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Abstract. A geometric graph G = (P,E) is a set of points P in the plane and a set E of edges4
between pairs of points, where the weight of an edge is equal to the Euclidean distance between its5
two endpoints. In local routing we find a path in G from a source vertex s to a destination vertex t,6
using only knowledge of the current vertex, its incident edges, and the locations of s and t. We present7
an algorithm for local routing on the Delaunay triangulation, and show that it finds a path between a8
source vertex s and a target vertex t that is not longer than 3.56|st|, improving the previous bound9
of 5.9|st|.10

1. Introduction. A Euclidean geometric graph G = (P,E) is a set P of points11

embedded in the plane, and a set E of edges, where each e ∈ E is segment joining a12

pair of points (u, v) in P , and the weight of e is the Euclidean distance |uv|.13

A local routing algorithm A is an algorithm that routes a packet in the geometric14

graph G from a source vertex s to a target vertex t using only knowledge of the15

locations of s and t, as well as the location of the current vertex and its adjacent16

vertices. Let P〈s, t〉 be the path found in G from s to t using A. The routing ratio of A17

for any two points s and t in the geometric graph G is the ratio of the length of P〈s, t〉18

to the Euclidean distance from s to t. An algorithm A has a routing ratio µ for a class19

of geometric graphs G, if, for any two vertices s and t in G ∈ G, |P〈s, t〉| ≤ µ · |st|.20

A graph G = (P,E) is a c-spanner if for any pair of points u and v in P , the21

shortest path in G not longer than c|uv|. The value c is referred to as the stretch factor22

or spanning ratio of G. The stretch factor of G is thus a lower bound on the routing23

ratio of G for any routing algorithm A, and the routing ratio is an upper bound on24

the spanning ratio of G. Geometric spanners are described in detail in the book by25

Narasimhan and Smid [14].26

A notable geometric graph is the Delaunay triangulation. Given a set P of points27

in the plane, we construct the Delaunay triangulation of P as follows. For each triple28

(p, q, r) of points in P , let C be the unique circle through p, q, and r. If there are no29

points of P in the interior of C, then we connect p, q, and r by edges to form a triangle.30

In this paper we assume that P is in general position: no 3 points are colinar and no31

4 points are cocircular.32

The Delaunay triangulation was first proven to be a spanner by Dobkin et al. [12],33

who showed an upper bound of 5.08 on the spanning ratio. This was subsequently34

improved to 2.42 by Keil and Gutwin [13], and then to 1.998 by Xia [15]. Bose et.35

al [6] initially showed that nearly all Delaunay triangulations have spanning ratio36

greater than π/2. Xia and Zhang then proved that there exist Delaunay triangulations37

with spanning ratio greater than 1.59 [16].38
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Bose and Morin [8] explored some of the theoretical limitations of routing, and39

provided some of the first deterministic routing algorithms with constant routing ratio40

on the Delaunay triangulation. They denoted the spanning ratio found by Dobkin et41

al. [12] as cdfs ≈ 5.08. They showed that it is possible to locally route on the Delaunay42

triangulation with a routing ratio of 9 · cdfs ≈ 45.749. Bose et al. [5] further improved43

this bound to ≈ 15.479. Then, Bonichon et al. [3] showed that we can locally route on44

the Delaunay triangulation with a routing ratio of at most 5.9. In the same paper it45

was shown that the routing ratio of any deterministic local algorithm is at least 1.7046

for the Delaunay triangulation.47

Efforts to evaluate the spanning ratio and routing ratio have been made for48

Delaunay triangulations defined on other metrics. We can define these metrics by49

taking a convex shape and translating and scaling it until it intersects three vertices50

but contains no points of P in its interior. When we use a circle we obtain the L2, or51

classical Delaunay triangulation. When the metric is not specified (as in the rest of52

this paper), then we are referring to the L2-Delaunay triangulation. The L1-Delaunay53

triangulation uses an axis aligned square, while the L∞-Delaunay triangulation uses a54

square tipped at 45 degrees. By rotating the point set 45 degrees, it is easy to show the55

L1 and L∞ triangulations are equivalent. Bonichon et al. [4] showed that the L1 and56

L∞ Delaunay triangulations are
√

4 + 2
√

2 ≈ 2.61-spanners, and they showed that57

this bound was tight. On this triangulation, Chew [9] proposed a routing algorithm58

with routing ratio at most
√

10. Moreover, the routing ratio of any deterministic local59

algorithm is at least 2.70 for this class of graphs [1]. The TD-Delaunay triangulation is60

constructed using an equilateral triangle. Chew [10] showed that they are 2-spanners61

and Bose et al. [7] proposed a routing algorithm with routing ratio
√

5/3 ≈ 2.89 and62

they show that this ratio is the best possible. Recently Dennis, Perkovic and Duru [11]63

showed that the stretch factor of the Delaunay triangulation where the empty circle is64

a hexagon is 2 and this is tight.65

Table 1.1: Spanning and Routing Ratios of Delaunay Triangulations. Tight results are
shown in bold.

Graph Spanning Ratio Routing Ratio

TD-Delaunay 2 [10] 5/
√

3 ≈ 2.89 [7]

L1 and L∞-Delaunay
√

4 + 2
√

2 ≈ 2.61 [4]
√

10 ≈ 3.16 [9]
Hexagon-Delaunay 2 [11]
L2-Delaunay 1.998 [15] 3.56 (this paper)

In this paper we present a local routing algorithm, called MixedChordArc, for the66

L2-Delaunay triangulation, with a routing ratio of 3.56. This improves the current67

best routing ratio of 5.9 [1]. Table 1.1 shows our result in the context of spanning and68

routing ratios of other Delaunay triangulations.69

In Section 2 we define a local algorithm that achieves this routing ratio. In70

Section 3 we first prove the result for a special case, called balanced configurations.71

In Section 4 we extend the technique presented in Section 3 to prove the main result72

for the general case. In Section 5 we present our conclusions and our ideas for future73

directions.74
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2. The MixedChordArc Algorithm. Let P be a finite set of points in the75

plane, and let DT (P ) be the Delaunay triangulation of P . We want to route a packet76

between two vertices of P along edges of DT (P ) using only local knowledge and77

knowledge of the location of our start and destination vertices.78

Let s and t be the start and destination vertices respectively, and assume, without79

loss of generality, that s and t are on the x-axis with s to the left of t. Consider two80

triangles T and T ′ that have non-empty intersections with st. We say that T is to the81

left of T ′, and T ′ is to the right of T , if a walk from s to t along st intersects T before82

T ′.83

Let C be a circle that intersects st. We denote by tC the rightmost point of C on84

st. Let u and v be two points on C. We denote by AC(u, v) the clockwise arc of C85

from u to v, and by BC(u, v) the counter-clockwise arc of C from u to v. We denote86

the length of a geometric structure S by |S|.87

Let p 6= t be the vertex representing the current location of the packet. Let T be88

the rightmost triangle with p as a vertex that has a non-empty intersection with st.89

Let a 6= p be the vertex of T that is above st, and let b 6= p be the vertex of T that is90

below st. Let C be the circumcircle of T . We assume s to be above st, and we assume91

t to be on the opposite side of st from the current vertex. This ensures that when t is92

a neighbour of the current vertex, the algorithm will forward the packet directly to t.93

Here is the algorithm MixedChordArc. First assume that p = s. If |AC(s, tC)| ≤94

|BC(s, tC)|, set p = a, otherwise set p = b. See Fig. 2.1a. If p 6= s, we repeat the95

following until p = t.96

1. If p is above st:97

(a) If |AC(p, tC)| ≤ |pb|+ |BC(b, tC)|, set p = a98

(b) Else set p = b.99

2. If p is below st:100

(a) If |BC(p, tC)| ≤ |pa|+ |AC(a, tC)|, set p = b101

(b) Else set p = a.102

The possible choices are illustrated in Fig. 2.1. Let P〈s, t〉 = (s = p0, p1, ..., pn = t)103

be the sequence of vertices produced by the algorithm. In this paper we prove the104

following theorem.105

Theorem 2.1. The MixedChordArc Algorithm finds a path P〈s, t〉 from s to t106

whose length |P〈s, t〉| is not more than µ|st|, where µ =
√

2
1−sin(1) < 3.56.107

We present a complete trace of the algorithm in Fig. A.1a of Appendix A. In the108

remaining figures of Appendix A, we illustrate the proof of Theorem 2.1 on a complete109

example.110

In some cases, the path produced by our algorithm is a balanced configuration. In111

such cases, the analysis of the length of P〈s, t〉 is much easier. In Section 3 we define112

what a balanced configuration is, and analyze the length of P〈s, t〉 for this specific113

case. Then, in Section 4, we analyze the length of P〈s, t〉 for the general case.114

3. Bounding |P〈s, t〉| in a Balanced Configuration. Let us consider a path115

P〈s, t〉 of vertices such that p0 = s, pn = t and pi−1pi is an edge of the rightmost116

triangle Ti of pi−1 that has a non-empty intersection with st. Let ai and bi be the other117

two vertices of Ti, where ai is above st, and bi is below st. Thus pi = ai or pi = bi,118

for all 1 ≤ i ≤ n. Let s = p0 = a0 = b0 and let t = pn. Let Ci be the circumcircle of119
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tC
p, s

a

b

C

(a) From p = s, the blue
arc is shorter than the red
arc, so we forward to a.

p
a

b

tC

C

(b) From p, the blue path is
shorter than the red path,
so we forward to a.

p

tC

a

b
C

(c) From p, the blue path is
shorter than the red path,
so we forward to a.

Figure 2.1: Illustrating one step of the algorithm.

q0, p0, t0, s

p1, a1

C1

C2
C3

C4

p2, a2

p3, a3, q4

b1, b2, b3, q1, q2, q3

b4, p4

a4
q5

b5, p5, t5, t
t1 t2

t3

t4

C5
a5

Figure 3.1: Sequence of circles in a balanced configuration and the path in blue. The
dotted circles are circumcircles of triangles intersected by st but not in T .

Ti, let ri be its radius and let ci be its center. Let C0 be the circle centered at s with120

radius r0 = 0. Let T = (T1, T2, ..., Tn), and let C = (C0, C1, ..., Cn) be the sequence of121

circles starting at C0, followed by the circumcircles of T . Note that the vertex of Ti122

that is on the opposite side of st to pi−1 may not be at the intersection of Ci−1 and123

Ci because we always consider the rightmost triangle at each step. Thus we define a124

second intersection point of Ci−1 and Ci as follows (pi−1 being one intersection point).125

If pi−1 is above st, then qi is the lowest intersection of Ci and Ci−1. If pi−1 is below126

st, let qi be the highest intersection of Ci−1 and Ci. Observe that if Ti and Ti−1 share127

an edge, then qi is the vertex of Ti on the opposite side of st from pi−1. See Fig. 3.1.128

To simplify the notation, we write ti instead of tCi
, and we write Ai(u, v) and Bi(u, v)129

instead of ACi
(u, v) and BCi

(u, v), respectively.130

We say that a pair of consecutive circles Ci−1 and Ci is balanced if |Ai(pi−1, ti)| =131

|pi−1qi|+ |Bi(qi, ti)| when pi−1 is above st, and if |Bi(pi−1, ti)| = |pi−1qi|+ |Ai(qi, ti)|132

when pi−1 is below st. A path P〈s, t〉 on a point set P is a balanced configuration133

when Ci−1 and Ci are balanced for all 1 ≤ i ≤ n.134
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3.1. Analysis Technique.135

Lemma 3.1. Let Ci−1 and Ci be arbitrary circles of C, where 1 ≤ i ≤ n. Then136

1. |pi−1bi|+ |Bi(bi, ti)| ≤ |pi−1qi|+ |Bi(qi, ti)| when pi−1 is above st, and137

2. |pi−1ai|+ |Ai(ai, ti)| ≤ |pi−1qi|+ |Ai(qi, ti)| when pi−1 is below st.138

Proof. By the triangle inequality we have |pi−1bi| ≤ |pi−1qi| + |Bi(qi, bi)|, from139

which 1 follows. Case 2 is symmetric.140

For the rest of this section, we assume that P〈s, t〉 is a balanced configuration.141

Consider the case when pi−1 is above st (the case when pi−1 is below st is symmetric).142

If qi = bi then |Ai(pi−1, ti)| = |pi−1bi|+ |Bi(bi, ti)|, and the algorithm proceeds to ai. If143

qi 6= bi, observe that |pi−1bi| ≤ |pi−1qi|+|Bi(qi, bi)| by the triangle inequality (see circles144

C4 and C5 in Fig. 3.1). Thus we have |pi−1bi|+ |Bi(bi, ti)| < |pi−1qi|+ |Bi(qi, ti)| =145

|Ai(pi−1, ti)|, and the algorithm proceeds to bi. Thus a balanced configuration allows146

for steps that cross st and steps that do not cross st. It also allows us to use |Ai(pi−1, ti)|147

as an upper bound on |pi−1bi|+ |Bi(bi, ti)| in the case where pi−1pi crosses st.148

Let x(v) and y(v) be the x and y-coordinates of a point v, respectively. Let si be149

a point on st such that x(si) = x(ti)− 2ri. We define the following potential function150

that we use to bound the length of P〈s, t〉.151

Definition 3.2. If pi−1 is above st, then152

Φ(Ci−1, Ci) = |Ai(pi−1, ti)| − |Ai−1(pi−1ti−1)| − λ|si−1si| − (µ− λ)|ti−1ti|.153154

Otherwise, if pi−1 is below st, then155

Φ(Ci−1, Ci) = |Bi(pi−1, ti)| − |Bi−1(pi−1ti−1)| − λ|si−1si| − (µ− λ)|ti−1ti|,156157

where λ =
(

1+sin(1)
cos(1) − π/2− 1

)
/2 ≈ 0.42 (see (C.11) in Lemma C.4, Appendix158

C.2.3) and µ =
√

2
1−sin(1) < 3.56 (see (C.10) in Lemma C.3, Appendix C.2.3).159

See Fig. 3.1 and 3.2 for a complete example and an illustration of the potential160

functions. See Fig. 3.3 for an illustration of Φ(Ci−1, Ci). Three lemmas are used to161

prove Theorem 2.1 for balanced configurations. The proof of Lemma 3.3 is found in162

Section 3.3 while the proof of Lemma 3.4 is in Section 3.2.163

Lemma 3.3. Given a pair of balanced circles Ci−1 and Ci,

Φ(Ci−1, Ci) ≤ 0.

Lemma 3.4. For any balanced configuration P〈s, t〉,
∑n
i=1 |si−1si| ≤ |st|.164

Lemma 3.5. For any C,
∑n
i=1 |ti−1ti| ≤ |st|.165

Proof. We have t0 = s and tn = t. We claim that x(ti−1) < x(ti) for all 1 ≤ i ≤ n.166

If this is true, the lemma follows. We prove the claim by contradiction. Assume that167

x(ti−1) ≥ x(ti). If qi is to the same side of st as pi−1, then Ci−1 must contain the168

vertex of Ti on the opposite side of st. If qi is on the opposite side of st as pi−1, then169

Ci−1 contains the vertex of Ti on the same side of st as pi−1. Both cases contradict170

the construction of a Delaunay triangulation.171

Lemma 3.6. For 1 ≤ i ≤ n, if pi−1 is above st, then172
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s, s0, s1, t0

p1

C1

C2
C3

C4

p2

p4

p5, t
t1 t2

t3

t4

C5

s2 s3

s4

s5

D1

D2

D3

D4

p3

Figure 3.2: Potential functions of a balanced configuration.

1. (a) |Ai(pi−1, ti)| > |pi−1pi|+ |Ai(pi, ti)| if pi is above st, and173

(b) |Ai(pi−1, ti)| > |pi−1pi|+ |Bi(pi, ti)| if pi is below st174

otherwise pi−1 is below st and175

2. (a) |Bi(pi−1, ti)| > |pi−1pi|+ |Bi(pi, ti)| if pi is below st, and176

(b) |Bi(pi−1, ti)| > |pi−1pi|+ |Ai(pi, ti)| if pi is above st.177

Proof. Case 1a is because |Ai(pi−1, pi)| > |pi−1pi|, and Case 1b is because if pi is178

below st, then the algorithm chose to cross st, which implies 1b. Case 2 is symmetric.179

Theorem 2.1 follows from Lemmas 3.3, 3.4, 3.5, and 3.6:180

Proof. We first analyze the case when pi−1 is above st. Recall that in this case,
Φ(Ci−1, Ci) is defined as

Φ(Ci−1, Ci) = |Ai(pi−1, ti)| − |Ai−1(pi−1ti−1)| − λ|si−1si| − (µ− λ)|ti−1ti|.

If pi is above st (same side of st as pi−1), then |Ai(pi−1, ti)| > |pi−1pi|+ |Ai(pi, ti)|181

by Lemma 3.6. In this case, let Di = Ai(pi, ti). If pi is below st, then |Ai(pi−1, ti)| >182

|pi−1pi|+ |Bi(pi, ti)| by Lemma 3.6. In this case,l et Di = Bi(pi, ti). In both cases we183

have |Ai(pi−1, ti)| > |pi−1pi|+ |Di|.184

Let Φ′(Ci−1, Ci) be the function defined by

Φ′(Ci−1, Ci) = |pi−1pi|+ |Di| − |Di−1| − λ|si−1si| − (µ− λ)|ti−1ti|.

Observe that Φ′(Ci−1, Ci) ≤ Φ(Ci−1, Ci). Lemma 3.3 tells us that Φ(Ci−1, Ci) ≤ 0,185

thus Φ′(Ci−1, Ci) ≤ 0. When pi−1 is below st, a symmetric proof again shows us186

that Φ′(Ci−1, Ci) ≤ 0. Recall that p0 = t0 = s, and pn = tn = t, which means187

6
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pi−1

Ci−1 Ci

Di−1

Ai(pi−1, ti)

qi

ti−1 ti
sisi−1

Figure 3.3: Φ(Ci−1, Ci).

|D0| = |Dn| = 0. Therefore we have188

n∑
i=1

Φ′(Ci−1, Ci) ≤ 0189

from which we get:190

n∑
i=1

(|pi−1pi|+ |Di| − |Di−1|) ≤
n∑
i=1

(λ|si−1si|+ (µ− λ)|ti−1ti|)191

|P〈s, t〉| − |D0|+ |Dn| ≤ (λ+ µ− λ)|st|(3.1)192

|P〈s, t〉| ≤ µ|st|.193194

The right hand side of (3.1) is due to Lemmas 3.4 and 3.5.195

Lemma 3.4 is discussed in the next section. Lemma 3.3 is discussed in Section 3.3.196

3.2. Proof of Lemma 3.4. Lemma 3.4 uses the following supporting result:197

Lemma 3.7. Let Ci−1 and Ci be balanced. Let si−1 be the point on st where198

x(si−1) = x(ti−1)− 2ri−1 and let si be the point on st where x(si) = x(ti)− 2ri. Then199

x(si−1) ≤ x(si).200

Proof. See Fig. 3.4. Let ui−1 be the point on Ci−1 that is diametrically opposed201

to ti−1 and let ui be the point on Ci that is diametrically opposed to ti. We will show202

the case when pi−1 is above st; the case when it is below st is symmetric. Since Ci−1203

and Ci are balanced, we have that |Ai(pi−1, ti)| = |pi−1qi|+ |Bi(qi, ti)| which implies204

that |Ai(pi−1, ti)| ≤ πri and |Bi(qi, ti)| ≤ πri. Since |Ai(ui, ti)| = |Bi(ui, ti)| = πri,205

ui is not on the open interval Ai(pi−1, ti) or Bi(qi, ti), which implies that either ui is206

to the left of pi−1qi, or ui = pi−1 = qi, which implies that ui is on or inside Ci−1.207

Let Oi be the circle centered at ti with radius |tiui| = 2ri. Thus Oi and Ci are208

tangent at ui, and Oi intersects st at si. Let Oi−1 be the circle centered at ti−1 with209

radius 2ri−1. Thus Oi−1 and Ci−1 are tangent at ui−1, and Oi−1 intersects st at si−1.210

We prove the lemma by contradiction, thus assume that x(si) < x(si−1). In the211

proof of Lemma 3.5, we showed that x(ti) > x(ti−1). Therefore, it must be that Oi−1212

is in the interior of Oi, and thus they do not intersect. Since ui is on or inside Ci−1,213
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s t

Ci

ti

ui

pi−1

qi

Ci−1

sisi−1

ti−1

OiOi−1

ui−1

Figure 3.4: Oi must intersect Oi−1 if Ci−1 and Ci are path balanced, which implies
that x(si−1) ≤ x(si).

Ci−1

Ci

st

Di−1

pi−1

qi

si

si−1 ci−1 ci

ti−1

ti

Ai(pi−1, ti)

Figure 3.5: Coordinate system for analyzing Φ(Ci−1, Ci).

and Oi intersects ui, Oi must intersect Ci−1. But Ci−1 is contained in Oi−1 except214

for the point ui−1, and Oi−1 is contained in Oi, and thus Oi cannot intersect Ci−1,215

which is a contradiction. See Fig. 3.4.216

We can now prove Lemma 3.4:217

Proof of Lemma 3.4. Follows from Lemma 3.7 and the fact that x(s0) = x(s) and218

x(sn) < x(t).219
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3.3. Proof of Lemma 3.3. To show that Φ(Ci−1, Ci) ≤ 0 when Ci−1 and Ci220

are balanced, we set up the following coordinate system. We show the proof for the221

case when pi−1 is above st; the case when pi−1 is below st is symmetric. Let ci−1 and222

ci lie along the x-axis, and let pi−1 and qi lie along the y-axis. See Fig. 3.5. Lemma223

3.3 follows from the following two lemmas:224

Lemma 3.8. When Ci−1 and Ci are balanced, if y(ti−1) ≤ 0, then Φ(Ci−1, Ci) ≤ 0.225

Lemma 3.9. When Ci−1 and Ci are balanced, if y(ti−1) > 0, then Φ(Ci−1, Ci) ≤ 0.226

The main tool to prove these two lemmas is the following transformation, which227

is similar to a transformation used by Xia [15].228

Transformation 3.10. Fix pi−1 and qi, and translate ci to the left along the229

x-axis until ci = ci−1. Moreover keep Ci−1 unchanged and maintain Ci as the circle230

with center ci with pi−1 on its boundary.231

Observe that, after we have completed Transformation 3.10, we have Ci = Ci−1232

and thus Φ(Ci−1, Ci) = 0. If we can show that Φ(Ci−1, Ci) is increasing while x(ci)233

decreases, then it must be that Φ(Ci−1, Ci) ≤ 0 before Transformation 3.10. Thus234

we wish to find the change in Φ(Ci−1, Ci) with respect to the change in x(ci) during235

Transformation 3.10. Formally:236

Lemma 3.11. If dΦ(Ci−1,Ci)
dx(ci)

≤ 0 during Transformation 3.10, then Φ(Ci−1, Ci) ≤237

0.238

Proof. At the end of Transformation 3.10 we have that Φ(Ci−1, Ci) = 0. If239
dΦ(Ci−1,Ci)

dx(ci)
≤ 0 then Φ(Ci−1, Ci) is not decreasing during Transformation 3.10, and240

thus Φ(Ci−1, Ci) ≤ 0 before Transformation 3.10.241

The analysis of this function is similar to Xia’s approach[15]. Full details of this242

analysis and the proofs for Lemmas 3.8 and 3.9 can be found in Appendix C.243

4. Bounding P〈s, t〉 in the General Case. In Section 3, we proved Theorem244

2.1 for the case when the path produced by our algorithm results in a balanced245

configuration. In this section, we prove Theorem 2.1 for the general case. Given a246

sequence C of circles that intersect st, no series of transformations were found that247

could achieve a balanced configuration, while simultaneously providing a provable248

upper bound on the length of |pi−1, pi|. However, we were able to find two sequences of249

circles to substitute for C. To represent each Ci in C, we have a potential circle CPi and250

a bounding circle CBi . Like Ci, both CPi and CBi have ti as their rightmost intersection251

with st. However, Ci intersects both pi and pi−1, while CBi is only required to intersect252

pi−1, and CPi is only required to intersect pi. If we look at a bounding circle CBi and253

the previous potential circle CPi−1, which intersect at pi−1, they are balanced, and254

we can thus apply the function Φ(CPi−1, C
B
i ) to relate the lengths of the arcs of these255

circles to |st|. Finally, when analyzed properly, they provide an upper bound on the256

length |pipi−1|.257

Formally, let CP0 be the circle centered at s = p0 with radius rP0 = 0, and let258

CPn be the circle centered at t with radius rPn = 0. Assuming we have defined CPi−1,259

we will define CBi and CPi . If pi−1 is above st, let CBi be the circle through pi−1260

and ti for which |ACB
i

(pi−1, ti)| = |pi−1q
′
i|+ |BCB

i
(q′i, ti)|, where q′i is the bottommost261

intersection of CPi−1 and CBi . If pi−1 is below st, let CBi be the circle through pi−1262

and ti for which |BCB
i

(pi−1, ti)| = |pi−1q
′
i| + |ACB

i
(q′i, ti)|, where q′i is the topmost263
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s t

(a) The triangles and the respective circumcircles of a Delaunay triangulation intersected by
st, as well as the path P〈s, t〉 found by the algorithm.

t, p6, t6

p1

p2

p3

p4
p5

s, p0

AB
1 (p0, t1)

AB
2 (p1, t2)

AB
3 (p2, t3)

BB
4 (p3, t4)

AB
5 (p4, t5)

BB
6 (p5, t6)

DP
1

DP
2

DP
3

DP
4

DP
5

t1 t2
t3

t4 t5

(b) The complete set of bounding arcs and potential arcs.

Figure 4.1: The construction of the potential circles and bounding circles in the general
case.

intersection of CPi−1 and CBi . That is, CPi−1 and CBi are balanced. Let rBi be the radius264

of CBi . The potential circle CPi is the circle through pi, whose rightmost intersection265

with st is ti, and whose radius is given by rPi = min{ri, rBi } (with the exception of266

rPn = 0). Let sPi be the point on st with x(sPi ) = x(ti)− 2rPi , and let sBi be the point267

on st with x(sBi ) = x(ti)− 2rBi .268

To simplify notation, for points u and v on CPi , instead of writing ACP
i

(u, v)269

and BCP
i

(u, v) to indicate clockwise and counter-clockwise arcs of CPi from u to v,270

respectively, we write APi (u, v) and BPi (u, v). Likewise, for points u and v on CBi ,271

instead of writing ACB
i

(u, v) and BCB
i

(u, v), we write ABi (u, v) and BBi (u, v).272

See Figs. 4.1a and 4.1 for an example of the initial sequences T and C and the273

resulting bounding and potential arcs that we are interested in. See Appendix A for a274

series of diagrams walking through a complete example.275
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Since CPi−1 and CBi are balanced, Φ can be extended to CPi−1 and CBi , and thus
we have

Φ(CPi−1, C
B
i ) = |ABi (pi−1, ti)| − |APi−1(pi−1, ti−1)| − λ|sPi−1s

B
i | − µ|ti−1ti|

when pi−1 is above st and

Φ(CPi−1, C
B
i ) = |BBi (pi−1, ti)| − |BPi−1(pi−1, ti−1)| − λ|sPi−1s

B
i | − µ|ti−1ti|

when pi−1 is below st. Lemma 3.3 tells us that Φ(CPi−1, C
B
i ) ≤ 0. To prove Theorem 2.1276

in the general case, it is sufficient to prove the following two lemmas. Lemma 4.1 is a277

generalization of Lemma 3.4, whereas Lemma 4.2 is a generalization of Lemma 3.6.278

Lemma 4.1.
∑n
i=1 |sPi−1s

B
i | ≤ |st|.279

Proof. Since CPi−1 and CBi are balanced, Lemma 3.7 tells us that x(sPi−1) ≤ x(sBi ).280

We know that x(sPi ) = x(ti) − 2rPi and x(sBi ) = x(ti) − 2rBi , thus the fact that281

rPi = min{ri, rBi } implies that x(sBi ) ≤ x(sPi ). Thus |sPi−1s
B
i | ≤ |sPi−1s

P
i |, and it is282

sufficient to show that
∑n
i=1 |sPi−1s

P
i | ≤ |st|. The fact that x(sPi−1) ≤ x(sBi ) implies283

that x(sPi−1) ≤ x(sPi ), and CP0 is the circle centered at s with radius 0, and thus284

sP0 = s. Since x(sPn ) ≤ x(t), this completes the proof.285

Due to space constraints, the following lemma will be proved in Appendix B.286

Lemma 4.2. For 1 ≤ i ≤ n, if pi−1 is above st, then287

1. (a) |ABi (pi−1, ti)| ≥ |pi−1pi|+ |APi (pi, ti)| if pi is above st, and288

(b) |ABi (pi−1, ti)| ≥ |pi−1pi|+ |BPi (pi, ti)| if pi is below st289

otherwise pi−1 is below st and290

2. (a) |BBi (pi−1, ti)| ≥ |pi−1pi|+ |BPi (pi, ti)| if pi is below st, and291

(b) |BBi (pi−1, ti)| ≥ |pi−1pi|+ |APi (pi, ti)| if pi is above st.292

Theorem 2.1 follows from Lemmas 3.3, 3.5, 4.1, and 4.2.293

Proof of Theorem 2.1. If pi is above st, let DP
i = APi (pi, ti). If pi is below st,294

let DP
i = BPi (pi, ti). Let Φ′(CPi−1, C

B
i ) = |pi−1pi|+ |DP

i | − |DP
i−1| − λ|sPi−1s

B
i | − (µ−295

λ)|ti−1ti|. Lemmas 4.2 and 3.3 imply that Φ′(CPi−1, C
B
i ) ≤ Φ(CPi−1, C

B
i ) ≤ 0. Using296

Φ′(CPi−1, C
B
i ) we get:297

n∑
i=1

Φ′(Ci−1, Ci) ≤ 0298

n∑
i=1

(
|pi−1pi|+ |DP

i | − |DP
i−1|

)
≤

n∑
i=1

(λ|sPi−1s
B
i |+ (µ− λ)|ti−1ti|)299

|P〈s, t〉| − |DP
0 |+ |DP

n | ≤ (λ+ µ− λ)|st|(4.1)300

|P〈s, t〉| ≤ µ|st|.301302

Line (4.1) follows from Lemmas 3.5 and 4.1.303

We give some insight into the selection of rPi . Assume that pi−1 is above st (when304

pi−1 is below st the explanation is symmetric).305

The purpose of |ABi (pi−1, ti)| is to bound |pi−1pi| + |APi (pi, ti)|, as expressed306

in Lemma 4.2. This lemma is also the reason for selecting the radius of CPi as307

rPi = min{ri, rBi }. It would be simpler to let rPi = rBi , since then we would have308
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CP
i−1

Ci−1 Ci

pi−1

bi

ti

ai, pi

ti−1

(a) Ci−1, Ci, and CP
i−1.

Notice that rPi−1 > ri−1.

CP
i−1

Ci−1
Ci

CB
i

pi−1

bi
q′i

ti

ai, pi

(b) CB
i and its intersection

with CP
i−1.

CB
i

pi−1

q′i

ti

AP
i (pi, ti)AB

i (pi−1, ti)

CP
i

ai, pi

CP
i−1

(c) |AB
i (pi−1, ti)| <

|pi−1, pi|+ |AP
i (pi, ti)|.

Figure 4.2: The reasoning behind rPi = min{ri, rBi }. In this diagram, rPi > ri,
and we show why it is detrimental to our analysis. Notice that |ABi (pi−1, ti)| <
|pi−1, pi|+ |APi (pi, ti)|. Thus the arc ABi (pi−1, ti) of the bounding circle is not long
enough to pay for |pi−1, pi|+ |APi (pi, ti)| .

sPi = sBi . However, if we allow rPi > ri, it can happen that the arc |ABi+1(pi, ti+1)| on309

the next bounding circle is not large enough to cover |pipi+1|+ |APi+1(pi+1, ti+1)|. See310

Fig. 4.2. Thus Lemma 4.2 would not hold. To account for this, we ensure that CPi311

has radius at most ri.312

5. Conclusion and Future Work. Consider the algorithm presented in Sec-313

tion 2, along with two variations. To keep the algorithms simple, assume we are at a314

vertex p above st. Otherwise all assumptions are the same as in Section 2.315

• BestChord: If |pa|+ |AC(a, tC)| ≤ |pb|+ |AC(b, tC)| then p = a else p = b.316

• MixedChordArc: If |AC(p, tC)| ≤ |pb|+ |AC(b, tC)| then p = a else p = b.317

• MinArc: If |AC(p, tC)| ≤ πr then p = a else p = b.318

The algorithm presented in this paper is MixedChordArc. Following the tech-319

niques used in [1] we show that the routing ratio of MinArc is between 3.20 and 3.96.320

Since the routing ratio of 3.56 of MixedChordArc is better the details of MinArc321

analysis are left in Appendix D.322

We suspect that BestChord is an improvement on MixedChordArc. It seems323

plausible that we can modify the proofs presented in this paper to obtain the324

same upper bound for BestChord as for MixedChordArc, but for now that remains325

unverified. Whether or not BestChord is asymptotically superior to MixedChordArc,326

or whether they are asymptotically the same is still unknown.327

Although we have improved the upper bound of the routing ratio on the L2-328

Delaunay triangulation, it is not clear how tight our analysis is. The upper bound on329

the analysis is where our potential function is the weakest. A more clever potential330

function could lower the routing ratio using a comparable analysis. Or perhaps one of331

the algorithms above would respond to a completely different style of analysis.332

Furthermore, the lower bound on MixedChordArc is still the same as the lower333

bound on routing on the L2-Delaunay triangulation in general, which is approximately334

1.70 [1]. So it seems there is still much room for improvement. The question remains,335

what other algorithms or analysis can we use to improve the routing ratio of the336

Delaunay triangulation? And given that the upper and lower bounds on the spanning337
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ratio of the L2-Delaunay triangulation are 1.998 [15] and 1.5932 [16] respectively, is338

there a separation of the spanning and routing ratios of the Delaunay triangulation?339
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[7] Prosenjit Bose, Rolf Fagerberg, André van Renssen, and Sander Verdonschot. Competitive367
routing in the half-Theta-6-graph. In Proceedings of the Twenty-third Annual ACM-SIAM368
Symposium on Discrete Algorithms, SODA ’12, pages 1319–1328. SIAM, 2012. URL:369
http://dl.acm.org/citation.cfm?id=2095116.2095220.370

[8] Prosenjit Bose and Pat Morin. Online routing in triangulations. In Algorithms and Com-371
putation, volume 1741 of Lecture Notes in Computer Science, pages 113–122. Springer372
Berlin Heidelberg, 1999. URL: http://dx.doi.org/10.1007/3-540-46632-0 12, doi:10.1007/373
3-540-46632-0_12.374

[9] L. Paul Chew. There is a planar graph almost as good as the complete graph. In Proceedings375
of the Second Annual Symposium on Computational Geometry, SCG ’86, pages 169–376
177, New York, NY, USA, 1986. ACM. URL: http://doi.acm.org/10.1145/10515.10534,377
doi:10.1145/10515.10534.378

[10] L. Paul Chew. There are planar graphs almost as good as the complete graph. Journal of379
Computer and System Sciences, 39(2):205 – 219, 1989. URL: http://www.sciencedirect.380
com/science/article/pii/0022000089900445, doi:https://doi.org/10.1016/0022-0000(89)381
90044-5.382
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Appendix A. A Trace of MixedChordArc and an Illustration of the400

Proof of Theorem 2.1.401

In these figures we illustrate the proof of Theorem 2.1.402

Figure A.1a illustrates the triangles and their respective circumcircles of the403

Delaunay triangulation intersected by st, as well as the path P〈s, t〉. In figure A.1b,404

recall that CP0 is the circle centered at s with radius rP0 = 0. We see that CB1 is the circle405

through ti that is balanced with respect to CP0 , i.e., |AB1 (p0, t1)| = |BB1 (b′1 = p0, t1)| =406

πrB1 .407

s t

(a) T , C, and P〈s, t〉.

ts, p0, q
′
0 t1

p1

AB
1 (p0, t1)

BB
1 (q′0, t1)

CP
0

(b) CP
0 and CB

1 are balanced.

Figure A.1: Initial configuration and construction of CB1 given CP0 .

In Figure A.2a we see CP1 through p1 and t1 with radius rP1 = rB1 < r1. In this408

example it is clear that |AB1 (p0, t1)| ≥ |p0p1|+ |AP1 (p1, t1)| since they are both convex409

and AB1 (p0, t1) contains p0p1 +AP1 (p1, t1).410
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tt1

p1

AB
1 (p0, t1)

s, s1, p0

AP
1 (p1, t1)

CP
1

(a) CP
1 with radius rp1 = rB1 .

Figure A.2

In Figure A.3a, CB2 is balanced with respect to CP1 , that is, |AB2 (p1, t2)| =411

|p1q
′
2|+ |BB2 (q′2, t2)|. If Figure A.3b we show the placement of CP2 .412

In Figure A.3c, CB3 is balanced with CP2 , but note that this time rB3 > r3. Thus413

in Figure A.4a, we note that rP3 = r3 < rB3 , and therefore CP3 = C3.414

In Figure A.4b, CB4 is balanced with CP3 , with p3 is under st, thus |BB4 (p3, t4)| =415

|p4q
′
4| + |AB4 (q′4, t4)|. In Figure A.4c, p3p4 and AP4 (p4, t4) are not convex. Thus416

|BB4 (p3, t4)| = |p3q
′
4| + |AB4 (q′4, t4)| ≥ |p3p4| + |AP4 (p4, t4)| is proven by other means.417

See Appendix B.418

In Figures A.5a and A.5b, the path of p4q
′
5 and BB5 (q′5, t5) does not contain the419

path of p4p5 and BP5 (p5, t5), thus we cannot use a simple proof to show |AB5 (p4, t5)| =420

|p4q
′
5|+ |BB5 (q′5, t5)| ≥ |p4p5|+ |BP5 (p5, t5)|. See Appendix B.421

In Figure A.5c, note that p5 = q′6. Thus CB6 being balanced with CP5 implies422

that |AB6 (p5, t6)| = |BB6 (p5 = q′6, t6)|. Since p6 = t, CP6 is the circle centered at t with423

radius rP6 = 0, and thus degenerate.424

In Figure A.6a, we see the arcs in Φ(CPi−1, C
B
i ), for all 0 < i ≤ 6. For example,425

Φ(CP1 , C
B
2 ) = |AB2 (p1, t2)| −DP

1 − λ|sP1 sB2 | − (Φ− λ)|t1t2|.426
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p1
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1
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q′2

AB
2 (p1, t2)

BB
2 (q′2, t2)

p2
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(a) CB
2 is balanced with CP

1 .

tt1

p1

CP
1

s

AB
2 (p1, t2)

p2

CB
2

AP
2 (p2, t2)

t2

(b) CP
2 with radius rP2 = rB2 .

t

p1

CP
1

s

p2 AB
3 (p2, t3)

q′3
BB
3 (q′3, t3)

p3

t3

CP
2

(c) CB
3 is balanced with CP

2 .

Figure A.3
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(a) Since r3 < rB3 , we set rP3 = r3, and thus CP
3 = C3.
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Appendix B. Proof of Lemma 4.2.427

We will prove part 1 of Lemma 4.2; the proof of part 2 is symmetric. Thus we428

assume that pi−1 is above st. Let C be any circle with pi−1 and ti−1 on its boundary.429

Let C ′ be any circle with pi−1 and ti on its boundary. Let q be the lowest intersection430

point of C and C ′.431

Of the following two paths from pi−1 to ti, |pi−1q|+ |BC′(q, ti)| and |AC′(pi−1, ti)|,432

let PS(C,C ′) be the shorter and let PL(C,C ′) be the longer. If the paths have equal433

length label both paths PS(C,C ′).434

Lemma B.1. Let C be a fixed circle with pi−1 and ti−1 on its boundary. Of all435

circles C ′ with pi−1 and ti on its boundary, |PS(C,C ′)| is maximized when C and C ′436

are balanced.437

Proof. Note that PS(C,C ′) and PL(C,C ′) are both convex. We prove the lemma438

by contradiction. Let C ′ be the circle through pi−1 and ti such that C and C ′ are439

balanced. Let C ′′ be a circle through pi−1 and ti such that |PS(C,C ′′)| > |PS(C,C ′)|.440

Since C ′ and C ′′ intersect in pi−1 and ti, the part of C ′ on one side of pi−1ti is contained441

in C ′′, and the part of C ′ to the other side of pi−1ti contains C ′′. Consider the path442

PS(C,C ′) to the side of pi−1ti where C ′ contains C ′′. Observe that PS(C,C ′) is convex443

and either contains PS(C,C ′′) or PL(C,C ′′). In either case, |PS(C,C ′)| > |PS(C,C ′′)|,444

a contradiction. See Fig. B.1.445

Recall that in this section, pi−1 is assumed to be above st. Therefore qi denotes446

the lowest intersection point of Ci−1 and Ci. Let q̂i be the lowest intersection point of447

CPi−1 and Ci. Then we have the following lemma.448

Lemma B.2. |pi−1qi|+ |Bi(qi, ti)| ≤ |pi−1q̂i|+ |Bi(q̂i, ti)|.449

Proof. Let li be the leftmost intersection of Ci with st. We know qi is on the450

opposite side of st as pi−1. If q̂i is on the same side of st as pi−1, then it must be on451

the arc Bi(pi−1, li) (by construction), thus qi is on Bi(q̂i, ti), and the lemma is true by452

the triangle inequality.453

Assume that q̂i is below st. If rPi−1 = ri−1, then CPi−1 = Ci−1 and q̂i = qi, from454

which the inequality becomes trivial. Assume that rPi−1 = min{ri−1, r
B
i−1} = rBi−1 <455

ri−1.456

Since CPi−1 and Ci−1 intersect pi−1 and ti−1, and since rPi−1 < ri−1, the convex457

hull of APi−1(pi−1, ti−1) contains the convex hull of Ai−1(pi−1, ti−1). That means that458

the part of CPi−1 to the left of pi−1ti−1 is contained in Ci−1. Therefore qi is on Bi(q̂i, ti),459

and thus |pi−1qi| < |pi−1q̂i|+ |Bi(q̂i, qi)| by the triangle inequality, which implies the460

lemma.461

Lemma B.3. |pi−1pi|+ |Di| ≤ |PS(Ci−1, Ci)| ≤ |PS(CPi−1, Ci)| ≤ |ABi (pi−1, ti)|.462

Proof. For the first inequality, we consider two cases: Either pi is above st,463

or pi is below st. If pi is above st, then the path does not cross st, therefore464

|pi−1pi|+ |Di| = |pi−1pi|+ |Ai(pi, ti)| < |Ai(pi−1, ti)| = |PS(Ci−1, Ci)| by the triangle465

inequality. If pi is below st, then the path does cross st, therefore |pi−1pi|+ |Di| =466

|pi−1pi| + |Bi(pi, ti)| ≤ min{|Ai(pi−1, ti)|, |pi−1qi| + |Bi(qi, ti)|} = |PS(Ci−1, Ci)| by467

the triangle inequality.468
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By Lemma B.2, we have469

|PS(Ci−1, Ci)| = min{|Ai(pi−1, ti)|, |pi−1qi|+ |Bi(qi, ti)|}470

≤ min{|Ai(pi−1, ti)|, |pi−1q̂i|+ |Bi(q̂i, ti)|}471

= |PS(CPi−1, Ci)|.472473

For the last inequality, |PS(CPi−1, Ci)| is equal to the smallest of |pi−1q̂i|+|Bi(q̂i, ti)|474

and |Ai(pi−1, ti)|. Therefore, |PS(CPi−1, Ci)| ≤ |PS(CPi−1, C
B
i )| = |ABi (pi−1, ti)| by475

Lemma B.1, since CPi−1 and CBi are balanced. This proves the lemma.476

Proof of Lemma 4.2. Assume that pi−1 is above st. We have to prove that477

|ABi (pi−1, ti)| ≥ |pi−1pi|+ |DP
i |.(B.1)478479

If rPi = ri < rBi , then CPi = Ci, and the right-hand side of (B.1) is equal to |pi−1pi|+480

|Di|. Lemma 4.2 then follows from Lemma B.3. Otherwise rPi = min{ri, rBi } = rBi < ri.481

We consider two cases:482

1. |Ai(pi−1, ti)| < πri and483

2. |Ai(pi−1, ti)| > πri.484

Note that if |Ai(pi−1, ti)| = πri, then ri is the smallest radius of any circle through485

pi−1 and ti, and thus rBi ≥ ri. Thus these two cases cover all possibilities.486

Observation B.4. We have the following two inequalities487

|pi−1ti| > |piti| and(B.2)488

|Ai(pi−1, ti)| ≥ |pi−1pi|+ |Di|.(B.3)489490

Given a circle C and two points u and v on C, let ΓC(u, v) be the shorter of the
two arcs AC(u, v) and BC(u, v). For a given radius r, let

Z(r) = |ΓC(pi−1, ti)| − |pi−1pi| − |ΓC′(pi, ti)|,

where C (respectively C ′) is any circle with radius r, and with pi−1 (respectively pi)491

and ti on its boundary1. Since rPi = rBi , we need to show that Z(rPi ) ≥ 0.492

Let us consider Case 1. Observe that in Z(ri), C = C ′ = Ci since pi−1, pi, and493

ti all belong to Ci. Therefore, by (B.3) and the definition of Di, we have Z(ri) ≥ 0.494

Thus, if we can prove that Z(r) never decreases as r goes from ri down to rPi = rBi ,495

we are done. Hence, we want to show that dZ(r)
dr ≤ 0. In other words, we want to show496

d|ΓC(pi−1, ti)|
dr

≤ d|ΓC′(pi, ti)|
dr

.(B.4)497
498

Let α be the angle at the center of C subtended by ΓC(pi−1, ti), and let β be the499

angle at the center of C ′ subtended by ΓC′(pi, ti). By (B.2) we have α > β. Note that500

|ΓC(pi−1, ti)| = αr, and |ΓC′(pi, ti)| = βr. Since they are both linear in r, if we prove501

dα

dr
≤ dβ

dr
,(B.5)502

503

1Notice that Z(r) is defined for all r ≥ |pi−1ti|/2.
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we have proven (B.4). We have sin(α/2) = |pi−1ti|
2r , thus α = 2 arcsin

(
|pi−1ti|

2r

)
.504

Therefore505

dα

dr
= − |pi−1ti|

2

√
1−

(
|pi−1ti|

2r

)2
≤

by(B.2)
− |piti|

2

√
1−

(
|piti|

2r

)2
=
dβ

dr
,506

507

which proves Case 1.508

Let us consider Case 2. Since |Ai(pi−1, ti)| > πri, it must be that |pi−1bi| +509

|Bi(bi, ti)| < |Ai(pi−1, ti)|, and the algorithm crossed st at pi−1 (and thus pi =510

bi). Note that πri > |Bi(pi−1, ti)| > |pi−1bi| + |Bi(bi, ti)| = |pi−1pi| + |Di|. Thus511

|Bi(pi−1, ti)| − |pi−1pi| − |Bi(pi, ti)| = Z(ri) ≥ 0, and we apply the same argument as512

above to show that Z(rPi ) ≥ 0.513

Appendix C. Proofs of Lemmas 3.8 and 3.9 - Analyzing Φ(Ci−1, Ci).514

In this section, we want to prove Lemmas 3.8 and 3.9. In other words, we wish to515

show Φ(Ci−1, Ci) ≤ 0, where516

Φ(Ci−1, Ci) =|Ai(pi−1, ti)| − |Ai−1(pi−1, ti)| − λ|si−1si| − (µ− λ)|ti−1ti|(C.1)517

when pi−1 is above st, and518

Φ(Ci−1, Ci) =|Bi(pi−1, ti)| − |Bi−1(pi−1, ti)| − λ|si−1si| − (µ− λ)|ti−1ti|(C.2)519

when pi−1 is below st.520521

Since these two cases are symmetric, for the remainder of the proof, we assume that522

pi−1 is above st, thus we focus on proving (C.1).523

We can rewrite −λ|si−1si| as524

−λ|si−1si| = −λ(x(si)− x(si−1))525

= −λ(x(ti)− 2ri − x(ti−1) + 2ri−1)526

= −λ|ti−1ti| − 2λ(ri−1 − ri).527528

Thus we can rewrite Φ(Ci−1, Ci) as529

Φ(Ci−1, Ci) = |Ai(pi−1, ti)| − |Ai−1(pi−1, ti−1)| − 2λ(ri−1 − ri)− µ|ti−1ti|.

Recall that Lemmas 3.8 and 3.9 were introduced in Section 3.3, where we assumed530

that ci−1 and ci lie on the x-axis, with x(ci) > x(ci−1), and pi−1 and qi lie on the531

y-axis. Therefore x(pi−1) = x(qi) = 0.532

The following lemma is a useful result.533

Lemma C.1. Let us fix Ci−1, Ci, pi−1 and ti. Consider all line segments st such534

that ti is on st, st intersects Ci−1, and ci−1 is on or above st. Among all such line535

segments st, Φ(Ci−1, Ci) is maximized when ci−1 is on st.536

Proof. Consider the case where ci−1 is above st. We rotate st until it contains537

ci−1 and observe the changes in Φ(Ci−1, Ci).538
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During the rotation of st, ri−1, ri, and ti remain fixed, whereas ti−1 is changing.539

Note that |ti−1ti| is minimized when st contains ci−1. Thus −µ|ti−1ti| is increasing. We540

also note that −|Ai−1(pi−1, ti−1)| is increasing, while |Ai(pi−1, ti)| remains constant.541

Thus, for all cases where ci−1 is on or above st, Φ(Ci−1, Ci) is maximized when ci−1542

is on st.543

Thus, for the rest of the proof, we assume that ci−1 is either on or below st.544

Let α (respectively β) be the angle (respectively the signed angle) defined by the545

line segment cipi−1 (respectively citi) and the x-axis such that |Ai(pi−1, ti)| = (α+β)ri546

(refer to Fig. C.1). Thus 0 ≤ α ≤ π and −α ≤ β ≤ α. Let γ be the signed angle between547

the x-axis and st such that −π/2 < γ < π/2. Observe that −π/2 < β − γ < π/2.548

First, recall the definition of Transformation 3.10. As we apply Transforma-549

tion 3.10, we update the values of α, β, and γ. Observe that, after we have completed550

Transformation 3.10, we have Ci = Ci−1 and thus Φ(Ci−1, Ci) = 0. If we can show that551

Φ(Ci−1, Ci) was increasing while x(ci) decreased, then it must be that Φ(Ci−1, Ci) ≤ 0552

before Transformation 3.10. Thus we wish to find the change in Φ(Ci−1, Ci) with553

respect to the change in x(ci) during Transformation 3.10. Therefore we wish to554

calculate the derivative of Φ(Ci−1, Ci) with respect to x(ci).555

We define a function τ(α, β, γ) = dΦ(Ci−1,Ci)
dx(ci)

. Thus if we show τ(α, β, γ) ≤ 0, we556

can apply Lemma 3.11 and we are done.557

However, this does not always work, as we sometimes encounter degenerate cases558

where dΦ(Ci−1,Ci)
dx(ci)

> 0 at some point during Transformation 3.10. For the cases when559

this happens, we use a different argument to show that, before applying Transformation560

3.10, when Ci−1 and Ci are balanced, Φ(Ci−1, Ci) ≤ 0.561

Thus we use a combination of Lemma 3.11, intermediate circles, and geometric562

proofs to show that Φ(Ci−1, Ci) ≤ 0 in all cases when Ci−1 and Ci are balanced.563

In Appendix C.1 we compute τ(α, β, γ) = dΦ(Ci−1,Ci)
dx(ci)

. In Appendix C.2 we564

simplify and analyze this function. In Appendix C.3 we identify the different cases565

we need to consider to prove Lemmas 3.8 and 3.9, and then apply the appropriate566

techniques to prove them.567

C.1. Analyzing dΦ(Ci−1,Ci)
dx(ci)

. We compute dΦ(Ci−1,Ci)
dx(ci)

piece by piece. Note that568

x(ci) = −ri cosα and y(pi−1) = ri sinα.569

dri
dx(ci)

=
d
√
x(ci)2 + y(pi−1)2

dx(ci)
=

x(ci)√
x(ci)2 + y(pi−1)2

=
x(ci)

ri
= − cosα(C.3)570

dα

dx(ci)
=
d(π/2 + arctan( x(ci)

y(pi−1) ))

dx(ci)
=

y(pi−1)

x(ci)2 + y(pi−1)2
=
y(pi−1)

r2
i

=
sinα

ri
571

d(αri)

dx(ci)
= α

dri
dx(ci)

+ ri
dα

dx(ci)
= sinα− α cosα572

573

To calculate d|ti−1ti|
dx(ci)

and dβ
dx(ci)

we need the total chain rule, or total derivative.574

We consider |ti−1ti| as a function of x(ci) and ri. However, ri is also a function of575

x(ci). Thus we can express the change in |ti−1ti| with respect to the change in x(ci)576

as:577
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d|ti−1ti|
dx(ci)

=
∂|ti−1ti|
∂x(ci)

dx(ci)

dx(ci)
+
∂|ti−1ti|
∂ri

dri
dx(ci)

=
∂|ti−1ti|
∂x(ci)

+
∂|ti−1ti|
∂ri

dri
dx(ci)

578
579

Geometrically, ∂x(ci) represents translating ci along the x-axis while fixing the580

radius ri. ∂ri represents changing the radius ri of Ci, while keeping x(ci) fixed. See581

Fig. C.3. However, the change in ri is dependent on x(ci), hence we multiply by dri
dx(ci)

.582

The partial derivatives ∂|ti−1ti|
∂x(ci)

and ∂|ti−1ti|
∂ri

can be individually determined using583

simple geometry. We determine dβ
dx(ci)

using the same technique.584

C.1.1. Calculating d|ti−1ti|
dx(ci)

. In Fig. C.5a we examine the geometry of ∂|ti−1ti|
∂x(ci)

.585

Applying the sine rule yields586

sin(π/2 + β − γ)

∂x(ci)
=

sin(π/2− β)

∂|ti−1ti|
587

∂|ti−1ti|
∂x(ci)

=
sin(π/2− β)

sin(π/2 + β − γ)
=

cosβ

cos(β − γ)
588
589

In Fig. C.4b we examine the geometry of ∂|ti−1ti|
∂ri

. Applying the sine rule yields590

sin(π/2− β + γ)

∂ri
=

sin(π/2)

∂|ti−1ti|
591

∂|ti−1ti|
∂ri

=
1

sin(π/2 + β − γ)
=

1

cos(β − γ)
592
593

.594

From (C.3) we have dri
dx(ci)

= − cosα. Thus595

d|ti−1ti|
dx(ci)

=
∂|ti−1ti|
∂x(ci)

+
∂|ti−1ti|
∂ri

dri
dx(ci)

596

=
cosβ

cos(β − γ)
− 1

cos(β − γ)
cosα597

=
cosβ − cosα

cos(β − γ)
.(C.4)598

599

C.1.2. Calculating
dβ

dx(ci)
. The total derivative of dβ

dx(ci)
is600

dβ

dx(ci)
=

∂β

∂x(ci)

dx(ci)

dx(ci)
+
∂β

∂ri

dri
dx(ci)

=
∂β

∂x(ci)
+
∂β

∂ri

dri
dx(ci)

601
602

Fig. C.6a shows the geometry of ∂β
∂x(ci

). Applying the sine rule yields603
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(∂β)ri
sin γ

=
∂x(ci)

sin(π/2 + β − γ)
(C.5)604

∂β

∂x(ci)
=

sin γ

ri cos(β − γ)
.(C.6)605

606

Fig. C.6b shows the geometry of ∂β
∂x(ri)

. Applying the sine rule yields607

sin(π/2− β + γ)

∂x(ri)
=

sin(β − γ)

−(∂β)ri
608

(∂β)ri
∂x(ri)

= − sin(β − γ)

sin(π/2 + β − γ)
609

∂β

∂x(ri)
= − sin(β − γ)

cos(β − γ)ri
.(C.7)610

611

Thus the total derivative is:612

dβ

dx(ci)
=

∂β

∂x(ci)
+

∂β

∂x(ri)

dri
dx(ci)

613

=
sin γ

cos(β − γ)ri
− sin(β − γ)

cos(β − γ)ri
(− cosα)614

=
sin γ + cosα sin(β − γ)

cos(β − γ)ri
615
616

The change in βri with x(ci) is617

d(βri)

dx(ci)
=

sin γ + cosα sin(β − γ)

cos(β − γ)ri
ri − β cosα618

=
sin γ + cosα sin(β − γ)

cos(β − γ)
− β cosα.619

620

Thus621

d|Ai(pi−1, ti)|
dx(ci)

=
d(α+ β)ri
dx(ci)

622

= sinα− α cosα+
cosα sin(β − γ) + sin γ

cos(β − γ)
− β cosα623

= sinα− (α+ β) cosα+
cosα sin(β − γ) + sin γ

cos(β − γ)
.624

625

The change in (ri−1 − ri) with respect to x(ci) is626

d(ri−1 − ri)
dx(ci)

=
dri−1

dx(ci)
− dri
dx(ci)

(C.8)627

= cosα.(C.9)628629
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Thus the change in Φ(Ci−1, Ci) with respect to the change in x(ci) is given by630

dΦ(Ci−1, Ci)

dx(ci)
631

=
d(|Ai(pi−1, ti)| − |Ai−1(pi−1, ti−1)| − 2λ(ri−1 − ri)− µ|ti−1ti|)

dx(ci)
632

=
d(α+ β)ri
dx(ci)

− d2λ(ri−1 − ri)
dx(ci)

− dµ|ti−1ti|
dx(ci)

633

= sinα− (α+ β) cosα+
cosα sin(β − γ) + sin γ

cos(β − γ)
− 2λ cosα− µ

(
cosβ − cosα

cos(β − γ)

)
634

= sinα− (α+ β + 2λ) cosα+
cosα sin(β − γ) + sin γ

cos(β − γ)
− µ

(
cosβ − cosα

cos(β − γ)

)
635
636

C.2. Simplifying dΦ(Ci−1,Ci)
dx(ci)

. Define a function:637

τ(α, β, γ) = sinα− (α+ β + 2λ) cosα+
cosα sin(β − γ) + sin γ

cos(β − γ)
− µ

(
cosβ − cosα

cos(β − γ)

)
638

639640

In this section our goal is to find values of α, β, and γ for which τ(α, β, γ) ≤ 0.641

We study each parameter separately, and then conclude. In Section C.2.1 we analyze642

τ(α, β, γ) with respect to γ. In Section C.2.2 we analyze τ(α, β, γ) with respect to β.643

Finally, in Section C.2.3 we analyze τ(α, β, γ) with respect to α.644

C.2.1. Maximizing τ(α, β, γ) With Respect to γ. To find the value of γ that645

maximizes τ(α, β, γ), we find dτ(α,β,γ)
dγ .646

dτ(α, β, γ)

dγ
=647

− cosα+ cos γ cos(β − γ)− sin γ sin(β − γ) + µ sin(β − γ)(cosβ − cosα)

cos2(β − γ)
648

=
cosβ − cosα+ µ sin(β − γ)(cosβ − cosα)

cos2(β − γ)
649

=
(1 + µ sin(β − γ))(cosβ − cosα)

cos2(β − γ)
650

651652

To maximize τ(α, β, γ), let γ∗ be the value for which (1 + µ sin(β − γ∗)) = 0, in other653

words, γ∗ = β − arcsin(−1/µ). The ranges of α, β, and γ give us that cos β−cosα
cos2(β−γ) ≥ 0.654

Therefore dτ(α,β,γ)
dγ = 0 when γ = γ∗, and it is positive when γ < γ∗ and it is negative655

when γ > γ∗. Thus τ(α, β, γ) ≤ τ(α, β, γ∗) for all 0 ≤ α ≤ π and −α ≤ β ≤ α.656

We can rewrite τ(α, β, γ∗) as:657

τ(α, β, γ∗) = cos(β − γ∗)(sinα− (α+ β + 2λ) cosα) + cosα sin(β − γ∗) + sin γ∗ −658

µ(cosβ − cosα)659
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=
√

1− (1/µ)2(sinα− (α+β+2λ) cosα)− cosα

µ
+sin

(
β − arcsin

(
−1
µ

))
−µ(cosβ−660

cosα)661

=
√

1− (1/µ)2(sinα−(α+β+2λ) cosα)− cosα

µ
+sinβ

√
1− (1/µ)2+

cosβ

µ
−µ(cosβ−662

cosα)663

=
√

1− (1/µ)2(sinα+ sinβ − (α+ β + 2λ) cosα)−
(
µ− 1

µ

)
(cosβ − cosα).664

Let A =
√

1− (1/µ)2 =

√
1 + sin(1)√

2
and let B =

(
µ− 1

µ

)
= A

(
1 + sin(1)

cos(1)

)
.665

Then we have666

τ(α, β, γ∗) =A(sinα+ sinβ − (α+ β + 2λ) cosα)−B(cosβ − cosα).667668

C.2.2. Maximizing τ(α, β, γ∗) With Respect to β.. To see how τ(α, β, γ∗)669

behaves with respect to β, we calculate:670

dτ(α, β, γ∗)

dβ
= A(cosβ − cosα) +B(sinβ).671

672

We can now prove the following lemma.673

Lemma C.2. For a fixed α, τ(α, β, γ∗), as a function of β, is unimodal and674

τ(α, β, γ∗) ≤ max{τ(α,−α, γ∗), τ(α, α, γ∗)}.675

Proof. The expression A(cosβ − cosα) is always positive, since |β| ≤ α. More-676

over B(sinβ) has the same sign as β. Thus
dτ(α, β, γ∗)

dβ
is convex in β, which677

means it is maximized at the lowest and highest values of β, i.e., τ(α, β, γ∗) ≤678

max{τ(α,−α, γ∗), τ(α, α, γ∗)}.679

C.2.3. τ(α, sinα, γ∗) ≤ 0. In this section we prove the following lemma.680

Lemma C.3. τ(α, sinα, γ∗) ≤ τ(π/2, sin(π/2), γ∗) = 0, for all 0 ≤ α ≤ π.681

First we prove the equality. When α = π/2, we have682

τ(π/2, sin(π/2), γ∗) = A(1 + sin(1))−B cos(1) = 0.(C.10)683684

Note that we obtain the value µ by letting A =
√

1− (1/µ)2 and B =
(
µ− 1

µ

)
685

and then solving (C.10) for µ.686

Now we show that τ(α, sinα, γ∗) ≤ τ(π/2, sin(π/2), γ∗). Observe that687

τ(α, sinα, γ∗) is a function of a single variable α. We find the derivative of τ(α, sinα, γ∗)688

with respect to α. Let η =
dτ(α, sinα, γ∗)

dα
. Then689

η =
d

dα
A(sinα+ sin(sinα)− (α+ sinα+ 2λ) cosα)−B(cos(sinα)− cosα)690

=A(cos(sinα) cosα− cos2 α+ (α+ sinα+ 2λ) sinα) +B(sin(sinα) cosα− sinα).691692
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Let η1 = cosα(A(cos(sinα) − cosα)) and let η2 = A(α + sinα + 2λ) sinα +693

B sin(sinα) cosα − B sinα. Thus η = η1 + η2. Note that η1 > 0 when 0 ≤ α < π/2,694

η1 = 0 when α = π/2, and η1 < 0 when π/2 < α ≤ π. We wish to show that η2695

exhibits the same behaviour. To this end, we define the function:696

η′2 = A(α+ sinα+ 2λ) sinα+B sin(1) sinα cosα−B sinα.697698

Lemma C.4. The function η′2 > 0 for 0 ≤ α < π/2, η′2 = 0 when α = π/2, and699

η′2 < 0 when π/2 < α ≤ π.700

Proof. Let η3 =
η′2

sinα
= A(α + sinα + 2λ) + B sin(1) cosα − B. We take the701

second derivative of η3 with respect to α.702

d2η3

dα2
=

d2

dα2
A(α+ sinα+ 2λ) +B sin(1) cosα−B703

=
d

dα
A(1 + cosα)−B sin(1) sinα)704

= −A sinα−B sin(1) cosα.705706

For 0 ≤ α ≤ π/2,
d2η3

dα2
< 0. For π/2 < α ≤ π, the first term is increasing707

until it reaches 0 at α = π. The second term becomes positive and increases until708

it’s maximized at α = π. Thus
d2η3

dα2
is negative followed by positive, which implies709

that η3 is concave followed by convex. At α = 0 we have A(α + sinα + 2λ) +710

B sin(1) cosα−B = 2Aλ+B(sin(1)− 1) > 0.28 which is positive. At α = π we have711

A(π + 2λ) − B(sin(1) + 1) < −2.20 which is negative. This, together with the fact712

that
d2η3

dα2
is concave followed by convex implies that η3 intersects the x-axis in only713

one place. We know sinα = 0 when α = 0 and when α = π, and sinα > 0 when714

0 < α < π. Since η′2 = η3 sinα, η′2 = 0 when α = 0 or π. Thus η′2 intersects the x-axis715

at 0, π, and one other place.716

When α = π/2, we have717

η′2 = A(α+ sinα+ 2λ) sinα+B sin(1) sinα cosα−B sinα718

= A(π/2 + 1 + 2λ)−B(C.11)719

= A

(
π/2 + 1 + 2

(
1 + sin(1)

cos(1)
− π/2− 1

)
/2

)
−A

(
1 + sin(1)

cos(1)

)
720

= A

(
1 + sin(1)

cos(1)

)
−A

(
1 + sin(1)

cos(1)

)
721

= 0.722723

Note that (C.11) is where we obtain the value for λ.724

The function η′2 is η2 with the term cosα sin(sinα) replaced by cosα sin(1) sinα.725

To relate η′2 to η2 we show the following:726

Lemma C.5. cosα sin(1) sinα ≤ cosα sin(sinα) for 0 ≤ α ≤ π/2,727

and cosα sin(1) sinα ≥ cosα sin(sinα) for all π/2 < α ≤ π.728
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Proof. To prove the claim, let θ = sinα. Since cosα is positive for 0 ≤ α < π/2,729

and negative for π/2 < α ≤ π, proving Lemma C.5 is equivalent to proving θ sin(1) ≤730

sin θ, for all 0 ≤ θ ≤ 1. We note that θ sin(1) is a linear function with a slope of sin(1),731

while sin θ is a convex function in the given interval. They intersect at θ = 0 and θ = 1,732

and sin θ contains θ sin(1) from 0 ≤ θ ≤ 1. Thus θ sin(1) ≤ sin θ, for all 0 ≤ θ ≤ 1.733

As a consequence we get the following corollaries:734

Corollary C.6. η′2 ≤ η2 for all 0 ≤ α < π/2 and η′2 ≥ η2 for all π/2 < α ≤ π,735

and η′2 = η2 for all α = π/2736

which leads to737

Corollary C.7. The function η2 > 0 when 0 ≤ α < π/2, η2 = 0 when α = π/2,738

and η2 < 0 when π/2 < α ≤ π.739

Note that η1 = 0 when α = 0 and π/2, is positive when 0 < α < π/2, and740

negative for π/2 < α ≤ π. This implies that η = 0 when α = 0 and π/2, is positive741

for 0 < α < π/2, and negative for π/2 < α ≤ π. This implies that τ(α, sinα, γ∗) is742

maximized when α = π/2.743

We can now prove Lemma C.3.744

Proof of Lemma C.3. Corollary C.7 implies that τ(α, sinα, γ∗) is maximized when745

α = π/2. Thus746

τ(α, sinα, γ∗) ≤ τ(π/2, 1, γ∗) =
√

1− (1/µ)2(1 + sin(1))−
(
µ− 1

µ

)
cos(1) ≤ 0

(C.12)

747
748

for λ =
(

1+sin(1)
cos(1) − π/2− 1

)
/2 ≈ 0.42 and µ =

√
2

1−sin(1) < 3.56.749

C.3. Proofs of Lemmas 3.8 and 3.9. Recall that τ(α, β, γ∗) is unimodal with750

respect to β (refer to Lemma C.2). We now simplify it further.751

Lemma C.8. For 0 ≤ β ≤ sinα, τ(α, β, γ∗) ≤ τ(α, sinα, γ∗).752

Proof. Recall that753

dτ(α, β, γ∗)

dβ
= A(cosβ − cosα) +B(sinβ).(C.13)754

755

Note that
dτ(α, β, γ∗)

dβ
> 0 when β is positive. Thus we have that τ(α, β, γ) ≤756

τ(α, sinα, γ∗).757

In order to enumerate all the cases we need to consider to prove Φ(Ci−1, Ci) ≤ 0, we758

distinguish between starting conditions and events. Given circles Ci−1 and Ci, starting759

conditions refer to the locations of Ci−1, Ci, and st before applying Transformation760

3.10. By extension, this includes the value of y(ti−1) and the angles α, β, and γ.761

Recall that as we apply Transformation 3.10, we update α, β, γ, as well as the lengths762

of the arcs of Ci−1 and the position of ti. Thus an event refers to an angle entering,763

exiting, or staying within some range, or any other condition that occurs during the764

transformation.765
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C.3.1. Proof of Lemma 3.8. Lemma 3.8 assumes that y(ti−1) ≤ 0. Proving766

Lemma 3.8 is equivalent to proving the following two lemmas.767

Lemma C.9. Consider any starting condition where Ci−1 and Ci are such that768

y(ti−1) ≤ 0 and 0 ≤ α ≤ π/2. Then Φ(Ci−1, Ci) ≤ 0.769

Lemma C.10. Consider any starting condition where Ci−1 and Ci are such that770

y(ti−1) ≤ 0 and π/2 < α ≤ π. Then Φ(Ci−1, Ci) ≤ 0.771

Observe that Ci and Ci−1 being balanced implies the starting condition y(ti) < 0,772

which implies that during Transformation 3.10, the event β < 0 does not occur. We773

need the following lemma to prove Lemma C.9.774

Lemma C.11. Consider any starting condition where Ci−1 and Ci are such that775

α ≤ π/2 and β ≤ sinα. Then, during Transformation 3.10, β ≤ sinα.776

Proof. Let vi be the point on Ci where |Ai(pi−1, vi)| = |pi−1qi|+ |Bi(qi, vi)|. We777

show that vi does not go above st during Transformation 3.10, which implies the778

lemma.779

Since ci−1 is on or below st, the slope of st is negative. Let ei be the rightmost780

(East-most) point of Ci. Let β′ = 6 (viciei). During Transformation 3.10, since781

β′ri = |Ai(ei, vi)| = |pi−1qi|/2 is constant, but ri is increasing and β′ is decreasing782

(Ai(ei, vi) is getting flatter), vi moves downwards. Since vi is below ci, vi moves left as783

ci moves left. Thus the path of vi (from left to right) maintains a positive slope. Since784

st has a negative slope, and vi intersects st initially (that is, vi = ti), this implies that785

vi cannot go above st during Transformation 3.10. See Fig. C.7.786

We can now prove Lemma C.9.787

Proof of Lemma C.9. The proof follows from Lemmas C.11, C.3 and 3.11.788

Note that, given the starting conditions of Lemma C.10, if the event β > sinα does789

not occur, then Lemmas C.3 and 3.11 imply Lemma C.10. In the following lemma, we790

identify a starting condition for which β > sinα never occurs during Transformation791

3.10.792

Lemma C.12. Let wi be the leftmost (West-most) point of Ci. Consider any793

starting condition where Ci−1 and Ci are such that α > π/2, β ≤ sinα and st is on794

or above wi. Then during Transformation 3.10, β ≤ sinα.795

Proof. Note that β = sinα if and only if βri = ri sinα = |pi−1qi|/2. Since796

|pi−1qi|/2 stays constant during Transformation 3.10, and βri ≤ ri sinα = |pi−1qi|/2797

before Transformation 3.10, it is enough to show that βri is decreasing during Trans-798

formation 3.10 while α > π/2. If α ≤ π/2 during the transformation, we apply799

Lemma C.11. Let CK be any intermediate circle through pi−1 and qi during Trans-800

formation 3.10. Fixing ti, if we increase γ, β on CK will decrease. Thus the greatest801

value for β on CK is when γ is minimized. Since we assume that wi is on or below st,802

it is enough to show that βri is increasing during Transformation 3.10 when st is on803

wi. Recall that804

dβri
dx(ci)

=
cosα sin(β − γ) + sin γ

cos(β − γ)
− β cosα.(C.14)805

806

Since α > π/2 and β > 0, we have −β cosα > 0. Also recall that −π/2 ≤ β− γ ≤807
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π/2, thus cos(β−γ) > 0. Therefore to show that
dβri
dx(ci)

is non-negative, it is sufficient808

to show that sin γ ≥ sin(β − γ), or γ ≥ β/2 (since γ ≤ π/2). This is true when wi is809

on or below st, as required.810

This leads to the following Corollary.811

Corollary C.13. Consider any starting condition where Ci−1 and Ci are such812

that α > π/2 and ci−1 is inside Ci. Then during Transformation 3.10, β ≤ sinα.813

It remains to prove Lemma C.10 when the event β > sinα occurs. Since Ci−1814

and Ci are balanced, one of the starting conditions is β = sinα. Recall that ci−1 is815

assumed to be on or below st. Corollary C.13 tells us we can assume ci−1 is outside of816

Ci. We look at two cases with the following starting conditions.817

α > π/2, ci−1 is outside of Ci and ri ≥ ri−1 (refer to Lemma C.14).818

α > π/2, ci−1 is outside of Ci and ri < ri−1 (refer to Lemma C.15).819820

Lemma C.14. Consider any starting condition where Ci−1 and Ci are such that821

α > π/2, ci−1 is outside of Ci, and ri ≥ ri−1. Then Φ(Ci−1, Ci) ≤ 0.822

Proof. See Fig. C.8. Let CQ be a circle through pi−1 and qi with radius rQ =823

|pi−1qi|/2. First we show that sQ is between si−1 and si on st. Let ui be the824

intersection of Ci and the line through ti and ci, where ui 6= ti. Lemma 3.7 tells us825

that sQ is between si−1 and si on st, if uk and ui are left of pi−1qi, which is true if826

|y(tQ)| ≤ y(pi−1) and |y(ti)| ≤ y(pi−1). Since ci−1 is on or below st, the slope of st is827

negative, and since y(ti−1) ≤ 0, we have |y(tQ)| < |y(ti)|. We have y(pi−1) = ri sinα,828

and |y(ti)| = ri sin(sinα) ≤ ri sinα = y(pi−1) when α ≤ π/2, and thus sQ is between829

si−1 and si on st.830

Thus we have Φ(Ci−1, Ci) = Φ(Ci−1, CQ) + Φ(CQ, Ci), and it is sufficient to prove831

that Φ(Ci−1, CQ) ≤ 0 and Φ(CQ, Ci) ≤ 0.832

If st is below cQ, then Φ(CQ, Ci) is increased when st goes through cQ, so833

we assume that cQ is on or below st. We apply Transformation 3.10 to Ci and834

CQ. Since y(ti−1) ≤ 0, and y(ti) ≤ 0, we have y(tQ) ≤ 0, and thus β ≥ 0 during835

Transformation 3.10. Since cQ is inside Ci, Corollary C.13 tells us that β ≤ sinα during836

Transformation 3.10. Together with the fact that τ(α, β, γ) ≤ 0 when 0 ≤ β ≤ sinα,837

this implies that Φ(CQ, Ci) ≤ 0 by Lemma 3.11.838

We now apply Transformation 3.10 to Ci−1 and CQ. Since α = π/2 before839

Transformation 3.10, Lemma C.11 tells us that β ≤ sinα during Transformation 3.10840

if β ≤ sinα initially. Proving that initially we have β ≤ sinα is equivalent to proving841

that tQ is above vQ, or equivalently, that vQ is below st.842

Let CK be a circle through pi−1 and qi such that tK is between ti−1 and ti. Notice843

that CK is any intermediate circle encountered during Transformation 3.10. If we fix844

ti, then β is maximized on CK when γ is minimized. Since we assume ci−1 is on or845

below st, we conclude γ is minimized when st intersects ci−1. To minimize γ further846

we move ci−1 as far left as it can go, i.e., to the point where ri = ri−1. Thus it is847

sufficient to show vQ is below st when ri = ri−1.848

Let p′i−1 and q′i be the points on Ci that mirror pi−1 and qi in the vertical line849

through ci. Note that the line segment ci−1q
′
i is below the line segment ci−1ti, which850

is part of st. Thus, showing that vQ is below ci−1q
′
i shows that vQ is below st.851
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We begin by showing that if vQ is below ci−1q
′
i when ri = ri−1 and ci−1 intersects852

Ci, then vQ is below ci−1q
′
i for any ci−1 outside of Ci where ri = ri−1.853

See Fig. C.9. Note that x(qi) − x(ci−1) = x(ci) − x(qi) = x(q′i) − x(ci), thus854

2(x(qi) − x(ci−1)) = x(q′i) − x(qi). Thus one third of ci−1q
′
i is to the left of pi−1qi,855

while two thirds of ci−1q
′
i is to the right. Since y(ci−1) and y(q′i) are constant, this856

implies that as ci−1q
′
i grows it pivots at the intersection of itself and pi−1qi. Thus vQ857

being under ci−1q
′
i when ci−1 and Ci intersect implies that it is always under ci−1q

′
i.858

Thus it is enough to show that vQ is under ci−1q
′
i when ci−1 intersects Ci.859

See Figs. C.10 and C.11. Assume that ri = ri−1 = 1, which implies that rQ =860

sin(π/3), and |ci−1cQ| = 1/2. Note that when Transformation 3.10 gets to 2CQ, we861

have α = π/2, thus we need to prove that β ≤ sinα = 1. Let t′Q be the intersection of862

ci−1q
′
i and CQ. Since ci−1q

′
i lies under st, and 6 (t′QcQci) > β, it is sufficient to show863

that 6 (t′QcQci) < 1.864

Let θ = 6 (cQt
′
Qci−1), and note that 6 (q′ici−1cQ) = π/6. We can find θ using the865

sine rule. Thus sin θ =
sin(π/6)

2 sin(π/3)
, and θ < 0.3. We see that 6 (t′QcQci) = θ + π/6 <866

0.82 < 1, as required.867

Lemma C.15. If ri < ri−1, α > π/2 and ci−1 is outside of Ci, then Φ(Ci−1, Ci) ≤868

0.869

Proof. Let CP be the circle with radius ri through pi−1 and qi such that CP 6= Ci.870

Notice that CP is one of the intermediate circles encountered during Transformation871

3.10. See Fig. C.12. We have Φ(Ci−1, Ci) = Φ(Ci−1, CP ) + Φ(CP , Ci), and thus it is872

sufficient to prove that Φ(Ci−1, CP ) ≤ 0 and Φ(CP , Ci) ≤ 0. We do this by applying873

Transformation 3.10 to Ci and CP , and then to CP and Ci−1.874

Since rP = ri, we have Φ(CP , Ci) ≤ 0 by Lemma C.14. Since we assumed that875

ci−1 is on or below st, we know that st has a negative slope. Thus y(tP ) > y(ti), which876

implies that 2β as defined by CP is less than β as defined by Ci. Thus when applying877

Transformation 3.10 to CP and Ci−1, we know that 0 ≤ β < sinα by Lemma C.11,878

and thus Φ(Ci−1, CP ) ≤ 0 by Lemma 3.11.879

Proof of Lemma C.10. The proof follows from Lemmas C.14 and C.15.880

C.3.2. Proof of Lemma 3.9. First observe the following.881

Lemma C.16. For 0 ≤ α ≤ π/2, τ(α,−α, γ∗) ≤ 0.882

Proof.

τ(α,−α, γ∗) = A(sinα+ sin(−α)− (α− α+ 2λ) cosα)−B(cos(−α)− cosα)883

= −2λ cosα884

≤ 0.885886

We now break Lemma 3.9 into the two lemmas.887

Lemma C.17. Consider any starting condition where Ci−1 and Ci are such that888

y(ti−1) > 0 and 0 ≤ α ≤ π/2. Then Φ(Ci−1, Ci) ≤ 0.889

2Recall that, as we apply Transformation 3.10, we update the values of α, β, and γ.

31

This manuscript is for review purposes only.



Proof. We know τ(α, β, γ∗) is unimodal with respect to β by Lemma C.2. The890

starting condition 0 ≤ α ≤ π/2 together with Lemma C.11 imply that −α ≤ β ≤ sinα.891

Thus the proof follows from Lemmas C.16, C.3, and 3.11.892

We are thus left to prove the following lemma in order to prove Lemma C.10.893

Note that in this case, instead of working on τ(α, β, γ∗), we use a geometric proof.894

Lemma C.18. Consider any starting condition where Ci−1 and Ci are such that895

y(ti−1) > 0 and π/2 < α ≤ π. Then Φ(Ci−1, Ci) ≤ 0.896

Proof. If ci−1 is left of pi−1qi, then let CQ be a circle through pi−1 and qi with897

diameter |pi−1bi|. Otherwise let CQ = Ci−1. We will show that Φ(Ci−1, Ci) ≤898

Φ(Ci−1, CQ) + Φ(CQ, Ci) ≤ 0.899

Note that since ti−1 is inside Ci, and y(ti−1) > 0, Lemma C.12 implies that β900

as defined by CQ
3 is less than sinα, where α as defined by CQ is π/2. Lemma C.12901

implies the event β ≤ sinα. This implies that Φ(Ci−1, CQ) ≤ 0 by Lemmas C.3, C.16902

and 3.11. Thus we need only show that Φ(CQ, Ci) ≤ 0. Note that if y(tQ) ≤ 0, then903

Φ(CQ, Ci) ≤ 0 by Lemma 3.8. Thus we assume that y(tQ) > 0.904

To show Φ(CQ, Ci) ≤ 0 in this case we will show three inequalities.905

|Ai(pi−1, ti)| ≤ π/2|pi−1ti|,(C.15)906

|AQ(pi−1, tQ)|+ µ|tQti| ≥
µ sin(1) + 1

sin(1) + 1
|pi−1ti|,(C.16)907

2(ri − rQ) ≤ |pi−1ti|.(C.17)908909

See Fig. C.13. Assuming (C.15), (C.16), and (C.17) are true, we substitute these910

values into Φ(CQ, Ci) and get911

Φ(CQ, Ci) =|Ai(pi−1, ti)| − |AQ(pi−1, tQ)| − 2λ(rQ − ri)− µ|tQti|912

≤
(
π/2 + 1 + λ− (µ− 1) sin(1)

sin(1) + 1

)
|pi−1ti|913

≤
(
π/2 + λ− µ sin(1) + 1

sin(1) + 1

)
|pi−1ti|914

≤ (2− 2.16)|pi−1ti|915

≤ 0.916917

Inequality (C.15) is satisfied whenever |Ai(pi−1, ti)| = |pi−1qi|+ |Bi(qi, ti)|, which918

is always the case initially when Ci−1 and Ci are balanced.919

For inequality (C.16), note that |AQ(pi−1, tQ)| ≥ |pi−1tQ|, and |pi−1tQ|+ |tQti| ≥920

|pi−1ti| by the triangle inequality. Thus it remains to show that |tQti| ≥ |pi−1ti| sin(1)
sin(1)+1 .921

Recall that y(tQ) > 0. If we increase y(tQ), observe that |tQti| also increases.922

Notice that the minimum value of |tQti| is when tQ corresponds to the intersection of923

st and the x-axis. Thus for the minimum value of |tQti|, we will assume that y(tQ) = 0.924

Recall that li is the leftmost intersection of Ci and st, and ei is the rightmost925

point of Ci. If |y(ti)| ≥ |y(li)|, then y(tQ) = 0 implies that |tQti| ≥ ri ≥ |pi−1ti|/2 ≥926

3Recall that, as we apply Transformation 3.10, we update the values of α, β, and γ.
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|pi−1ti| sin(1)
sin(1)+1 as required. So assume that |y(ti)| < |y(li)|, which implies that ci is927

below st, and thus below liti, which is a segment of st. Observe that since pi−1 is a928

vertex, it is above st. Since ci is below liti, but pi−1ti is above liti, this implies that929

|liti| ≥ |pi−1ti|. This means that it is sufficient to prove |tQti| ≥ |liti| sin(1)
sin(1)+1 . Note930

that |tQti| is the part of |liti| below the x-axis. Thus |tQti|/|liti| = |y(ti)|/(|y(li)| +931

|y(ti)|). This expression is minimized when |y(ti)|/|y(li)| is smallest. Also |y(li)| is932

largest when li = pi−1. Note that |y(pi−1)| = ri sinα, and that |y(ti)| = ri sin(sinα).933

Thus |y(ti)|/|y(li)| = sin(sinα)/ sinα, which is minimized when α = π/2. This934

implies that |y(ti)|/(|y(li)| + |y(ti)|) = |tQti|/|liti| ≥ sin(1)/(sin(π/2) + sin(1)) =935

sin(1)/(sin(1) + 1). Thus |tQti| ≥ |liti| sin(1)
sin(1)+1 ≥ |pi−1ti| sin(1)

sin(1)+1 as required.936

Let us now prove (C.17). Observe that ci is right of |pi−1qi|, which is right of937

|pi−1wi|. Together with the fact that |pi−1qi| and |pi−1wi| are both chords of Ci, then938

|pi−1wi| < |pi−1qi|. Moreover, ci is below pi−1ti, which is below pi−1ei. Together939

with the fact that |pi−1ti| and |pi−1ei| are both chords of Ci, then |pi−1ei| ≤ |pi−1ti|.940

Finally, since pi−1 and qi both lie on CQ, then |pi−1qi| ≤ 2rQ. Thus we have941

2ri = |wiei|942

≤ |pi−1ei|+ |pi−1wi| by the triangle inequality,943

≤ |pi−1ei|+ |pi−1qi|944

≤ |pi−1ti|+ 2rQ,945946

from which we have 2(ri − rQ) ≤ |pi−1ti|, as required.947

Appendix D. Analysis of MinArc algorithm.948

Theorem D.1. MinArc routing algorithm on the Delaunay triangulation has a949

routing ratio of at most (δ + π) ≈ 3.952, with δ = 0.8105.950

The bound on the routing ratio is close to the actual bound, as we show in Section D.3951

and illustrate in Fig. D.1, our algorithm has a routing ratio of at least 3.2 in the worst952

case.953

We devote this section to the proof of Theorem D.1. We start by introducing954

additional definitions, notations, and structural results. Some of the notations are955

illustrated in Figure D.3.956

Given a path P from p to q and a path Q from q to r, P + Q denotes the957

concatenation of P and Q. We say that the path P from p to q is inside a path Q that958

also goes from p to q if the path P is inside the bounded region delimited by Q+ qp.959

Given a path P and two points p and q on P , we denote by P(p, q) the sub-path of P960

that goes from p to q.961

In order to bound the length of P〈s, t〉, we need to define the potential paths and962

and snail curve as follows.963

Given two points p and q such that x(p) < x(q) and y(p) = y(q), we define the964

path Sp,q as follows. Let Ca be the circle of center q that goes through p and let p′ be965

the top point of Ca. Let Cb be the circle of diameter qp′. The path Sp,q consists of the966

clockwise arc of Ca from p to p′ together with the clockwise arc of C2 from p′ to q. We967

call Sp,q the snail curve from p to q (see Figure D.2). Note that |Sp,q| = π(x(q)−x(p)).968

Let Sp,q be the symmetric of Sp,q with respect to the line pq.969
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The potential path D′i, for i = 0, 1, . . . , n− 1, is defined as follows. Given ti the970

rightmost point on st of Ci+1, there is a unique point of st si such that pi is on the971

snail curve Ssi,ti+1
or Ssi,ti+1

(depending on whether or not pi lies above st). The972

potential path D′i is the sub-path of this curve from si to pi.973

Let fi be the first point pj after pi such that pipj intersects st. Notice that fn−1 = t.974

We also set fn = t. In Fig. D.3, f0 = p1, f1 = p2, f2 = p3 and f3 = f4 = f5 = t.975

Lemma D.2. For all 0 < i ≤ n:976

x(s) ≤ x(ti−1) ≤ x(ti) ≤ x(t),(D.1)977978
979

x(si−1) ≤ x(si) ≤ x(fi−1) ≤ x(fi).(D.2)980981

Proof. The proof of Lemma 3.5 extends to our case since we consider the rightmost982

triangle intersecting st and thus proves (D.1).983

Now let us prove Equation (D.2). The point si only depends on pi and ti+1. For984

a fix pi, moving ti+1 leftward will also move si leftward: if x(pi) ≥ x(ti+1), moving985

slightly the snail curve leftward will leave pi outside the snail shape so the snail curve986

needs to be larger to go through pi; if x(pi) < x(ti+1), si and pi are on the same987

circle centered at ti+1 and moving slightly this center leftward will also move the988

intersection of the corresponding circle with st, which is si leftward. So, to prove that989

x(si−1) ≤ x(si), we only need to prove it in the extreme case where ti+1 = ti. So now990

let us consider this case in which Ci = Ci+1.991

Let the closed curve D be Ssi,ti+1
∪Ssi,ti+1

. By definition, Ci+1 intersects D at pi.992

This implies that its diameter is larger than |siti+1|. Moreover as ti+1 is the rightmost993

intersection of Ci with st, the center ci of Ci is such that x(ci) ≤ x(ti+1). Altogether994

this implies that Ci intersects D twice and the point ri that is diametrically opposed995

to ti+1 on Ci is outside D (see Figure D.4). Since the points ri, pi−1, pi, ti+1 appear in996

that order moving clockwise or counterclockwise around Ci, the point pi−1 lies outside997

the bounded region delimited by D. Hence the snail curve going through ti = ti+1 and998

pi−1 must be bigger than then one going through pi. Hence x(si−1) < x(si).999

We now prove the second inequality in (D.2). We first observe that fi−1 = pj1000

and fi = pj′ for some i ≤ j ≤ j′. Using the first inequality, we have that x(ti+1) ≤1001

x(tj+1) ≤ x(pj) = x(fi−1), so the second inequality in (D.2) holds.1002

The third inequality in (D.2) trivially holds when j = j′, so we assume otherwise.1003

In that case, i = j, pj , pj+1, . . . , pj′−1 are all on the same side of st, and pj−1 and pj′1004

are on the other side. Without loss of generality, we assume that pj′ lies above st.1005

This implies that pj lies below st and on D′j−1, which is also of type B, and1006

(D.3) x(pj) ≤ x(tj) ≤ x(tj+1).1007

Observe that if for some i, x(pi) ≤ x(pi−1), then x(ti) ≤ x(pi). Hence for any i,1008

x(pi) ≥ min(x(ti), x(pi−1)). Applying iteratively this last inequality, we get1009

(D.4) min(x(pj), x(tj+1)) ≤ x(pj′−1).1010

Since, pj′−1pj′ crosses st, D′j′−1 is of type B and pj′−1pj′ has positive slope, hence1011

(D.5) x(pj′−1) ≤ x(pj′).1012

Combining (D.3), (D.4) and (D.5) we get x(fi−1) = x(pj) < x(pj′−1) < x(pj′) =1013

x(fi) and (D.2) holds.1014
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D.1. Proof of Theorem D.1. In this section, we introduce a key lemma and1015

use it to prove our main theorem.1016

Let f i = (x(fi), 0) be the orthogonal projections of points fi onto st. Finally,1017

we define the path D′i to be the arc of Ssi,ti+1
from si to pi, for 0 ≤ i ≤ n − 1 (see1018

Fig. D.3).1019

We start with a simple lemma on the last step of the routing algorithm to motivate1020

these definitions.1021

Lemma D.3. |pn−1t| ≤ |Ssn−1,t| − |D′n−1|.1022

Proof. This follows from the fact that path D′n−1 +pn−1t from sn−1 to t is convex1023

and inside Ssn−1,t.1024

Let pi the projection of pi on the x-axis.1025

The following lemma is the key to proving Theorem D.1.1026

Lemma D.4. For all 0 < i < n and δ = 0.8105,1027

1028

(D.6) |pi−1, pi| ≤ |D′i| − |D′i−1|+ |Ssi−1,si |+ |y(fi)|+ max(0, |y(fi)| − δ|pif i|)1029

− |y(fi−1)| −max(0, |y(fi−1)| − δ|pi−1f i−1|) + δ|f i−1f i|.10301031

This lemma is illustrated in Fig. D.3. We first show how to use Lemma D.4 to prove1032

Theorem D.1, and then we prove Lemma D.4.1033

Proof of Theorem D.1. By Lemma D.2,
∑n−1
i=1 |f i−1f i| < |st|1034

and
∑n
i=1 |Ssi−1,si | = |Ss,t|. Therefore, by summing the n − 1 inequalities from1035

Lemma D.4 and the inequality from Lemma D.3, we get1036

|P〈s, t〉| ≤
n∑
i=1

|pi−1pi|1037

< −|D′0|+ |Ss,t|+ |y(fn−1)|+ max(0, |y(fn−1)| − δ|pn−1fn−1|)1038

−|y(f0)| −max(0, |y(f0)| − δ|p0f0|) + δ|st|.1039

Since f0 = s and fn−1 = t, we have y(f0) = y(fn−1) = 0 and it follows that

|P〈s, t〉| < |Ss,t|+ δ|st| ≤ (π + δ)|st|,

which completes the proof.1040

D.2. Proof of the Key Lemma. We categorize the potential paths D′i into1041

two types:1042

• Type A: pipi+1 does not cross st.1043

• Type B: pipi+1 crosses st.1044

Proof of Lemma D.4. We consider three cases depending on the types of potential1045

D′i−1 and D′i. Note that if D′i−1 is of type A, then fi−1 = fi. Hence, in this case, it1046

is sufficient to prove1047

|pi−1pi| ≤ |D′i| − |D′i−1|+ |Ssi−1,si |1048
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or equivalently1049

(D.7) |D′i−1 + pi−1pi| ≤ |Ssi−1,si +D′i|.1050

In Figure D.7, the left-hand side of Equation (D.7) is represented by a blue curve1051

and the right-hand side by a green curve. Before proving the different cases, we will1052

show that |Ssi−1,si + D′i| is minimized when ti+1 = ti (as represented by the green1053

curves in Figs. D.7 and D.8). To prove this we require the following geometric lemma.1054

Lemma D.5. Let C be a circle with center c and points p and t on the boundary.1055

If p, t and c lie on a line we perturb p slightly so that they do not. Let A〈p, t〉 be the1056

arc from p to t on C with central angle 2α < π. Then |A〈p, t〉| = |pt| α
sinα .1057

Proof. Let r be the radius of C. Then |A〈p, t〉| = r2α. Observe that |pt| = r2 sinα,1058

thus r = |pt|
2 sinα . Substituting for r we have |A〈p, t〉| = |pt| α

sinα , as required.1059

Lemma D.6. |Ssi−1,si +D′i| is minimized when ti+1 = ti.1060

Proof. We will fix s, t, ti, and pi, and allow ti+1 to move along st between ti and1061

t while observing the changes in |Ssi−1,si +D′i|. Let β = ttipi and α = 6 tti+1pi. Since1062

t, ti and pi are fixed, β remains constant. Observe that as we move ti+1 to the right,1063

α increases. Thus β ≤ α ≤ π. We will express |Ssi−1,si +D′i| in terms of β and α and1064

find the derivative with respect to α.1065

Observe that |Ssi−1,si +D′i| = |Ssi−1,si +Ssi,ti+1−Ssi,ti+1(pi, ti+1)| = |Ssi−1,ti+1 |−1066

|Ssi,ti+1(pi, ti+1)|, where Ssi,ti+1(pi, ti+1) is the arc of Ssi,ti+1 from pi to ti+1. We will1067

first develop an expression for |Ssi−1,ti+1
|. Let pi be the orthogonal projection of pi1068

onto st.1069

|Ssi−1,ti+1
| = π|si−1, ti+1|1070

= π (|si−1ti|+ |tipi| − |ti+1pi|)1071

= π

(
|si−1ti|+

y(pi)

tanβ
− y(pi)

tanα

)
.1072

1073

Since Ssi,ti+1 is composed of two arcs with different radii, we will have two1074

expressions for |Ssi,ti+1
(pi, ti+1)|, one for when 0 ≤ α ≤ π/2 and one for when1075

π/2 < α ≤ π. Using Lemma D.5 and the fact that |piti| = y(pi)
sinα , when 0 ≤ α ≤ π/21076

we have1077

|Ssi,ti+1(pi, ti+1)| = |piti|
α

sinα
1078

= y(pi)
α

sin2 α
.1079

1080

Let M(α) be |Ssi,ti |+ |Sti,pi | − |Sti+1,pi | − |Ssi,ti+1(pi, ti+1)| expressed in terms of1081

α. Since s, t, and pi are fixed, let y(pi) = 1. Then for 0 ≤ α ≤ π/2, we have1082

M(α) = |Ssi,ti |+ |Sti,pi | − |Sti+1,pi | − |Ssi,ti+1
(pi, ti+1)|1083

= π|siti|+
π

tanβ
− π

tanα
− α

sin2 α
.1084

1085
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When π/2 < α ≤ π observe that |Ssi,ti+1(pi, ti+1)| = α|piti+1|, and |piti+1| = y(pi)
sinα =1086

1
sinα . Thus |Ssi,ti+1(pi, ti+1)| = α

sinα , and we have1087

M(α) = |Ssi,ti |+ |Sti,pi | − |Sti+1,pi | − |Ssi,ti+1
(pi, ti+1)|1088

= π|siti|+
π

tanβ
− π

tanα
− α

sinα
.1089

1090

We now wish to calculate dM(α)
dα . For 0 ≤ α ≤ π/2 we have1091

dM(α)

dα
=

(π − 1) sinα+ 2α cosα

sin3 α
1092
1093

which is positive in the range 0 ≤ α ≤ π/2. When π/2 < α ≤ π we have1094

dM(α)

dα
=

d

dα

(
− π

tanα
− α

sinα

)
1095

=
π − sinα+ α cosα

sin2 α
.(D.8)1096

1097

We wish to show that (D.8) is non-negative for π/2 < α ≤ π. Since sin2 α is clearly1098

non-negative, we are left to determine the sign of π − sinα+ α cosα. Observe that1099

d

dα
π − sinα+ α cosα1100

=− cosα+ cosα− α sinα1101

=− α sinα1102

≤0.11031104

This implies that (D.8) is minimized when α = π, at which point π−sinα+α cosα
sin2 α

= 0.1105

Thus dM(α)
dα is non-negative, meaning that M(α) increases with α, implying that it is1106

minimized when α = β, or when ti = ti+1, as required.1107

Case 1: D′i−1 is of type A. To show that Equation (D.7) holds, Lemma D.6 implies1108

we only need to consider the case where ti+1 = ti (see Figure D.8). We will show this1109

inequality for ti+1 = ti in the first two cases of the proof.1110

Adding Q := Ssi,ti+1
(pi, ti+1) on both sides of inequality (D.7) becomes:1111

(D.9) |D′i−1 + pi−1pi +Q| ≤ |Ssi−1,si + Ssi,ti+1 | = |Ssi−1,ti+1 |.1112

Observe that pi−1pi is inside piA+ Ssi−1,ti+1(A, pi), hence1113

(D.10) |pi−1pi| ≤ |piA+ Ssi−1,ti+1
(A, pi)|.1114

By Observing that Q and Ssi−1,ti+1
(ti+1, A) are homothetic and that piA is shorter1115

than an curve homothetic to Q going from pi to A we get1116

(D.11) |Q+ piA| < |Ssi−1,ti+1
(ti+1, A)|.1117
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From (D.10) we get:

|D′i−1 + pi−1pi +Q| ≤ |D′i−1 + piA|+ Ssi−1,ti+1
(A, pi) +Q|.

From (D.11) we get: |Q + piA + Ssi−1,ti+1(A, pi) + D′i−1| ≤ |Ssi−1,ti+1(ti+1, A) +1118

Ssi−1,ti+1(A, pi) +D′i−1| = |Ssi−1,ti+1 |.1119

The combination of the two last inequality proves (D.9) and thus this lemma for1120

Case 1.1121

Case 2: D′i−1 is of type B and D′i is of type A or B.1122

In this case, the ”potential” may not be enough to cope with zig-zags. As in1123

the [2], the δ coefficient of Equation (D.6) is introduced in order to repair this case.1124

In this context, let us rewrite Equation (D.6) as follows:1125

1126

(D.12) |D′i−1|+ |pi−1pi|+ |y(pi)|+ max(0, |y(pi)| − δ|pi−1pi|) ≤1127

|D′i|+ |Ssi−1,si |+ |y(fi)|+ max(0, |y(fi)| − δ|pif i|) + δ|pif i|.11281129

Fig D.9 illustrates this inequality: the left hand side is represented in blue and the1130

right hand side is represented in green. The dashed line represents the contribution of1131

δ|pif i|.1132

If the points pi, ti, fi and the distance |pi−1ti| are fixed, one can observe that1133

moving pi−1 counterclockwise on the circle of center ti is increasing the LHS of (D.12)1134

without changing its RHS. Moreover, as long as the upper arc remains shorter than1135

the lower arc, the part below [st] of the circle Ci−1 generated by this move is included1136

in the former circle Ci hence, fi remains outside the new Ci and the new configuration1137

remains valid. So, the extreme case is such that pi−1ti is a diameter of Ci (going1138

further violates the hypothesis that the route goes through pi after pi−1). So assume1139

now that Ci is of diameter ti, pi−1.1140

Since the RHS is decreasing with the distance |cifi|, we can simply consider1141

the cases where fi is on Ci. Without loss of generality, we set st as the ”x” axis,1142

ti = (1, 0) and x(ci) = 0. Then we define an angle β such that fi has coordinates:1143

(x(ci) + |citi| cos(β), y(ci) + |citi| sin(β)). β has values between β0 and β1, where β01144

corresponds to the case y(fi) = 0 and β1 corresponds to the case x(fi) = x(pi). We1145

first need to decide what part of max(0, |y(fi)| − δ|pif i|) is used w.r.t. the position of1146

fi. Let M be the function defined by1147

M(β) =
|y(fi)| − δ|pif i|

|citi|
1148

= −y(ci) + sin(β)− δ(cos(β)− x(pi)

|citi|
)1149

= sin(β)− δ cos(β)− y(ci) +
δx(pi)

|citi|
1150

=
√

1 + δ2(
1√

1 + δ2
sin(β)− δ√

1 + δ2
cos(β)) + c11151

=
√

1 + δ2(sin(arccos(
δ√

1 + δ2
)) sin(β)− cos(arccos(

δ√
1 + δ2

)) cos(β)) + c11152

=
√

1 + δ2 · cos(β + (π + arccos(
δ√

1 + δ2
))) + c1,1153
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where c1 = −y(ci) + δx(pi)
|citi| . In addition, M(β0) = −δ(x(fi) − x(pi)) < 0 and1154

M(β1) = y(pi) > 0. So, the behavior of max(0, |y(fi)| − δ|pif i|) for β from β0 to β1 is1155

as follows: it is null up to β = βcrit (where |y(fi)| − δ|pif i| = 0) and then it is first1156

increasing and then decreasing from βcrit to β1.1157

Let ∆ be the difference between the RHS and the LHS of Equation (D.12). We1158

are first interested in the variations of ∆ w.r.t. β. We thus can drop some parts of ∆.1159

It remains ∆′ = |y(fi)|+ max(0, |y(fi)| − δ|pif i|) + δ|f i−1f i|+ c2. Let us look what1160

happens on [βcrit, β1]. On this interval, ∆′ = 2|y(fi)| − δ|pif i|) + δ|f i−1f i|+ c2. We1161

obtain ∂∆
∂β = 2 cos(β) + δ sin(β)− δsin(β) = 2 cos(β). So ∆ has two potential critical1162

values that are β1 and βcrit. Let us now look what happens on [β0, βcrit]. Here, ∆′ =1163

|y(fi)|+δ|f i−1f i|+c2 = sin(β)+δ cos(β)+c3 =
√

1 + δ2·cos(β−arccos( δ√
1+δ2

))+c3, for1164

some constant c3. Let βmax be arccos( δ√
1+δ2

). We have ∆′(βmax + β) = ∆′(βmax − β).1165

We have βmax > π
4 and β0 ≤ 0. Since ∆′ is increasing from β0 to βmax we have1166

∆′(β0) < ∆′(βcrit) < ∆′(βmax). Thus, it is not useful to consider βcrit as a critical1167

value.1168

Let α be the angle (ci, pi) with the left half horizontal line (see Figure D.9). Let1169

θ be the angle (ti, ci) with the left half horizontal line (or, alternatively, the angle1170

between (pi−1, ci) with the left half horizontal line). We also set ti = (1, 0).1171

Case 2.1: β = β01172

We wish to show (D.12). Since β = β0, we have |y(fi)| = 0. Thus it is sufficient1173

to show1174

1175

(D.13)

|D′i−1|+ |pi−1pi|+ |y(pi)|+max(0, |y(pi)|−δ|pi−1pi|) ≤ |D′i|+ |Ssi−1,si |+δ|pif i|.1176

1177

See Fig. D.11. We will use a geometric transformation to find a version of this1178

expression that maximizes the LHS and minimizes the RHS of (D.13). Lemma D.61179

implies that we can assume that ti+1 = ti, since this will minimize |D′i|+ |Ssi−1,si |1180

on the RHS. Observe that since D′i−1 is type B, that x(pi−1) ≤ x(pi) ≤ x(ti). That1181

means pi is on the large arc of Ssi,ti+1
, and pi−1 is on the large arc of Ssi−1,ti . That1182

means D′i−1 and D′i are arcs of concentric circles centered at ti+1 = ti that go through1183

pi−1 and pi respectively. Call these circles Oi−1 and Oi respectively. Thus we can fix1184

pi−1, pi and ti and rotate st around ti and observe the changes in (D.13). We will1185

show that (D.13) is maximized when pi lies on st.1186

First observe that, since Oi−1 and Oi are fixed and concentric, that |Ssi−1,si |1187

stays constant. Let γ be the angle between tipi and st as st rotates around ti.1188

Observe that y(pi) = |piti| sin γ and |pi−1pi| = |pi−1pi| sin γ. Thus |y(pi)| − δ|pi−1pi|1189

has the same sign as |piti| − δ|pi−1pi|, which, since these points are fixed, does not1190

change sign throughout the transformation. This gives us two cases to consider. If1191

|piti| − δ|pi−1pi| ≤ 0, then1192

|D′i−1|+ |pi−1pi|+ |y(pi)| ≤ |D′i|+ |Ssi−1,si |+ δ|pif i|.(D.14)11931194

Let M = |D′i−1|+ |pi−1pi|+ |y(pi)| − |D′i| − |Ssi−1,si | − δ|pif i|. Thus if M ≤ 0,1195
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(D.14) is true. Let β be the angle 6 pitipi−1, and let γ be the angle 6 pitis, and note1196

that γ ≤ β. We express M as a function of γ:1197

M(γ) = (β − γ)|pi−1ti|+ |pi−1pi|+ |piti| sin γ − |piti|γ − |Ssi−1,si | − δ|piti| cos γ.11981199

We examine dM(γ)
dγ .1200

dM(γ)

dγ
= −|pi−1ti|+ |piti|(cos γ − 1 + δ sin γ)1201

≤ |piti|(cos γ + δ sin γ − 2).12021203

Since δ < 1, dM(γ)
dγ < 0, and thus M(γ) is decreasing in γ and maximized when1204

γ = 0, which is when pi is on st.1205

Otherwise |piti| − δ|pi−1pi| > 0, then1206

|D′i−1|+ |pi−1pi|+ 2|y(pi)| ≤ |D′i|+ |Ssi−1,si |+ δ|pi−1f i|.12071208

Let M ′ = |D′i−1|+ |pi−1pi|+ 2|y(pi)| − |D′i| − |Ssi−1,si | − δ|pi−1f i|, which, expressed1209

as a function of γ is1210

M ′(γ) = (β − γ)|pi−1ti|+ |pi−1pi|+ 2|piti| sin γ − |piti|γ − |Ssi−1,si | − δ|pi−1ti| cos γ.12111212

Then dM ′(γ)
dγ is1213

dM ′(γ)

dγ
= |pi−1ti|(δ sin γ − 1) + |piti|(2 cos γ − 1)1214

= sin γ(|pi−1ti|δ − |piti|)− |pi−1ti|+ |piti|(2 cos γ − 1

sin γ
).1215

1216

We know |pi−1ti|δ− |piti| ≤ 0 by our assumption in this case, thus all three terms1217

are negative for 0 ≤ γ ≤ π/2, thus M ′(γ) is decreasing in γ and is maximized when pi1218

lies on st, at which point M(γ) = M ′(γ). So we set γ = 0 and examine M as it varies1219

in β. When γ = 0,1220

M(β) = β|pi−1ti|+ |pi−1pi| − |Ssi−1,pi | − δ|piti|1221

≤ (β + sinβ − π(1− cosβ)− δ cosβ)|pi−1ti|12221223

Let N(β) = β + sinβ − π(1− cosβ)− δ cosβ. We will find the minimum value of1224

δ for which N(β) ≤ 0, 0 ≤ β ≤ π/2.1225

dN(β)

dβ
= 1 + cosβ − π sinβ + δ sinβ.(D.15)1226

1227
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Since 0 ≤ β ≤ π/2, sinβ is strictly increasing in this range and cosβ is decreasing,1228

for a given value of δ, (D.15) has one value β for which (D.15) is 0. Let θ∗ be the1229

value for which θ∗ = π − cot(θ∗/2). Let δ = β∗, and observe (D.15) when β = β∗.1230

1 + cosβ − π sinβ + δ sinβ1231

=1 + cosβ∗ − π sinβ∗ + (π − cot(β∗/2)) sinβ∗1232

=1 + cosβ∗ − sinβ∗ cos(β∗/2)

sin(β∗/2)
1233

=1 + cos2(β∗/2)− sin2(β∗/2)− 2 cos2(β∗/2)1234

=1− sin2(β∗/2)− cos2(β∗/2)1235

=0.12361237

Observe that M(β) is negative when β = 0 and when β = π/2. And when β = β∗1238

M(β∗) = (β∗ + sinβ∗ − π(1− cosβ∗)− δ cosβ∗)|pi−1ti|1239

≤ (π − cot(β∗/2) + sinβ∗ − π + π cosβ∗ − π cosβ∗ +
cosβ∗ cos(β∗/2)

sin(β∗/2)
)|pi−1ti|1240

≤
(

sinβ∗ − (1− cosβ∗) cos(β∗/2)

sin(β∗/2)

)
|pi−1ti|1241

≤ sinβ∗ − 2 sin(β∗/2) cos(β∗/2)1242

= 0.12431244

Thus M(β) ≤ 0 for 0 ≤ β ≤ π/2 and δ = θ∗ < 0.8105 leading to a routing ratio1245

smaller than 3.96.1246

Case 2.2: β = β1, x(fi) = x(pi)1247

Observe first that the LHS of (D.12) is upper bounded by 2|y(pi−1)|+ 3y(pi) +
x(pi)− x(si−1) and the RHS is lower bounded by y(pi) + x(pi)− x(si−1) + 2|y(fi)|.
Hence it is enough to prove that:

|y(pi−1)|+ y(pi) ≤ |y(fi)|.

In fact this inequality is an equality since |y(pi−1| = 2R sin(θ), y(pi) = R sin(α) −1248

R sin(θ) and |y(fi)| = R(sin(θ) sin(α)), where R is the radius of circle Ci. This proves1249

(D.12) and thus this lemma for this last case.1250

D.3. Lower Bounds.1251

Theorem D.7. The routing ratio of MinArc algorithm on a Delaunay triangula-1252

tion is at least 3.2 in the worst case.1253

Proof. We construct a point set using a sequence of circles Ci defined as fol-1254

lows. The coordinates of points s, t and c1 are respectively (−1, 0), (1,−ε) and1255

(−0.7652277146, 0). The point p1 is on C1 such that the angle (sc1p1) is 17.349883181◦.1256

Let C2 be the circle of center and radius (0,−0.0320133045) and 1, respectively and1257

let t′ be the point such that p1t
′ is a diameter of C2.1258

For i = 3, 4 . . . , we define circle Ci to be the circle of diameter pi−1t
′. Then we1259

set pi to be a point on Ci lying above pi−1 so that |pi−1pi| < ε for some ε > 0. We1260
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continue to place circles and points in this way until t′ is the lowest point of Cj for1261

some j. Then, we add points pj , ..., pn on the clockwise arc of Cj from pj to t′ so1262

that |plpl+1| < ε for l = j, . . . , k, where pn+1 = t′ (as shown in Fig. D.1). We then1263

construct the Delaunay triangulation of the point set so that s, p1, and p2 form a1264

triangle and pi, pi+1 and t′ form a triangle for i = 1, . . . , n− 1. Finally, we set t to be1265

pn.1266

Next, we perturb the configuration so that c0 lies slightly below x-axis and the1267

upper arc of Ci is slightly smaller than the lower arc for i = 2, . . . , j while preserving1268

the edges of the triangulation. This perturbation ensures that the path computed by1269

MinArc algorithm is s, p1, p2, . . . , pn = t. We observe that when ε approaches 0, the1270

routing path computed tends to Ss,t whose length adds up to 6.4. Since the distance1271

between s and t′ is 2, the routing ratio of MinArc algorithm is therefore at least 3.2.1272
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Figure A.5
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(b) P〈s, t〉 and all the potential circles.
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(c) The thick blue and green arcs are all the arcs considered when summing over Φ(CP
i−1, C

B
i ),

for 1 ≤ i ≤ n.

Figure A.6
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Figure B.1: Lemma B.1. PS(Ci−1, Ci) is longest when Ci = C ′i, that is Ci−1 and Ci
are balanced.
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βγ

Figure C.1: ci−1 and ci lie on the x-axis, and (pi−1, qi) lies along the y-axis.
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Figure C.2: Transformation 3.10. We fix pi−1 and qi and translate ci towards ci−1.
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(a) Initial orientation of Ci−1 and Ci.
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(b) The change in x(ci) represents moving ci while fixing pi−1 and qi.

Figure C.3
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(b)
∂|ti−1ti|
∂x(ci)

is found by moving ci while fixing ri.

48

This manuscript is for review purposes only.



Ci
∂|ti−1ti|

∂ri

γ
β π/2−β+γ

β − γ

ti

(a)
∂|ti−1ti|
∂ri

.

ti

Ci

∂Xci

∂|ti−1ti|
γ

β
π/2− β

π/2 + β − γ

(b)
∂|ti−1ti|
∂x(ci)

.

49

This manuscript is for review purposes only.



ti

Ci

∂Xci
γ π/2− β

π/2 + β − γ

β

(∂β)ri

(a) The change in βri with x(ci). Note when γ < β, the change in βri with respect to x(ci)
is positive.
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β

β − γ
∂ri

(b) The change in βri with ri. Note when γ < β, the change in βri with respect to ri is
negative.
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Figure C.7: The gray dots represent the path of vi.
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Figure C.8: Lemma C.14
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Figure C.9: Line segment ci−1q
′
i as we increase ri and ri−1.
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Figure C.10: Computing an upper bound on β on CQ.
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Figure C.11: Since β < 1 = sinα on circle CQ, vQ is below st.
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Figure C.12: The case where α > π/2 and ri−1 > ri.
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Figure C.13: Φ(CQ, Ci) ≤ 0 when y(tQ) > 0.
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C1 C2
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Figure D.1: On the right is a Delaunay triangulation that illustrates the lower bound
on the routing ratio of MinArc algorithm. The path obtained by the algorithm is
shown in bold; it has length 3.2|st|. The left image zooms in on what happens close to
point s.
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Figure D.2: Illustration of the definition of Sp,q.
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Figure D.3: Illustration of notations. The potential curve is displayed in red. To deal
with zig-zags we also need another potential component displayed in purple.
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Figure D.4: Illustration of the proof of Lemma D.2.
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Figure D.5: We start with ti = ti+1, then translate ti+1 to the right while observing
the changes in |Ssi−1,si +D′i|, shown in green. For (c), M(α) in green for π/2 < α ≤ π.
Observe that this is not a feasible arrangement of vertices, rather, it is an illustration
of the behaviour of M(α).
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Figure D.6: Calculating |Ssi,ti+1
(pi, ti+1)| (purple) for different values of α.
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Figure D.7: the generic configuration for the case D′i−1 of type A.
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Figure D.8: Extreme case when ti+1 = ti. In purple Ssi−1,si(pi, ti+1) and in yellow
Ssi−1,ti+1

.
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Figure D.9: Case 2

Figure D.10: ∆(α, θ, β) with β = β0 on the left and β = β1 on the right.

Figure D.11: When β = β0.

58

This manuscript is for review purposes only.



Figure D.12: When β = β0 and pi is on st.
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