circle with radius r, and with p;_; (respectively p;)
and t; on its boundary'. Since 7’ = rZ, we need to show that Z(rf’) > 0.

Let us consider Case 1. Observe that in Z(r;), C = C’ = C; since p;_1,p;, and
t; all belong to C;. Therefore, by (B.3) and the definition of Z;, we have Z(r;) > 0.
Thus, if we can prove that Z(r) never decreases as r goes from r; down to 7 B

i =T

we are done. Hence, we want to show that diff) < 0. In other words, we want to show
dlc(pi-1,t:)| _ diTcr(pi, i)
B4 < .
(B-4) dr - dr

Let « be the angle at the center of C subtended by T'c(pi—1,t;), and let 8 be the
angle at the center of C’ subtended by T'c:(p;,t;). By (B.2) we have a > 3. Note that
IT'c(pi—1,ti)| = ar, and |T'cr(ps, ti)| = Br. Since they are both linear in r, if we prove

da<@

B. —_
(B-5) dr — dr’

INotice that Z(r) is defined for all r > |p;_1t;|/2.
20
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we have proven (B.4). We have sin(a/2) = %, thus a = 2arcsin (%)

Therefore
do |pi—1ti] [piti _dapg

2) 2 17(\171'751‘\)2 dr

2r

T i ()

2r

@IA

which proves Case 1.

Let us consider Case 2. Since |A;(pi—1,t;)| > 7r;, it must be that |[p;_1b;| +
|B:(bi,t;)| < |Ai(pi—1,ti)|, and the algorithm crossed st at p;—; (and thus p; =
bl) Note that wr; > |Bz(p1717tz)‘ > |p1,1bz| + |Bl(bl,tl)| = |p171p1‘ + |@Z| Thus
|Bi(pi—1,ti)| — |pi—1p:i| — |Bi(pi, t:)| = Z(r;) > 0, and we apply the same argument as
above to show that Z(rf) > 0.

Appendix C. Proofs of Lemmas 3.8 and 3.9 - Analyzing ®(C;_1,C}).

In this section, we want to prove Lemmas 3.8 and 3.9. In other words, we wish to
show ®(C;_1,C;) < 0, where

(C1)  ®(Ci—1,Cy) =lAi(pim1,ti)| — |Aic1(Pim1,ti) | — Alsicass| — (u — A)|ti—1ts]
when p;_; is above st, and

(C.2)  ®(Ci—1,C;) =|Bi(pi—1,ti)| — |Bic1(pi—1,t:)| — Alsi—18i| — (10— N)[ti—1ts]
when p;_1 is below st.

Since these two cases are symmetric, for the remainder of the proof, we assume that
pi—1 is above st, thus we focus on proving (C.1).

We can rewrite —\|s;_1s;| as

7)\|Si,181" = 7)\(.%(81) - .’E(Sifl))
= —A(lﬁ(ti) — 2’!‘1' — JL‘(ti_l) + 27‘1;_1)
= —)\|ti_1ti‘ — 2)\(7‘i_1 — Ti).

Thus we can rewrite ®(C;_1,C;) as

O(Ci—1,Ci) = |Ai(piz1,ti)| — |Aic1(Pic1, tic1)| — 2\ (rim1 — 73) — pltizats].

Recall that Lemmas 3.8 and 3.9 were introduced in Section 3.3, where we assumed
that ¢;—1 and ¢; lie on the z-axis, with x(¢;) > x(¢;—1), and p;—; and ¢; lie on the
y-axis. Therefore z(p;—1) = x(¢;) = 0.

The following lemma is a useful result.

LemMmA C.1. Let us fix C;_1, C;, pi—1 and t;. Consider all line segments st such
that t; is on st, st intersects C;_1, and c;—1 is on or above st. Among all such line
segments st, ®(C;_1,C;) is maximized when ¢;_y is on st.

Proof. Consider the case where ¢;_1 is above st. We rotate st until it contains
¢i—1 and observe the changes in ®(C;_1,C;).
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539 During the rotation of st, r;_1, r;, and t; remain fixed, whereas ¢;_; is changing.
540 Note that |¢;—1¢;| is minimized when st contains ¢; ;. Thus —p|t;—1t;| is increasing. We
541 also note that —|A;_1(p;—1,t;—1)| is increasing, while |.4;(p;—1,t;)| remains constant.
542 Thus, for all cases where ¢;_; is on or above st, ®(C;_1, C;) is maximized when ¢;_;
543 is on st. 0

Thus, for the rest of the proof, we assume that ¢;_; is either on or below st.

ot
>
>

Let « (respectively 3) be the angle (respectively the signed angle) defined by the
line segment ¢;p;_1 (respectively ¢;t;) and the a-axis such that |A; (pi—1, )| = (a+8)r;
(refer to Fig. C.1). Thus 0 < o < wand —a < § < «v. Let 7y be the signed angle between
the z-axis and st such that —7/2 < v < w/2. Observe that —7/2 < § — v < 7/2.

5N
at

RS

[S2 3N, B B
e
[«

oo

First, recall the definition of Transformation 3.10. As we apply Transforma-
tion 3.10, we update the values of «, 8, and ~y. Observe that, after we have completed
Transformation 3.10, we have C; = C;_1 and thus ®(C;_1,C;) = 0. If we can show that
®(C;_1,C;) was increasing while z(c¢;) decreased, then it must be that ®(C;_1,C;) <0
before Transformation 3.10. Thus we wish to find the change in ®(C;_1,C;) with
respect to the change in z(c¢;) during Transformation 3.10. Therefore we wish to
calculate the derivative of ®(C;_1,C;) with respect to z(c;).

556 We define a function 7(«, 8,7) = %. Thus if we show 7(a, 8,7) < 0, we

55
557 can apply Lemma 3.11 and we are done.

o O

[SATINS1 S, BTSN

o Ot Ot ot Ot gt Ut
Ut C

ot ot
[SL IR SURENC R

558 However, this does not always work, as we sometimes encounter degenerate cases
, d®(Ci_1,C; . . S
559  where W > (0 at some point during Transformation 3.10. For the cases when
i

5
5
560 this happens, we use a different argument to show that, before applying Transformation
561 3.10, when C;_1 and C; are balanced, ®(C;_1,C;) < 0.

562 Thus we use a combination of Lemma 3.11, intermediate circles, and geometric
563  proofs to show that ®(C;—1,C;) <0 in all cases when C;_1 and C; are balanced.
564 In Appendix C.1 we compute 7(a, 3,7) = W. In Appendix C.2 we

565 simplify and analyze this function. In Appendix C.3 we identify the different cases
566  we need to consider to prove Lemmas 3.8 and 3.9, and then apply the appropriate
567 techniques to prove them.

568 C.1. Analyzing %ZBQ)' We compute W piece by piece. Note that
569 x(c¢;) = —r;cosa and y(p;—1) = 7 sin .
0 (C3) dri _ dy/2(ci)? + y(pi—1)? _ z(c;) _xle) eosa
dx(c;) dx(c;) Va(e)? +ylpi-)? T
. do d(m/2 + arctan(yszi)l) ) y(pi—1) y(pi—1) sina
I9) ’ = = = =
dx(c;) dx(c;) z(ci)? + y(pi-1)? vy ri
, d(ar;) dr; n do .
572 =« T =sina — acosa
573 dx(c;) dx(c;) "dz(ci)
574 To calculate dg;z:_t)i‘ and d;(i 5 we need the total chain rule, or total derivative.
575 We consider |t;_1t;| as a function of z(¢;) and r;. However, r; is also a function of
576 x(c;). Thus we can express the change in |¢;_1t;| with respect to the change in x(¢;)
57

as:

N |
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588
589

590

591

592
593

594

598
599

600

601
602

dlti_1t1‘| _ 8\ti_1ti| dI‘(Ci) 8|ti_1ti| dri _ 8|ti_1t,-| 8\ti_1ti| dTZ‘

dz(c;)  Ox(c;) dw(c;) or;  dz(e;) 0x(c;) or;  dx(c)

Geometrically, 0z(c;) represents translating ¢; along the z-axis while fixing the
radius r;. Jr; represents changing the radius r; of C;, while keeping x(c¢;) fixed. See
Fig. C.3. However, the change in r; is dependent on z(c;), hence we multiply by dr

dz(c;) "
The partial derivatives 6‘82@_?‘ and alté;_ltil can be individually determined using
simple geometry. We determine df(i 3 using the same technique.

6\ti_1ti|
ox(c;)

C.1.1. Calculating dg;z;_t)il . In Fig. C.5a we examine the geometry of

Applying the sine rule yields

sin(m/2+ 3 —7)  sin(7/2 - B)
0x(c;) Olti—1t;]
Olti_1t;|  sin(r/2—-p3)  cosf3
dx(c;)  sin(m/2+8—7)  cos(B—7)

In Fig. C.4b we examine the geometry of w. Applying the sine rule yields
sin(r/2 — B+v) _ sin(7/2)
879 n 6|ti,1ti|
6|ti,1ti| _ 1 1

or; sin(m/24+ B —7v) cos(B —7)

From (C.3) we have d:f(rci,) = —cosa. Thus

dltiflti| o 8‘ti,1ti| + 8|ti,1ti| d’l”i

dz(c;) 0x(c;) or;  dx(c;)

cos f3
= cos o

cos(B —7)  cos(B —7)

cos B — cos a

C.4 = )
(C4) cos(F — )
. dp o s
C.1.2. Calculating . The total derivative of ~ is
dxz(c;) dz(c:)
dg 0B dx(c) . % dri 0B n % dr;
dr(c;)  Ox(c;) dx(c;)  Orgda(e;)  0x(c;)  Org da(cy)
Fig. C.6a shows the geometry of %). Applying the sine rule yields

23

This manuscript is for review purposes only.



608

609

610
611

612

613

614

615
616

617

618

619

620

621

623

(C.5)

(C.6)

(0B)rs 0x(c;)
sin~y sin(w/24 8 — )
0B sin 7y

dx(c;)  ricos(B—7)

Fig. C.6b shows the geometry of %. Applying the sine rule yields

(C.7)

sin(m/2 — B+7)  sin(8—7)

Ox(r;) —(9B8)r;
08 sin(3—1)
Ox(r;) sin(w/24+ 8 —7)

a8 sin(8 — )

ox(r;)  cos(B—)ri

Thus the total derivative is:

g 0p o3  dr;
dz(c;)  Ox(c;) + 0x(r;) dz(c;)
sin~y sin(8 — )

= s cos(B—pr =Y

__siny +cosasin(8 — )
cos(B — )r;

The change in Sr; with z(c;) is

Thus

d(Br;)  siny + cosasin(f — )
da(c) — cos(B—)r:
_ siny + cosasin(8 — )
a cos(8— )

r; — fcosa

— Bcosa.

d|Ai(pi-1,t:)| _ d(a+B)ri

dx(c;)

dz(c;)
cosasin(f — ) + siny

=sina — acosa + — Bcosa
cos(8 —7)
=sina — (a+ f)cosa + cosasin(h — ) —|—sm’y'
cos(8 —7)

The change in (r;—1 — r;) with respect to x(¢;) is

d(T‘i,1 — ’I‘i) - d’l‘i,1 d?“i

de(c;)  dx(c;) - dz(c;)

= COs (.
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630 Thus the change in ®(C;_1, C;) with respect to the change in z(¢;) is given by

) d<I>(C’i_1, Cl)

631 _—
dx(c;)
- _ d(Ai(pi1,ti)| = [Aica (pi1, tion)| = 2A(rica — 1) — pftiatil)
' dx(c;)
ps dla+B)ri  d2A(rion — i) dplti—ati
o o da(e) dz(c;) dz(c;)
634 =sina — (a+ f)cosa + cosasin(f —7) +siny 2Acosa— (cosﬂcosa)
cos(8 — ) cos(f — )
) cos asin(3 — ) + sin~y (cosﬁ— cosoz)

635 =sina— (a+ B+ 2\) cosa + —
dag ( ) cos(3 — ) cos(5 —)
637 C.2. Simplifying W. Define a function:

638 (v, B,y) =sina — (a+ B+ 2X) cos o + cosasin(8 —7) +siny _ (COSB — Cosa>

cos(B —7) cos(8 —7)

641 In this section our goal is to find values of «, 8, and ~ for which 7(«, 8,7) < 0.
642 We study each parameter separately, and then conclude. In Section C.2.1 we analyze
643 7(a, B,7y) with respect to . In Section C.2.2 we analyze 7(«, 3,7) with respect to £.
644 Finally, in Section C.2.3 we analyze 7(«, 3,7) with respect to a.

645 C.2.1. Maximizing 7(«, 8,v) With Respect to . To find the value of y that

646 maximizes 7(a, 3,7), we find %j’ﬂ

647 drle ) _

, &

s —cosa + cosycos(f — ) —sinysin(f — v) + psin(8 — v)(cos f — cos @)
cos?(B —7)

‘ cos B — cosa + psin(f — y)(cos S — cos a)

v ) cos? (5 — 1)

) (14 psin(8 — 7)) (cos § — cos )

o0 - cos2(B —7)

632

653  To maximize 7(a, 8,7), let 4* be the value for which (1 + psin(8 —v*)) = 0, in other

t o8 B—cos «

654 words, v* = 8 — arcsin(—1/u). The ranges of «, 8, and ~y give us tha oty =0
655 Therefore W = 0 when v = v*, and it is positive when v < v* and it is negative
656 when v > v*. Thus 7(a, 8,7) < 7(a, 8,7*) forall 0 < a <7 and —a < < a.

657 We can rewrite 7(«, 3,v*) as:

658 T(e, B,7*) = cos(B —v*)(sina — (@ + B+ 2\) cos ) + cos asin(f — v*) +siny* —
659  u(cos B — cosq)
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660

661

662

663

664

665

666

685
686
687
688

689

=4/1- (1/u)2(sina—(oz—l—ﬁ—&—QA)cosa)—%—i—sin (ﬁ— arcsin (%)) — p(cos B —

cos )
= /1= (1/u)?(sina—(a+5+2)\) cosa)—%—&—sinﬁ 1-— (1/,u)2+cosﬁ—,u(cosﬁ—
cos )

=+/1—(1/p)?(sina+sinf — (a+ 4+ 2X) cosa) — (u— i) (cos B — cosa).

LetA:W:Vl—tfjnu)andletB:<u—;>:A<mm(l)>.

cos(1)
Then we have

7(a, B,7*) =A(sina +sin f — (o + 8 + 2A) cosa) — B(cos 5 — cos ).

C.2.2. Maximizing 7(«, 5,7*) With Respect to .. To see how 7(a, 8,7*)
behaves with respect to 8, we calculate:

dr(a, B,7*)

a5 = A(cos 8 — cosa) + B(sin ).

We can now prove the following lemma.

LEMMA C.2. For a fized o, 7(cv, 8,7*), as a function of f3, is unimodal and
T(O[a/Bafy*) S ma‘X{T(a7 —OZ,’Y*)7T(OZ7O[,”)/*)}-

Proof. The expression A(cos 8 — cos«) is always positive, since |3] < a. More-

d *
over B(sin3) has the same sign as 3. Thus T(a(’ig’ﬂ is convex in [, which
means it is maximized at the lowest and highest values of 8, i.e., 7(«a, 3,7*) <
max{7(a, —a,v*), 7(a, o, v*)}. d

C.2.3. 7(a,sina,v*) < 0. In this section we prove the following lemma.

LEMMA C.3. 7(a,sina,v*) < 7(w/2,sin(n/2),7*) =0, for all 0 < o < 7.
First we prove the equality. When o = 7/2, we have

(C.10) ()2, sin(1/2),7) = A(1 +sin(1)) — Bcos(1) = 0.

Note that we obtain the value u by letting A = /1 — (1/p)? and B = (M — i)
and then solving (C.10) for u.

Now we show that 7(a, sin a, v*) < 7(7/2,sin(7/2),~v*). Observe that
7(a, sin o, 4*) is a function of a single variable a. We find the derivative of 7(c, sin o, v*)
dr (o, sin a, y*) Th
——— "~ Then

with respect to a. Let n = 7
o

d
7 :d—A(sin a+sin(sina) — (o + sina + 2X) cos ) — B(cos(sin a) — cos «)
o
= A(cos(sin ) cos o — cos® a + (o 4 sin a + 2\) sin @) + B(sin(sin a) cos o — sin ).
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718

719

720

Let 11 = cosa(A(cos(sina) — cosa)) and let 7o = A(a + sina + 2)\) sina +
Bsin(sin o) cosaw — Bsina. Thus n = 71 + 172. Note that 73 > 0 when 0 < a < 7/2,
m = 0 when o = 7/2, and 171 < 0 when 7/2 < a < w. We wish to show that 7,
exhibits the same behaviour. To this end, we define the function:

ny = A(a + sina + 2\) sina + Bsin(1) sinacosa — Bsina.

LEMMA C.4. The function nh > 0 for 0 < a < ©/2, 75 = 0 when o = 7/2, and
ny <0 when /2 < a < .

15

Proof. Let n3 = = A(a + sina + 2X) 4+ Bsin(1) cosa — B. We take the

second derivative of 13 with respect to a.

s _ d—QA(a +sina + 2A) + Bsin(1) cosa — B
da?  da?
d
= %A(l + cosa) — Bsin(1) sin @)

= —Asina — Bsin(1) cos a.

d2
For 0 < a < 7/2, 7723 < 0. For 7/2 < a < m, the first term is increasing
until it reaches 0 at a = w. The second term becomes positive and increases until
. d*ns . . C e
it’s maximized at a = w. Thus p 7723 is negative followed by positive, which implies
fe

that 73 is concave followed by convex. At o = 0 we have A(a + sina + 2\) +

Bsin(1)cosa — B = 2AX\ 4 B(sin(1) — 1) > 0.28 which is positive. At @ = 7 we have

A(m + 2X) — B(sin(1) + 1) < —2.20 which is negative. This, together with the fact
2

d*n3
that
& do?

one place. We know sina = 0 when a = 0 and when a = 7, and sina > 0 when
0 < a < 7. Since ny =z sina, ny, =0 when o = 0 or 7. Thus 7} intersects the z-axis
at 0, w, and one other place.

When o = 7/2, we have

is concave followed by convex implies that 73 intersects the x-axis in only

ny = A(a +sina + 2\) sina + Bsin(1) sinacosa — Bsina

(C.11) =A(r/24+1+2))—-B
=A<7r/2+1+2<1;zi(‘i§1)_ﬂ/2_1)/2) _A(ljoziagl))
—0. 0

Note that (C.11) is where we obtain the value for .

The function 74 is 72 with the term cos asin(sin &) replaced by cos asin(1) sin a.
To relate 1}, to 12 we show the following:

LEMMA C.5. cosasin(l)sina < cosasin(sina) for 0 < a < w/2,
and cos asin(1) sin o > cos asin(sin a) for all m/2 < o < 7.
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Proof. To prove the claim, let § = sin «. Since cos « is positive for 0 < a < 7/2,
and negative for 7/2 < o < m, proving Lemma C.5 is equivalent to proving € sin(1) <
sin @, for all 0 < # < 1. We note that #sin(1) is a linear function with a slope of sin(1),
while sin 6 is a convex function in the given interval. They intersect at # = 0 and § = 1,
and sin § contains € sin(1) from 0 < 0 < 1. Thus fsin(1) < sind, foral 0 <O <1. 0O

As a consequence we get the following corollaries:

COROLLARY C.6. 0y <12 for all0 < a < 7w/2 and nh > ny for all m/2 < a < 7,
and n =19 for all o = w/2

which leads to

COROLLARY C.7. The function ne > 0 when 0 < a < w/2, o = 0 when o = 7/2,
and ny < 0 when /2 < a < 7.

Note that 1 = 0 when « = 0 and 7/2, is positive when 0 < o < 7/2, and
negative for 7/2 < o < 7. This implies that n = 0 when « = 0 and 7/2, is positive
for 0 < o < w/2, and negative for 7/2 < a < w. This implies that 7(a, sina, v*) is
maximized when « = 7/2.

We can now prove Lemma C.3.

Proof of Lemma C.3. Corollary C.7 implies that 7(c, sin o, v*) is maximized when
a =7 /2. Thus

(C.12)

rlasina, ) < 7l/2.1,57) = I= (0L +sin(1) = (4= 1 ) eos(1) 0

for A = (1:;;?1()1) —7/2— 1) /2~ 0.42 and p = ,/#n(l) < 3.56. 0

C.3. Proofs of Lemmas 3.8 and 3.9. Recall that 7(a, 8,7*) is unimodal with
respect to 5 (refer to Lemma C.2). We now simplify it further.

LEMMA C.8. For 0 < 8 <sina, 7(o, 8,7*) < 7(a, sin o, v*).
Proof. Recall that

d *
(C.13) % = A(cos 8 — cosa) + B(sin f3). |
dr(a, B,7%) : s
Note that —————~ > 0 when § is positive. Thus we have that 7(«, 3,7v) <

g

7(a, sin a, y*).

In order to enumerate all the cases we need to consider to prove ®(C;_1,C;) < 0, we
distinguish between starting conditions and events. Given circles C;_; and C}, starting
conditions refer to the locations of C;_1, C;, and st before applying Transformation
3.10. By extension, this includes the value of y(t;—1) and the angles «, [, and ~.
Recall that as we apply Transformation 3.10, we update «, 3,7, as well as the lengths
of the arcs of C;_; and the position of ¢;. Thus an event refers to an angle entering,
exiting, or staying within some range, or any other condition that occurs during the
transformation.
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766

767

C.3.1. Proof of Lemma 3.8. Lemma 3.8 assumes that y(¢;—1) < 0. Proving
Lemma 3.8 is equivalent to proving the following two lemmas.

LemMmA C.9. Consider any starting condition where C;_1 and C; are such that
y(ti—1) <0 and 0 < a < 7/2. Then ®(C;—1,C;) <O0.

LEMMA C.10. Consider any starting condition where C;_1 and C; are such that
y(ti—1) <0 and 7/2 < a < . Then ®(C;_1,C;) < 0.

Observe that C; and C;_; being balanced implies the starting condition y(t;) < 0,
which implies that during Transformation 3.10, the event 5 < 0 does not occur. We
need the following lemma to prove Lemma C.9.

LeEMMA C.11. Consider any starting condition where C;_1 and C; are such that
a<7/2 and B <sina. Then, during Transformation 3.10, 8 < sin .

Proof. Let v; be the point on C; where |A;(p;—1,vi)| = |pi—14i| + |Bi(qi, vi)|. We
show that v; does not go above st during Transformation 3.10, which implies the
lemma.

Since ¢;_1 is on or below st, the slope of st is negative. Let e; be the rightmost
(East-most) point of C;. Let 8/ = /(v;cie;). During Transformation 3.10, since
B'r; = |Ai(ei,vi)| = |pi—1qi|/2 is constant, but r; is increasing and 4’ is decreasing
(A;(ei, v;) is getting flatter), v; moves downwards. Since v; is below ¢;, v; moves left as
¢; moves left. Thus the path of v; (from left to right) maintains a positive slope. Since
st has a negative slope, and v; intersects st initially (that is, v; = t;), this implies that
v; cannot go above st during Transformation 3.10. See Fig. C.7. ]

We can now prove Lemma C.9.
Proof of Lemma C.9. The proof follows from Lemmas C.11, C.3 and 3.11. O

Note that, given the starting conditions of Lemma C.10, if the event 5 > sin a does
not occur, then Lemmas C.3 and 3.11 imply Lemma C.10. In the following lemma, we
identify a starting condition for which 8 > sin « never occurs during Transformation
3.10.

LEMMA C.12. Let w; be the leftmost (West-most) point of C;. Consider any
starting condition where C;_1 and C; are such that o > w/2, f < sina and st is on
or above w;. Then during Transformation 3.10, § < sin «.

Proof. Note that 8 = sina if and only if fr; = risina = |p;—1¢;|/2. Since
|pi—1qi|/2 stays constant during Transformation 3.10, and Sr; < r;sina = |p;_1q:|/2
before Transformation 3.10, it is enough to show that Sr; is decreasing during Trans-
formation 3.10 while @ > 7/2. If @ < 7/2 during the transformation, we apply
Lemma C.11. Let C'x be any intermediate circle through p;_; and ¢; during Trans-
formation 3.10. Fixing ¢;, if we increase v, 8 on Ck will decrease. Thus the greatest
value for 8 on Ck is when + is minimized. Since we assume that w; is on or below st,
it is enough to show that fr; is increasing during Transformation 3.10 when st is on
w;. Recall that

dfBr;  cosasin(f —v) 4 siny

(C.14) drle) — cos(B=)

— Bcosa.

Since a > 7/2 and 8 > 0, we have —f cosa > 0. Also recall that —7/2 < —v <
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839
840
841
842
843
844
845
846
847
848
849
850
851

dpr;
dx(c;)
to show that siny > sin(8 — v), or v > /2 (since v < 7/2). This is true when w; is
on or below st, as required. 0

/2, thus cos(8 —+) > 0. Therefore to show that is non-negative, it is sufficient

This leads to the following Corollary.

COROLLARY C.13. Consider any starting condition where C;_1 and C; are such
that « > w/2 and c;—1 is inside C;. Then during Transformation 5.10, § < sina.

It remains to prove Lemma C.10 when the event 5 > sina occurs. Since C;_;
and C; are balanced, one of the starting conditions is § = sin«. Recall that ¢;_ is
assumed to be on or below st. Corollary C.13 tells us we can assume ¢;_1 is outside of
C;. We look at two cases with the following starting conditions.

a>7/2,¢;—1 is outside of C; and r; > r;—; (refer to Lemma C.14).

a>7/2,¢;_1 is outside of C; and r; < r;_; (refer to Lemma C.15).

LeEmMMA C.14. Consider any starting condition where C;_1 and C; are such that
a>7/2, ¢i—1 is outside of C;, and r; > r;—1. Then ®(C;_1,C;) < 0.

Proof. See Fig. C.8. Let Cg be a circle through p;—; and ¢; with radius rqo =
|pi—1q:|/2. First we show that sg is between s;—; and s; on st. Let u; be the
intersection of C; and the line through t; and ¢;, where u; # t;. Lemma 3.7 tells us
that sg is between s;_; and s; on st, if u; and u; are left of p;_1¢;, which is true if
ly(tQ)| < y(pi—1) and |y(t;)| < y(pi—1). Since ¢;—1 is on or below st, the slope of st is
negative, and since y(t;—1) <0, we have |y(tg)| < |y(t;)|. We have y(p;—1) = r;sinc,
and |y(t;)| = risin(sina) < r;sina = y(p;—1) when a < 7/2, and thus sq is between
s;—1 and s; on st.

Thus we have ®(C;_1,C;) = ©(C;_1,Cq) + (Cq, C;), and it is sufficient to prove
that (I)(Ci_l,OQ) S 0 and (I)(CQ,CZ) S 0.

If st is below cq, then ®(Cq,C;) is increased when st goes through cg, so
we assume that cg is on or below st. We apply Transformation 3.10 to C; and
Cg. Since y(t;—1) < 0, and y(¢;) < 0, we have y(tg) < 0, and thus 8 > 0 during
Transformation 3.10. Since cq is inside Cj, Corollary C.13 tells us that 5 < sin o during
Transformation 3.10. Together with the fact that 7(«, 5,7) < 0 when 0 < § < sina,
this implies that ®(Cq, C;) < 0 by Lemma 3.11.

We now apply Transformation 3.10 to C;_; and Cg. Since o = m/2 before
Transformation 3.10, Lemma C.11 tells us that 8 < sin a during Transformation 3.10
if 8 < sin« initially. Proving that initially we have 8 < sin « is equivalent to proving
that tqg is above vg, or equivalently, that vg is below st.

Let Ck be a circle through p; 1 and g; such that ¢k is between ¢;_1 and ¢;. Notice
that Ck is any intermediate circle encountered during Transformation 3.10. If we fix
t;, then § is maximized on Cx when ~ is minimized. Since we assume ¢;_1 is on or
below st, we conclude « is minimized when st intersects ¢;_;. To minimize ~ further
we move ¢;_1 as far left as it can go, i.e., to the point where r; = r;_1. Thus it is
sufficient to show vg is below st when r; = r;_1.

Let p}_, and ¢; be the points on C; that mirror p;_; and ¢; in the vertical line
through ¢;. Note that the line segment ¢;_1¢} is below the line segment c¢;_1¢;, which
is part of st. Thus, showing that vg is below ¢;_1¢; shows that vg is below st.
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We begin by showing that if vg is below ¢;_1¢] when r; = r;_1 and ¢;_1 intersects
C;, then vg is below ¢;_1¢] for any ¢;_q outside of C; where r; = r;_.

See Fig. C.9. Note that z(q;) — z(ci—1) = z(¢;) — z(q;) = z(q}) — z(c;), thus
2(x(q;) — x(ci—1)) = 2(q}) — x(g;). Thus one third of ¢;_1¢; is to the left of p;_14;,
while two thirds of ¢;_1¢; is to the right. Since y(c;—1) and y(q;) are constant, this
implies that as ¢;_1¢] grows it pivots at the intersection of itself and p;_1¢;. Thus vg
being under ¢;—1¢} when ¢;_; and C; intersect implies that it is always under ¢;—1¢;.
Thus it is enough to show that vg is under ¢;_1¢; when ¢;_ intersects C;.

See Figs. C.10 and C.11. Assume that r; = r;_; = 1, which implies that rq =
sin(m/3), and |¢;—1cq| = 1/2. Note that when Transformation 3.10 gets to *Cg, we
have a = 7/2, thus we need to prove that 3 < sina = 1. Let t(, be the intersection of
ci—1¢; and Cq. Since ¢;—1q; lies under st, and /(tpcqe;) > B, it is sufficient to show
that Z(tgeqei) < 1.

Let 6 = /(cqtyci—1), and note that /(gjci—1cq) = 7/6. We can find 6 using the
sin(m/6)

sine rule. Thus sinf = Ssin(r/3)’

and ¢ < 0.3. We see that /(tgcqe;) =0 +7/6 <
0.82 < 1, as required.

LEMMA C.15. Ifr; < rimq, a > w/2 and ¢;—q is outside of C;, then ®(C;_1,C;) <

Proof. Let Cp be the circle with radius r; through p;_; and ¢; such that Cp # C;.
Notice that Cp is one of the intermediate circles encountered during Transformation
3.10. See Fig. C.12. We have ®(C;_1,C;) = ®(C;_1,Cp) + ®(Cp,C;), and thus it is
sufficient to prove that ®(C;_1,Cp) <0 and ®(Cp,C;) < 0. We do this by applying
Transformation 3.10 to C; and Cp, and then to Cp and C;_;.

Since rp = r;, we have ®(Cp,C;) < 0 by Lemma C.14. Since we assumed that
¢i—1 is on or below st, we know that st has a negative slope. Thus y(¢tp) > y(t;), which
implies that 2 as defined by Cp is less than 3 as defined by C;. Thus when applying
Transformation 3.10 to C'p and C;_1, we know that 0 < 8 < sina by Lemma C.11,
and thus ®(C;_1,Cp) <0 by Lemma 3.11. a

Proof of Lemma C.10. The proof follows from Lemmas C.14 and C.15. O

C.3.2. Proof of Lemma 3.9. First observe the following.
LEMMA C.16. For 0 < a < 7/2, 7(o, —a,v*) < 0.
Proof.

T(a, —a,7*) = A(sina + sin(—a) — (o — a+ 2X) cos &) — B(cos(—a) — cos @)
= —2Acosa
<0. O

We now break Lemma 3.9 into the two lemmas.

LeMMA C.17. Consider any starting condition where C;_1 and C; are such that
y(tic1) >0 and 0 < a < w/2. Then ®(C;_1,C;) <0.

2Recall that, as we apply Transformation 3.10, we update the values of «, 3, and 7.
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Proof. We know 7(«, 8,~*) is unimodal with respect to 8 by Lemma C.2. The
starting condition 0 < o < 7/2 together with Lemma C.11 imply that —a < 8 < sina.
Thus the proof follows from Lemmas C.16, C.3, and 3.11. ]

We are thus left to prove the following lemma in order to prove Lemma C.10.
Note that in this case, instead of working on 7(«, 8,7*), we use a geometric proof.

LemMA C.18. Consider any starting condition where C;_1 and C; are such that
y(ti—1) >0 and 7/2 < a < . Then ®(C;_1,C;) < 0.

Proof. If ¢;—; is left of p;_1q;, then let Cg be a circle through p;_; and ¢; with
diameter |p;_1b;|. Otherwise let Co = C;—1. We will show that ®(C;_1,C;) <
O(Ci—1,Co) + 2(Cq, C;) <0.

Note that since ¢;,_; is inside C;, and y(¢t;—1) > 0, Lemma C.12 implies that
as defined by Cg? is less than sin o, where « as defined by Cgq is 7/2. Lemma C.12
implies the event 8 < sina. This implies that ®(C;_1,Cq) < 0 by Lemmas C.3, C.16
and 3.11. Thus we need only show that ®(Cq, C;) < 0. Note that if y(tg) < 0, then
®(Cq,C;) <0 by Lemma 3.8. Thus we assume that y(tg) > 0.

To show ®(Cgp, C;) <0 in this case we will show three inequalities.

(C.15) |Ai(pi—1,t:)] < m/2|pi—1til,

wsin(l) +1
(©.16) [Aolri-1.t0)| + witt] = 5 it
(C.17) 2(r; —rq) < |pi—1ti]-

See Fig. C.13. Assuming (C.15), (C.16), and (C.17) are true, we substitute these
values into ®(Cgq, C;) and get

®(Cq, C;) =|Ai(pi-1,t:)] — [Agpi—1,tQ)| — 2X(rqg — 13) — pltoti|

< <7r/2 +14+A- (“1)81“(1)) pi—1ti

sin(1) + 1
psin(1l) +1
< 24+ A —"——— i—1t;
= (7?/ ATy 1 ) il
<(2 - 2.16)|p;-1ti
<0.

Inequality (C.15) is satisfied whenever |A;(pi—1,t;)| = |pi—1¢:| + |Bi(qi, t;)|, which
is always the case initially when C;_; and C; are balanced.

For inequality (C.16), note that |Ag(pi—1,tq)| > |pi—1tol, and |pi—1to|+ [toti| >
sin(1)

|pi—1t;| by the triangle inequality. Thus it remains to show that |tqt;| > |pi—1:] (1T

Recall that y(tg) > 0. If we increase y(tg), observe that |tgt;| also increases.
Notice that the minimum value of [¢tgt;| is when tg corresponds to the intersection of
st and the z-axis. Thus for the minimum value of |tgt;|, we will assume that y(tg) = 0.

Recall that [; is the leftmost intersection of C; and st, and e; is the rightmost
point of C;. If |y(¢;)] > |y(l;)], then y(tq) = 0 implies that |tgt;| > > |pi—1ti|/2 >

3Recall that, as we apply Transformation 3.10, we update the values of «, 3, and ~.
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|pi—1ti] Sisrf?l()lll as required. So assume that |y(¢;)| < |y(I;)|, which implies that ¢; is

below st, and thus below [;t;, which is a segment of st. Observe that since p;_; is a
vertex, it is above st. Since ¢; is below [;t;, but p; _1t; is above [;t;, this implies that
|l;t;] > |pi—1t:|. This means that it is sufficient to prove [tgt;| > |lltz|% Note
that |tqt;| is the part of |I;t;| below the z-axis. Thus |tgt|/|lit:] = |y(t:)|/(ly(L:)] +
ly(¢;)]). This expression is minimized when |y(¢;)|/|y(l;)| is smallest. Also |y(l;)] is
largest when I; = p;_1. Note that |y(p;—1)| = r;sina, and that |y(¢;)| = r; sin(sin «).
Thus |y(t;)|/|y(l;)] = sin(sina)/sin«, which is minimized when o = x/2. This
implies that |y(t:)|/(ly(Li)| + [y(t:)]) = ltgtil/|liti] > sin(1)/(sin(m/2) + sin(1)) =

sin(1)/(sin(1) +1). Thus |tgt,;| > |liti\siiia()1ll > |pi*1ti|51ii?1()14)r1 as required.

Let us now prove (C.17). Observe that ¢; is right of |p;—1¢;|, which is right of
|pi—1w;|. Together with the fact that |p;—1¢;| and |p;—1w;| are both chords of C;, then
|pi—1w;| < |pi—1q:|. Moreover, ¢; is below p;_1t;, which is below p;_1e;. Together
with the fact that |p;—1t;| and |p;—1e;| are both chords of C;, then |p;—1e;| < |pi—1t;].
Finally, since p;_1 and ¢; both lie on Cgq, then |p;_1¢;| < 2rg. Thus we have

2r; = |w;e]
< |pi—1€i] + |pic1ws] by the triangle inequality,
< picreil + pic14il
<|pi—1ti| + 2rq, d

from which we have 2(r; — rq) < |p;—1t;|, as required.

Appendix D. Analysis of MinArc algorithm.

THEOREM D.1. MinArc routing algorithm on the Delaunay triangulation has a
routing ratio of at most (6 + w) ~ 3.952, with § = 0.8105.

The bound on the routing ratio is close to the actual bound, as we show in Section D.3
and illustrate in Fig. D.1, our algorithm has a routing ratio of at least 3.2 in the worst
case.

We devote this section to the proof of Theorem D.1. We start by introducing
additional definitions, notations, and structural results. Some of the notations are
illustrated in Figure D.3.

Given a path P from p to ¢ and a path Q from ¢ to r, P + O denotes the
concatenation of P and Q. We say that the path P from p to q is inside a path Q that
also goes from p to ¢ if the path P is inside the bounded region delimited by Q + ¢p.
Given a path P and two points p and g on P, we denote by P(p, ¢) the sub-path of P
that goes from p to q.

In order to bound the length of P(s,t), we need to define the potential paths and
and snail curve as follows.

Given two points p and ¢ such that z(p) < z(¢q) and y(p) = y(q), we define the
path S, 4 as follows. Let C, be the circle of center ¢ that goes through p and let p’ be
the top point of C,. Let Cy be the circle of diameter gp’. The path S, 4 consists of the
clockwise arc of C, from p to p’ together with the clockwise arc of Cy from p’ to q. We
call Sp 4 the snail curve from p to ¢ (see Figure D.2). Note that |S, 4| = 7(z(¢) — z(p)).
Let Epvq be the symmetric of S, ; with respect to the line pq.
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The potential path D’';, for i =0,1,...,n — 1, is defined as follows. Given ¢; the
rightmost point on st of C;41, there is a unique point of st s; such that p; is on the
snail curve S, 4,,, or Sy, 4., (depending on whether or not p; lies above st). The
potential path D’; is the sub-path of this curve from s; to p;.

Let f; be the first point p; after p; such that p;p; intersects st. Notice that f,_; = 1.
We also set fp, =t. In Fig. D.3, fo =p1, fi =p2, fo=psand fz3= fa = f5 =1.
LEMMA D.2. For all0 < i< n:

(D.1) x(s) < x(ti—1) < x(t;) < x(t),

(D-2) z(si—1) < @(si) < @(fim1) < (fi).

Proof. The proof of Lemma 3.5 extends to our case since we consider the rightmost
triangle intersecting st and thus proves (D.1).

Now let us prove Equation (D.2). The point s; only depends on p; and ¢;4;. For
a fix p;, moving t;4; leftward will also move s; leftward: if z(p;) > x(t;+1), moving
slightly the snail curve leftward will leave p; outside the snail shape so the snail curve
needs to be larger to go through p;; if x(p;) < z(t;4+1), s; and p; are on the same
circle centered at t;11 and moving slightly this center leftward will also move the
intersection of the corresponding circle with st, which is s; leftward. So, to prove that
x(s;—1) < x(s;), we only need to prove it in the extreme case where ;11 = t;. So now
let us consider this case in which C; = C;41.

Let the closed curve D be S, ¢, , UgshtHl. By definition, C; 1 intersects D at p;.
This implies that its diameter is larger than |s;t;+1]. Moreover as t;1; is the rightmost
intersection of C; with st, the center ¢; of C; is such that z(¢;) < x(t;41). Altogether
this implies that C; intersects D twice and the point 7; that is diametrically opposed
to t;11 on C; is outside D (see Figure D.4). Since the points 7;, p;—1, pi, tiy1 appear in
that order moving clockwise or counterclockwise around C;, the point p;_1 lies outside
the bounded region delimited by D. Hence the snail curve going through t; = ¢;1 and
pi—1 must be bigger than then one going through p;. Hence z(s;—1) < z(s;).

We now prove the second inequality in (D.2). We first observe that f;—1 = p;
and f; = p; for some i < j < j'. Using the first inequality, we have that z(t;11) <
x(tj+1) < x(p;j) = z(fi—1), so the second inequality in (D.2) holds.

The third inequality in (D.2) trivially holds when j = j’, so we assume otherwise.
In that case, i = j, pj,pj+1,...,p;7—1 are all on the same side of st, and p;_; and pj;
are on the other side. Without loss of generality, we assume that p;s lies above st.

This implies that p; lies below st and on D’;_;, which is also of type B, and
(D.3) w(ps) < x(ty) < w(tj).

Observe that if for some ¢, z(p;) < x(p;—1), then z(¢;) < z(p;). Hence for any i,
x(p;) > min(z(t;), z(p;—1)). Applying iteratively this last inequality, we get

(D.4) min(z(p;), z(tj+1)) < z(pjr-1)-
Since, pjs_1pjr crosses st, D';i_1 is of type B and p;,_1pjs has positive slope, hence
(D.5) z(pj—1) < x(pjr). O

Combining (D.3), (D.4) and (D.5) we get z(fi—1) = x(p;) < z(pj—1) < z(pj) =
z(f;) and (D.2) holds.
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D.1. Proof of Theorem D.1. In this section, we introduce a key lemma and
use it to prove our main theorem.

Let f, = (x(f;),0) be the orthogonal projections of points f; onto st. Finally,
we define the path D’; to be the arc of S, from s; to p;, for 0 <i <n—1 (see
Fig. D.3).

We start with a simple lemma on the last step of the routing algorithm to motivate
these definitions.

LEMMA D.3. |pp_1t| < |Ss, 4| — [D'n-1l.

it

Proof. This follows from the fact that path D’,,_1 +p,_1t from s,,_1 to t is convex
and inside Ss, | ¢. a
Let p, the projection of p; on the z-axis.

The following lemma is the key to proving Theorem D.1.

LEMMA D.4. For all 0 < i <n and § = 0.8105,

(D.6)  |pi—1,pil <Dl = D'ica] +1Ss,_y.sil + y(fi)] + max (0, [y(f:)] — 6|p; f,])
— y(fim1)| — max(0, [y(fi—1)| = 61pi_1 fi_1]) + 61 fi_ 1 fil-

This lemma is illustrated in Fig. D.3. We first show how to use Lemma D.4 to prove
Theorem D.1, and then we prove Lemma D.4.

Proof of Theorem D.1. By Lemma D.2, Z;:ll |fioifil <|st|
and >0 |Ss; 1.s;| = |Sst|- Therefore, by summing the n — 1 inequalities from
Lemma D.4 and the inequality from Lemma D.3, we get

[P(s, )| < Z [pi—1pi
i—1

< =[D'ol + [Ss.tl + [y (fn-1)| + max(0, ly(fo-1)| = 0Pn 1 Fr1])
—ly(fo)| — max(0, [y(fo)| — 8|PoSfol) + dst].

Since fo = s and f,—1 = t, we have y(fo) = y(fn—1) = 0 and it follows that
[Pls, )] < 1Sual + Olst] < (m + D)t
which completes the proof. 0
D.2. Proof of the Key Lemma. We categorize the potential paths D’; into

two types:

e Type A: p;p;11 does not cross st.
e Type B: p;p;4+1 crosses st.

Proof of Lemma D.j. We consider three cases depending on the types of potential
D’;_1 and D’;. Note that if D’;_; is of type A, then f;_1 = f;. Hence, in this case, it
is sufficient to prove

pic1pil < |D's| = [D'ica] +1Ss,y s
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1049  or equivalently

1050 (D.7) |'D/1;1 +pi71pi| < |Ssi71,5i + Dli|.

1051 In Figure D.7, the left-hand side of Equation (D.7) is represented by a blue curve
1052 and the right-hand side by a green curve. Before proving the different cases, we will
1053 show that |Ss,_, s, + D’;| is minimized when ¢;11 = ¢; (as represented by the green
1054 curves in Figs. D.7 and D.8). To prove this we require the following geometric lemma.
1055 LEMMA D.5. Let C be a circle with center ¢ and points p and t on the boundary.

5
1056 If p, t and c lie on a line we perturb p slightly so that they do not. Let A(p,t) be the
1057 arc from p tot on C with central angle 2cc < m. Then |A(p,t)| = |pt| 5.

1058 Proof. Let r be the radius of C. Then |A(p, t)| = r2a. Observe that |pt| = r2sina,

1059 thus r = QL’i’fl‘a. Substituting for 7 we have |A(p,t)| = |pt| 5=, as required. 0
1060 LEMMA D.6. |Ss,_, s, + D's| is minimized when t;41 = t;.
1061 Proof. We will fix s, t, ¢;, and p;, and allow ¢;41 to move along st between ¢; and

1062t while observing the changes in |Ss,_, s, + D’;|. Let 5 = tt;p; and o = Ztt;+1p;. Since
1063 t, t; and p; are fixed, § remains constant. Observe that as we move t;11 to the right,
1064« increases. Thus 8 < o < 7. We will express |Ss, ,.s; +D';| in terms of 8 and « and
1065 find the derivative with respect to a.

1066 Observe that |Sy,_, s, +D's| = |Ss,_1 s, TSsi tier —Ssitirs i tis1)] = [Ssi_1tiin | —
1067 |Ss; t040 (Dis tig1)], where Sg, 4., (pis tig1) is the arc of Sy, 4,,, from p; to t;11. We will
1068 first develop an expression for |Ss, ;. Let p; be the orthogonal projection of p;
1069 onto st.

tit1 |

1070 |SS7:—1,251‘+1| = 7T|8i—13ti+1|

1071 = 7 (Isiatsl + D3| = [tiaDil)

1072 = <|s¢_1ti| + ylpo) _ y(pi)> .

1073 tan ,8 tan «

1074 Since S, t,,, is composed of two arcs with different radii, we will have two
1075 expressions for |Ss, ¢, (pi,tiy1)|, one for when 0 < o < 7/2 and one for when

1076 /2 < a < 7. Using Lemma D.5 and the fact that |p;t;| = 15/1(5;)7 when 0 < a < 7/2
1077 we have

a
1078 |Ss; tig (Pis tig1)| = |piti|sin0¢

1079 =y(pi) °

1080 IR TEI

1081 Let M(c) be |Ss, .| + |St, 57l = 1Sti11.5,1 = [Ssitir (Piy ti1)| expressed in terms of

1082 «. Since s, t, and p; are fixed, let y(p;) = 1. Then for 0 < o < 7/2, we have

1083 M (o) = [Ss, 1,

+ |Sti,ﬁ

— |St

- |S'Si7t7‘,+1 (pia ti+1)|

i+1,D;
1084 |sits] + — T @
)4 = T|S;1; — - .
1085 tanB8 tana  sin®a
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When 7/2 < o < 7 observe that [Ss, ¢, , (Di, tis1)| = a|pitiz1], and |pitiy1] = ulpi)

sin o
si;a . Thus |8817t1‘+1 (pla ti+1)| = ﬁ, and we have
M(a) =[St + ISt il = 1Stips | = [Ssitiga (i tig)|
st + 7 7 o
= T|s;t; — — )
' tanf  tana  sina
We now wish to calculate d]\géo‘). For 0 < o < 7/2 we have

dM(c)  (m—1)sina + 2acosa
da sin® o

which is positive in the range 0 < a < 7/2. When 7/2 < o < 7 we have

dM (o) 71(7 T« )
doe  da tana  sina
T —sina + acos a
(D.8) = — .
sin“ o

We wish to show that (D.8) is non-negative for 7/2 < a < 7. Since sin® « is clearly
non-negative, we are left to determine the sign of 7 — sin @ + acos a. Observe that

d .
— T —sln« + . cos o
do

= —cosa + cosa — asin«
= —asina
<0.

This implies that (D.8) is minimized when o = 7, at which point T=siiafacosa _

sin® «
Thus d]\;[io(éa) is non-negative, meaning that M («) increases with «, implying that it is
minimized when o = 3, or when t; = t;1, as required. 0

Case 1: D/;_; is of type A. To show that Equation (D.7) holds, Lemma D.6 implies
we only need to consider the case where ¢;11 = t; (see Figure D.8). We will show this
inequality for ¢;1 = ¢; in the first two cases of the proof.

Adding Q := S, 1,,, (i, tix1) on both sides of inequality (D.7) becomes:

(DQ) |D/i—1 +Pi—1pi + Q| < |‘SSi71,31: + Ssivti+1| = ‘8‘97‘,—17ti+1 |

Observe that p;_1p; is inside p; A + Ss,_, +,,, (4, p;), hence

(Dlo) |p271p’b| < |p’LA + SSi—l,tz‘Jrl (Avpz)|

By Observing that Q and S,,_, 4,, (ti+1, A) are homothetic and that p; A is shorter
than an curve homothetic to Q going from p; to A we get

(Dll) |Q+p1A| < ‘8371—1,t7‘,+1(t1'+13A)|'
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From (D.10) we get:
|D/’i—1 + pi—1pi + Q| < |D/i—1 +p1A‘ + Ssi—l,ti,+1 (A,pz) + Q‘

From (Dll) we get: |Q + pZA + Ssi—latzi+1 (A7pz) + D/i—1| < |S$1,71,t1,+1 (ti-‘rla A) +
'551‘—1,ti+1(Aapi) + D/i—1| = |Ssi—1,ti+1 |

The combination of the two last inequality proves (D.9) and thus this lemma for
Case 1.

Case 2: D’;_; is of type B and D/, is of type A or B.

In this case, the ”potential” may not be enough to cope with zig-zags. As in
the [2], the 0 coefficient of Equation (D.6) is introduced in order to repair this case.

In this context, let us rewrite Equation (D.6) as follows:

(D.12)  [D'ia| + Ipi—apil + ly(pi)| + max(0, [y(pi)| — 0|p;_15;]) <
ID"i| 4 |Ss, 15| + ly(fi)| +max(0, [y(fi)] — 8[p; f,]) + 6Ipi fil.

Fig D.9 illustrates this inequality: the left hand side is represented in blue and the
right hand side is represented in green. The dashed line represents the contribution of
o|p; fil-

If the points p;,t;, fi and the distance |p;_1t;| are fixed, one can observe that
moving p;—1 counterclockwise on the circle of center ¢; is increasing the LHS of (D.12)
without changing its RHS. Moreover, as long as the upper arc remains shorter than
the lower arc, the part below [st] of the circle C;_; generated by this move is included
in the former circle C; hence, f; remains outside the new C; and the new configuration
remains valid. So, the extreme case is such that p;_1t; is a diameter of C; (going
further violates the hypothesis that the route goes through p; after p;_1). So assume
now that C} is of diameter t;,p;_1.

Since the RHS is decreasing with the distance |¢;f;|, we can simply consider
the cases where f; is on C;. Without loss of generality, we set st as the "x” axis,
t; = (1,0) and z(¢;) = 0. Then we define an angle 8 such that f; has coordinates:
(z(c;) + |eiti]| cos(B),y(ci) + |ests|sin(B)). B has values between 3y and (1, where f3g
corresponds to the case y(f;) = 0 and B; corresponds to the case z(f;) = z(p;). We
first need to decide what part of max(0, |y(f;)| — d[p; f;|) is used w.r.t. the position of
fi- Let M be the function defined by

M(B) = |y(f>||c—t5||Pf|
= —u(e)  sin(3) — d(cos(3) = 724
— sin(B) — d cos(B) — y(ci) + ‘ﬁfi ”|)
1 5
= m(ﬁ sin(f3) — Jiroe cos(B)) + a1

3o J . 4]
=v1+946 (sm(arccos(ﬁ)) sin(f8) — cos(arccos(ﬁ)) cos(B)) + a1

= /1462 cos(B + (m + arccos( ) + e,

]
V14062
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where ¢; = —y(¢;) + ‘S‘ifffl). In addition, M (By) = —d6(z(f;) — z(p;)) < 0 and
M(B1) = y(p;) > 0. So, the behavior of max(0, |y(f;)| — &|p; f;|) for B3 from By to By is
as follows: it is null up to 8 = Berir (Where |y(fi)| — 0|p,f;| = 0) and then it is first
increasing and then decreasing from B+ to ;.

Let A be the difference between the RHS and the LHS of Equation (D.12). We
are first interested in the variations of A w.r.t. 8. We thus can drop some parts of A.
It remains A’ = |y(f;)| + max(0, |y(f;)| — 6|p; f;]) + 6| f;_1f;| + c2. Let us look what
happens on [Berit, 81]. On this interval, A" = 2|y(f:)| — 0D f;|) + 0| fi1fi| + co. We
obtain % = 2cos(B) + dsin(B) — dsin(B) = 2cos(f). So A has two potential critical
values that are 81 and fB..;+. Let us now look what happens on [Sg, Berit]. Here, A’ =
[y(fi)|+01f i1 fil+c2 = sin(B)+6 cos(B)+c3 = V1 + §%-cos(f—arccos( z2=5))+e3, for
some constant cz. Let fpax be arccos(——2= ). We have A’(Bmax + ) = A/ (Bmax — B).

V1462
We have Bmax > 7 and fy < 0. Since A’ is increasing from fy to Bmax we have

A'(Bo) < A'(Berit) < A'(Bmax)- Thus, it is not useful to consider S..;; as a critical
value.

Let « be the angle (¢;, p;) with the left half horizontal line (see Figure D.9). Let
0 be the angle (t;,¢;) with the left half horizontal line (or, alternatively, the angle
between (p;_1, ¢;) with the left half horizontal line). We also set ¢; = (1,0).

Case 2.1: 8= [y

We wish to show (D.12). Since 8 = Sy, we have |y(f;)] = 0. Thus it is sufficient
to show

(D.13)
ID"i—1]+ |pi-1pil + |y (pi) | +max(0, [y(pi)| = 0|p;_1B;l) < |D'sl +1Ss,_1,s: | +6[D: fi-

See Fig. D.11. We will use a geometric transformation to find a version of this
expression that maximizes the LHS and minimizes the RHS of (D.13). Lemma D.6
implies that we can assume that ¢;41 = t;, since this will minimize |D’;| + [Ss;_, s,
on the RHS. Observe that since D’;_; is type B, that z(p;—1) < z(p;) < z(t;). That
means p; is on the large arc of S, ¢,,,, and p;_1 is on the large arc of S,,_, 4, That
means D’;_; and D’; are arcs of concentric circles centered at ¢; 41 = t; that go through
pi—1 and p; respectively. Call these circles O;_; and O; respectively. Thus we can fix
pi—1, p; and t; and rotate st around t¢; and observe the changes in (D.13). We will
show that (D.13) is maximized when p; lies on st.

First observe that, since O;_; and O; are fixed and concentric, that |Ss, , ]
stays constant. Let v be the angle between t;p; and st as st rotates around t;.
Observe that y(p;) = |pit|siny and [p;_1P;| = |pi—1p:[siny. Thus [y(p;)| — 6[p;—1 P4
has the same sign as |p;t;| — d|p;—1p;|, which, since these points are fixed, does not
change sign throughout the transformation. This gives us two cases to consider. If
Ipiti| — d|pi—1pi| < 0, then

(D.14) D ica| + [pi—1pil + [y(pi)| < D3| +1Ss;_y .| + 01Bi fl-

Let M = |D'i_1| + [pi1pil + y(pi)l = [D's| = |Ss;_y.s;| = 6IDi f3|. Thus if M <0,
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1196 (D.14) is true. Let 8 be the angle /p;t;p;_1, and let v be the angle /p;t;s, and note
1197 that v < 8. We express M as a function of ~:

1198 M(y) = (B = v)|pi—1ti| + |pi—1pi| + |pits| siny — |piti|y — [Ss,_,,s:] — O|piti| cos .
1200 We examine %(7).
Y
dM .
1201 déV) = —|pi—1ti| + |piti|(cosy — 1+ dsin~y)
1303 < |piti|(cosy + dsiny — 2).
1204 Since § < 1, %ﬁ(ﬁ) < 0, and thus M (v) is decreasing in v and maximized when
1205 ~y =0, which is when p; is on st.
1206 Otherwise |p;t;| — 0|pi—1pi| > 0, then
1308 D'ical + |picapil + 20y(pi)| < Ds] + [Ss o] + 0[P f.

1209 Let M’ = |D's_1| + |pi—1pi| + 2|y(pi)| — |D'i| — |Ssi_1,ss
1210 as a function of ~ is

— 8|p;_1f;|, which, expressed

1314 M'(7) = (B = v)|pi—1ti| + [pim1pi| + 2|pits| siny — |piti|y — |Ss,_,.s,| — |pi—1ti| cos .

1213 Then d]\/g("’) is
v
dmM’ .
1214 d’Y(IY) = |pi—1ti|(6siny — 1) + |p;t;|(2cosy — 1)
1215 = siny(|pi—1ti|d — |piti]) — [pi—1ts| + [pits|(2cosy — —).
1216 sm -y
1217 We know |p;_1t;]0 — |p;t;] < 0 by our assumption in this case, thus all three terms

1218 are negative for 0 <y < 7/2, thus M’(7y) is decreasing in 7 and is maximized when p;
1219 lies on st, at which point M () = M’(~y). So we set v = 0 and examine M as it varies
1220 in B. When v = 0,

1221 M(B) = Blpi-1ti| + [pi—1pi| = |Ss; 1 p:| — dlpitil
1333 < (B+sinf —m(1—cosB) —écos B)|pi-1ti
1224 Let N(8) = 8 +sin 8 —n(1 —cosf) — d cos B. We will find the minimum value of
1225 ¢ for which N(B8) <0,0< g < w/2.
N
1226 (D.15) w:l—l—cosﬁ—wsinﬁ—l—ésinﬁ.
1227 g
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Since 0 < 8 < m/2, sin 3 is strictly increasing in this range and cos 3 is decreasing,
for a given value of ¢, (D.15) has one value § for which (D.15) is 0. Let 6* be the
value for which 0* = 7 — cot(6*/2). Let § = 8*, and observe (D.15) when 8 = *.

1+ cosff—msinf + dsinf
=1+ cosf* — wsin f* + (7 — cot(8*/2)) sin 5*
sin B* cos(B*/2)
(5" /2)
=1+ cos*(B*/2) — sin?(8*/2) — 2 cos?(B*/2)
=1 —sin?(B*/2) — cos?(5*/2)
=0.

=1+ cos3* —

Observe that M () is negative when 8 = 0 and when 8 = 7/2. And when 8 = g*

M(B*) = (B* +sin 8" — n(1 — cos B*) — dcos ) |pi_1t,
cos B* cos(B*/2)

< (m —cot(B*/2) +sin f* — 7w + wcos 8* — weos BF + (3" /2) ) pi—1ti]

e (1 — cos 8*) cos(B*/2) o
< (s S )

< sin 8% — 2sin(B*/2) cos(8*/2)
=0.

Thus M(8) <0 for 0 < 8 < w/2and § = 6* < 0.8105 leading to a routing ratio
smaller than 3.96.

Case 2.2: 8 = pi, z(fi) = z(p:)

Observe first that the LHS of (D.12) is upper bounded by 2|y(p;—1)| + 3y(pi) +
x(p;) — x(s;—1) and the RHS is lower bounded by y(p;) + x(p;) — z(si—1) + 2|y(fi)].
Hence it is enough to prove that:

ly(pi—1)| +y(pi) < ly(fi)l-

In fact this inequality is an equality since |y(p;—1| = 2Rsin(0),y(p;) = Rsin(a) —
Rsin(6) and |y(f;)| = R(sin(f) sin(«x)), where R is the radius of circle C;. This proves
(D.12) and thus this lemma for this last case. |

D.3. Lower Bounds.

THEOREM D.7. The routing ratio of MinArc algorithm on a Delaunay triangula-
tion s at least 3.2 in the worst case.

Proof. We construct a point set using a sequence of circles C; defined as fol-
lows. The coordinates of points s,t and ¢; are respectively (—1,0), (1, —¢) and
(—0.7652277146,0). The point p; is on C; such that the angle (scipq) is 17.349883181°.
Let C5 be the circle of center and radius (0, —0.0320133045) and 1, respectively and
let ¢ be the point such that p;t’ is a diameter of Cs.

For i = 3,4..., we define circle C; to be the circle of diameter p;_1¢'. Then we
set p; to be a point on C; lying above p;_1 so that |p;—1p;| < € for some ¢ > 0. We
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continue to place circles and points in this way until ¢’ is the lowest point of C; for
some j. Then, we add points p;,...,p, on the clockwise arc of C; from p; to t’ so
that |pipi11] < e for I = j4,..., k, where p,y1 =t (as shown in Fig. D.1). We then
construct the Delaunay triangulation of the point set so that s, p;, and py form a

triangle and p;, p;+1 and ¢’ form a triangle for i = 1,...,n — 1. Finally, we set ¢ to be
Dn.

Next, we perturb the configuration so that cg lies slightly below z-axis and the
upper arc of C; is slightly smaller than the lower arc for i = 2, ..., j while preserving

the edges of the triangulation. This perturbation ensures that the path computed by
MinArc algorithm is s, p1, pa, ..., pn = t. We observe that when e approaches 0, the
routing path computed tends to S5+ whose length adds up to 6.4. Since the distance
between s and ¢’ is 2, the routing ratio of MinArc algorithm is therefore at least 3.2.0
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. AL (pa, t5)

(a) C# is balanced with C¥ .

S AL (pa,ts)

(c) C& is balanced with C#. Note that g5 = ps.

Figure A.5

43

This manuscript is for review purposes only.



(b) P(s,t) and all the potential circles.

AP (p1,t2)
'74?(123«, t3

& (ps, te)

(¢) The thick blue and green arcs are all the arcs considered when summing over ®(CY ,, CP),
for 1 <i<n.

Figure A.6
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Figure B.1: Lemma B.1. Ps(C;_1,C;) is longest when C; = C/, that is C;_; and C;
are balanced.

Ai—1(pic1,tiz1)

Ai(piz1,t;)

Figure C.1: ¢;—1 and ¢; lie on the z-axis, and (p;_1, ¢;) lies along the y-axis.
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Figure C.2: Transformation 3.10. We fix p;_; and ¢; and translate ¢; towards ¢;_.
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(b) The change in z(c;) represents moving ¢; while fixing p;—1 and g¢;.

Figure C.3
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st

Olti—1t,|

(a) In this case,
Ti.

is obtained by fixing x(c;) and decreasing

st

(b) % is found by moving ¢; while fixing 7;.
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a\ti,lti|

(b) 0x(c;)
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(a) The change in Sr; with z(c;). Note when v < 3, the change in Sr; with respect to z(c;)
is positive.

&

(b) The change in fr; with r;. Note when v < 8, the change in fr; with respect to r; is
negative.
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Figure C.7: The gray dots represent the path of v;.

Figure C.8: Lemma C.14
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Figure C.9: Line segment c¢;_1¢; as we increase r; and 7;_1.

%—|—«9<1:sina

Figure C.10: Computing an upper bound on 8 on Cq.
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< g+0<1=sina

Figure C.11: Since 8 < 1 = sina on circle Cg, vg is below st.

Ci

Ai(pi—1,t:)

Figure C.12: The case where a > 7/2 and r;_1 > 7.
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Figure C.13: ®(Cq, C;) < 0 when y(tg) > 0.

b2
S
s 1 t/ t
D1
(&) s

&

Figure D.1: On the right is a Delaunay triangulation that illustrates the lower bound
on the routing ratio of MinArc algorithm. The path obtained by the algorithm is
shown in bold; it has length 3.2|st|. The left image zooms in on what happens close to
point s.
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Figure D.2: Illustration of the definition of S, 4.

b3

J4!

P4
D/
Sl[D/l 82‘152‘ ‘f

S tl D/ S3 t3 'SZ t

L
2

Figure D.3: Illustration of notations. The potential curve is displayed in red. To deal
with zig-zags we also need another potential component displayed in purple.
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Figure D.4: Illustration of the proof of Lemma D.2.

Figure D.5: We start with ¢; = ¢;41, then translate ¢;;; to the right while observing
the changes in |Ss, , s, +D’;|, shown in green. For (c), M () in green for 7/2 < a < 7.
Observe that this is not a feasible arrangement of vertices, rather, it is an illustration
of the behaviour of M(«).
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a— /2

Lo

tit1
(b)y /2 <a<m.

Si tit1 i
(a) 0 <a<m/2.

Figure D.6: Calculating |Ss, ¢, (pi,ti+1)| (purple) for different values of a.

Pi—1

Di

C’H—l

Si—1 Si t; liga

Figure D.7: the generic configuration for the case D’;_; of type A.

Si—1 Si t;

Figure D.8: Extreme case when t;11 = ¢;. In purple Ss, , s, (pi,ti+1) and in yellow
S

Si—1,bi41°
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Figure D.10: A(a, 0, 8) with 8 = Sy on the left and 8 = /31 on the right.

Figure D.11: When g8 = fy.
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Figure D.12: When g8 = 8y and p; is on st.
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