1 Lemma 14.3.1 is wrong

Let S be a set of n points in \mathbb{R}^d , let G be a connected Euclidean graph with vertex set S, and let p and q be two distinct points of S. We denote by $\delta_2(p,q)$ the length of a second shortest simple path in G between p and q. In order to define $\delta_2(p,q)$ more precisely, recall that a path is called simple, if its vertices are pairwise distinct. Consider all distinct simple paths P_1, P_2, \ldots, P_m between p and q, and let ℓ_i denote the length of P_i , $1 \leq i \leq m$. Note that the paths may have vertices or edges in common. We assume that these paths are numbered such that $\ell_1 \leq \ell_2 \leq \ldots \leq \ell_m$. If $m \geq 2$, then we define $\delta_2(p,q) := \ell_2$, and we call P_2 a second shortest path between p and q. If m = 1, then there is only one simple path between p and q, and we define $\delta_2(p,q) := \infty$.

Lemma 14.3.1 states the following:

Lemma: Let S be a set of n points in \mathbb{R}^d , let t > 1 be a real number, and let G = (S, E) be an undirected t-spanner for S. Assume that $\delta_2(p,q) > t|pq|$, for every edge $\{p,q\}$ in E. Then, the edge set E satisfies the t-leapfrog property.

Here is a counter example to this lemma: Let ϵ be a real number with $0 < \epsilon < 1$, let a = (0,0), b = (1,0), and $c = (\epsilon,0)$, and let $S = \{a,b,c\}$. Let G be the graph with vertex set S and edges $\{a,b\}$ and $\{a,c\}$. Then G is a t-spanner for $t = (1 + \epsilon)/(1 - \epsilon)$. Since $\delta_2(a,b) = \delta_2(a,c) = \infty$, the graph G satisfies the conditions of Lemma 14.3.1. However, the t-leapfrog property does not hold: Take k = 2, $p_1 = p_2 = a$, $q_1 = b$, and $q_2 = c$. If the t-leapfrog property holds, then

$$t|p_1q_1| < |p_2q_2| + t(|p_1p_2| + |q_2q_1|),$$

i.e.,

$$t < \epsilon + t(1 - \epsilon),$$

i.e., t < 1, which is a contradiction.

2 Lemma 14.3.1 is true for strong spanners

The following definition is from Exercise 4.6: We call a Euclidean graph G = (S, E) a strong *t*-spanner for the point set S, if for any two points p and q of S, there exists a *t*-spanner path between p and q in G, all of whose edges have length at most |pq|. Here is the statement of Lemma 14.3.1 for strong spanners:

Lemma: Let S be a set of n points in \mathbb{R}^d , let t > 1 be a real number, and let G = (S, E) be an undirected strong t-spanner for S. Assume that $\delta_2(p, q) > t|pq|$, for every edge $\{p, q\}$ in E. Then, the edge set E satisfies the t-leapfrog property.

Proof. Let $k \ge 2$, and let $\{p_i, q_i\}$, $1 \le i \le k$, be an arbitrary sequence of pairwise distinct edges in E. We have to show that the *t*-leapfrog property holds, i.e.,

$$t|p_1q_1| < \sum_{i=2}^k |p_iq_i| + t\left(|p_1p_2| + \sum_{i=2}^{k-1} |q_ip_{i+1}| + |q_kq_1|\right).$$
(1)

Let P_1 be a *t*-spanner path in G between p_1 and p_2 , all of whose edges have length at most $|p_1p_2|$. For each *i* with $2 \leq i \leq k-1$, let P_i be a *t*-spanner path in G between q_i and p_{i+1} , all of whose edges have length at most $|q_ip_{i+1}|$. Finally, let P_k be a *t*-spanner path in G between q_k and q_1 , all of whose edges have length at most $|q_kp_{i+1}|$.

Let P be the (possibly non-simple) path

$$P_1, \{p_2, q_2\}, P_2, \{p_3, q_3\}, P_3, \dots, P_{k-1}, \{p_k, q_k\}, P_k$$

between p_1 and q_1 , and let P' be a simple path between p_1 and q_1 obtained by removing all cycles from P. We distinguish two cases.

Case 1: The path P' consists of at least two edges.

In this case, we have

$$P'| \leq |P|$$

$$= \sum_{i=1}^{k} |P_i| + \sum_{i=2}^{k} |p_i q_i|$$

$$\leq t \left(|p_1 p_2| + \sum_{i=2}^{k-1} |q_i p_{i+1}| + |q_k q_1| \right) + \sum_{i=2}^{k} |p_i q_i|.$$

Since $\{p_1, q_1\}$ is an edge of E, and since P' contains at least two edges, we have $\delta_2(p_1, q_1) \leq |P'|$. Then, the assumption of the lemma implies that

$$|P'| \ge \delta_2(p_1, q_1) > t|p_1q_1|.$$

Hence, the required inequality (1) holds.

Case 2: The path P' consists of exactly one edge.

In this case, the non-simple path P contains the edge $\{p_1, q_1\}$. In fact, there is an index j with $1 \leq j \leq k$, such that the path P_j contains this edge. If $2 \leq j \leq k - 1$, then (1) follows from the fact that $|p_1q_1| \leq |q_jp_{j+1}|$. If j = 1, then (1) follows from the fact that $|p_1q_1| \leq |p_1p_2|$. If j = k, then (1) follows from the fact that $|p_1q_1| \leq |q_kq_1|$.

3 A modified version of Lemma 14.3.1

By replacing the leapfrog property by the generalized leapfrog property of Section 14.9, Lemma 14.3.1 is true:

Lemma: Let S be a set of n points in \mathbb{R}^d , let t > 1 be a real number, and let G = (S, E) be an undirected t-spanner for S. Assume that $\delta_2(p,q) > t|pq|$, for every edge $\{p,q\}$ in E. Then, the edge set E satisfies the (t,t^2) -leapfrog property.

Proof. Let $k \ge 2$, and let $\{p_i, q_i\}$, $1 \le i \le k$, be an arbitrary sequence of pairwise distinct edges in E. We have to show that the (t, t^2) -leapfrog property holds, i.e.,

$$t|p_1q_1| < \sum_{i=2}^k |p_iq_i| + t^2 \left(|p_1p_2| + \sum_{i=2}^{k-1} |q_ip_{i+1}| + |q_kq_1| \right).$$
(2)

Let P_1 be a shortest path in G between p_1 and p_2 . For each i with $2 \le i \le k - 1$, let P_i be a shortest path in G between q_i and p_{i+1} . Finally, let P_k be a shortest path in G between q_k and q_1 . Since G is a t-spanner, the length $|P_i|$ of each path P_i is less than or equal to t times the distance between its endpoints. Let P be the (possibly non-simple) path

$$P_1, \{p_2, q_2\}, P_2, \{p_3, q_3\}, P_3, \dots, P_{k-1}, \{p_k, q_k\}, P_k$$

between p_1 and q_1 , and let P' be a simple path between p_1 and q_1 obtained by removing all cycles from P. We distinguish two cases.

Case 1: The path P' consists of at least two edges.

In this case, we have

$$|P'| \leq |P|$$

$$= \sum_{i=1}^{k} |P_i| + \sum_{i=2}^{k} |p_i q_i|$$

$$\leq t \left(|p_1 p_2| + \sum_{i=2}^{k-1} |q_i p_{i+1}| + |q_k q_1| \right) + \sum_{i=2}^{k} |p_i q_i|$$

$$\leq t^2 \left(|p_1 p_2| + \sum_{i=2}^{k-1} |q_i p_{i+1}| + |q_k q_1| \right) + \sum_{i=2}^{k} |p_i q_i|.$$

Since $\{p_1, q_1\}$ is an edge of E, and since P' contains at least two edges, we have $\delta_2(p_1, q_1) \leq |P'|$. Then, the assumption of the lemma implies that

$$|P'| \ge \delta_2(p_1, q_1) > t |p_1 q_1|.$$

Hence, the required inequality (2) holds.

Case 2: The path P' consists of exactly one edge.

In this case, the non-simple path P contains the edge $\{p_1, q_1\}$. In fact, there is an index j with $1 \leq j \leq k$, such that the path P_j contains this edge. Hence, we have

$$|p_1q_1| \le |P_j| \le \sum_{i=1}^k |P_i| \le t \left(|p_1p_2| + \sum_{i=2}^{k-1} |q_ip_{i+1}| + |q_kq_1| \right),$$

from which the inequality (2) follows.

4 Corrected version of Lemma 15.2.15

By changing the parameters for the leapfrog property in Lemma 15.2.15, we obtain the following lemma:

Lemma: Let S be a set of n points in \mathbb{R}^d and let t > 1, t' > 1, $\alpha > 0$, and $\mu > 1$ be real numbers, such that t > t' and

$$\alpha \le \frac{\sqrt{t} - \sqrt{t'}}{2\sqrt{t} + 18\sqrt{t'}}.$$

Let G = (S, E) be the output of algorithm FASTPATHGREEDY (S, t, t', α, μ) . The edge set $E \setminus E_0$ satisfies the (t', tt')-leapfrog property.

Proof. Let $k \ge 2$, and let $\{p_i, q_i\}, 1 \le i \le k$, be an arbitrary sequence of pairwise distinct edges in $E \setminus E_0$. We have to show that the (t', tt')-leapfrog property holds, i.e.,

$$t'|p_1q_1| < \sum_{i=2}^{k} |p_iq_i| + tt' \left(|p_1p_2| + \sum_{i=2}^{k-1} |q_ip_{i+1}| + |q_kq_1| \right).$$
(3)

Let P_1 be a shortest path in G between p_1 and p_2 . For each i with $2 \le i \le k-1$, let P_i be a shortest path in G between q_i and p_{i+1} . Finally, let P_k be a shortest path in G between q_k and q_1 . Since G is a t-spanner, the length $|P_i|$ of each path P_i is less than or equal to t times the distance between its endpoints. Let P be the (possibly non-simple) path

$$P_1, \{p_2, q_2\}, P_2, \{p_3, q_3\}, P_3, \dots, P_{k-1}, \{p_k, q_k\}, P_k$$

between p_1 and q_1 , and let P' be a simple path between p_1 and q_1 obtained by removing all cycles from P. We distinguish two cases.

Case 1: The path P' consists of at least two edges.

In this case, we have

$$|P'| \leq |P|$$

= $\sum_{i=1}^{k} |P_i| + \sum_{i=2}^{k} |p_i q_i|$
 $\leq t \left(|p_1 p_2| + \sum_{i=2}^{k-1} |q_i p_{i+1}| + |q_k q_1| \right) + \sum_{i=2}^{k} |p_i q_i|$
 $\leq tt' \left(|p_1 p_2| + \sum_{i=2}^{k-1} |q_i p_{i+1}| + |q_k q_1| \right) + \sum_{i=2}^{k} |p_i q_i|.$

Since $\{p_1, q_1\}$ is an edge of $E \setminus E_0$ and since P' contains at least two edges, we have $\delta_{G,2}(p_1, q_1) \leq |P'|$ and, by Lemma 15.2.14, $\delta_{G,2}(p_1, q_1) > t'|p_1q_1|$. It follows that

$$|P'| \ge \delta_{G,2}(p_1, q_1) > t'|p_1q_1|.$$

Hence, the required inequality (3) holds.

Case 2: The path P' consists of exactly one edge.

In this case, the non-simple path P contains the edge $\{p_1, q_1\}$. In fact, there is an index j with $1 \leq j \leq k$, such that the path P_j contains this edge. Hence, we have

$$|p_1q_1| \le |P_j| \le \sum_{i=1}^k |P_i| \le t \left(|p_1p_2| + \sum_{i=2}^{k-1} |q_ip_{i+1}| + |q_kq_1| \right),$$

from which the inequality (3) follows.