Lemma 12.1.6 Let n and ℓ be positive integers, such that $n \geq \ell$, and consider the set E'' defined above. Then,

- 1. the set E'' contains at most 3n edges, and
- 2. given the centroid tree CT(T), the set E'' can be computed in O(n) time.

Proof. Consider the subtrees T_1, T_2, \ldots, T_g that we get by removing the vertices of CV_{ℓ} from T. We fix an arbitrary vertex r of CV_{ℓ} . Using this vertex, we divide the edges of E'' into two groups. Let $\{v, u\}$ be any edge of E'' and assume without loss of generality that $v \notin CV_{\ell}$ and $u \in CV_{\ell}$. We call edge $\{v, u\}$ an upstream edge, if, in the tree T, u is on the path between v and r. Otherwise, $\{v, u\}$ is called a *downstream edge*. We will count the upstream and downstream edges separately.

Each vertex $v \notin CV_{\ell}$ is incident on exactly one upstream edge. (Otherwise, the tree T would contain a cycle.) Conversely, each upstream edge of E'' is incident on exactly one vertex that is not in CV_{ℓ} . Therefore, the set E'' contains exactly $n - |CV_{\ell}|$ upstream edges.

Let u be any vertex of $CV_{\ell} \setminus \{r\}$, and let $\{u, u'\}$ be the first edge on the path in T from u to r. If we remove this edge from T, we obtain two trees T'and T'', where T' contains r. Consider two distinct downstream edges $\{v, u\}$ and $\{v', u\}$. Hence, neither of v and v' is a vertex of CV_{ℓ} . Also, neither of v and v' is a vertex of T''. Let i and j be the indices such that v and v' are vertices of T_i and T_j , respectively. Since u is a border vertex of T_i and v is a vertex of T', the subtree T_i contains u' as a vertex. Similarly, since u is a border vertex of T_j and v' is a vertex of T', the subtree T_j contains u' as a vertex. Therefore, we have i = j. It follows that each downstream edge of E'' that is incident on u, is incident on a vertex of T_i . Since T_i has less than ℓ vertices, this implies that there are less than ℓ downstream edges that are incident on u. Since each downstream edge is incident on exactly one vertex of $CV_{\ell} \setminus \{r\}$, this proves that the number of downstream edges in E''is bounded from above by $(|CV_{\ell}| - 1)(\ell - 1)$.

We know from Lemma 12.1.5 that CV_{ℓ} contains at most $2n/\ell$ vertices. Therefore, the number of edges in E'' is bounded from above by

$$(n - |CV_{\ell}|) + (|CV_{\ell}| - 1)(\ell - 1) \le n + |CV_{\ell}| \ell \le 3n.$$

This proves the first claim. The proof of the second claim is left as an exercise; see Exercise 12.4.