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Abstract. Let P be a simple polygon with m vertices and let U be a
set of n points in P . We consider the points of U to be “users”. We
consider a game with two players P1 and P2. In this game, P1 places a
point facility inside P , after which P2 places another point facility inside
P . We say that a user u ∈ U is served by its nearest facility, where
distances are measured by the geodesic distance in P . The objective of
each player is to maximize the number of users they serve. We show that
for any given placement of a facility by P1, an optimal placement for P2

can be computed in O(m + n(logn + logm)) time. We also provide a
polynomial-time algorithm for computing an optimal placement for P1.

1 Introduction

In a facility location problem, we are interested in finding a placement of a set of
facilities so that, for a given set of users, certain optimality criteria are met. In a
typical geometric facility location problem, the facilities and users are modeled as
points. Each user is served by its nearest facility, with respect to an appropriate
distance measure (e.g., Euclidean distance). Consequently, each facility has its
service zone, consisting of the set of users that are served by it. The aim is to
place the facilities so that certain optimality criteria are satisfied.

The Voronoi game is a competitive facility location problem introduced by
Ahn et al.[1]. Given a user space, two players, P1 and P2, sequentially place
a set of point facilities. These facilities partition the user space into a set of
regions, such that all users within a region are served by a particular facility. The
objective of each player is to maximize the total service zone of all its facilities.
This problem is generally intractable. Teramoto, Demaine, and Uehara [8] have
shown that even if the underling user space is a graph, finding a winning strategy
of P2 (even for a very restricted case) is NP hard. Similar results can also be
found in a seminal paper of Hakimi [7].

The discrete version of the Voronoi game is studied by Banik, Battacharya
and Das [3]. Their user space is a line containing a set U of n point users. Each of
the players P1 and P2 can place k = O(1) point facilities. First, P1 chooses a set
F1 of k facilities, after which P2 chooses a set F2 of k facilities, disjoint from F1.
The payoff of P2 is defined to be the cardinality of the set of points in U which
are closer to some facility owned by P2 than to every facility owned by P1. The
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payoff of P1 is the number of users in U minus the payoff of P2. The objective
of both players is to maximize their respective payoffs. Banik et al. show that, if
the sorted order of points in U along the line is given, an optimal strategy of P2

for any given placement of facilities of P1 can be computed in linear time. They
also provide results for determining an optimal strategy for P1.

Given a set of existing facilities, the problem of placing a set of new facili-
ties, to maximize the number of users served by the new ones, has been actively
researched. Cabello et al. [5] study the case when only one new facility by P2

is introduced. This problem is referred to as the MaxCov problem. They have
shown that the optimal placement for the new facility can be found in O(n2)
time. The 2-MaxCov problem, which considers the problem of placing two new
facilities, has been studied by Bhattacharya and Nandy [4]. Recently Bandya-
padhyay, Banik, Das and Sarkar [2] studied the one round discrete Voronoi game
for graphs.

In this paper, we consider the Voronoi game, where the underlying user space
is a simple polygon P with distance measure defined to be the geodesic (i.e.,
shortest-path) distance in P . The game consists of a set U of n point-users inside
P , and two players P1 and P2. Initially, P1 places a set F1 of k point-facilities,
after which P2 places a set F2 of k point-facilities, where F1 ∩F2 = ∅. Each user
u ∈ U is served by the nearest facility according to the nearest neighbor rule
(i.e., by the facility which is at the least geodesic distance from u).

Definition 1. (Service zone) For each facility f ∈ F1∪F2, we define its service
zone UF1∪F2({f}) to be the set of users in U that are closer to f than to any
other facility of F1 ∪ F2.

Given a set S ⊆ F1 ∪ F2, we define the service zone of S to be the set
of users which are assigned to one of the facilities in S, i.e., UF1∪F2(S) =
∪f∈SUF1∪F2({f}).

With this definition, the problem considered in this paper can be formally
described as follows.

Definition 2. Discrete Voronoi Game for a Simple Polygon P : Given a set U of n
point-users and two players P1 and P2, having k facilities each, P1 chooses a set
F1 of k point-facilities in P , after which P2 chooses a set F2 of k point-facilities
in P , where F1 ∩ F2 = ∅.

(a) Given any choice of F1 by P1, the objective of P2 is to choose a set S = F2

that maximizes UF1∪S(S)| over all sets S, with |S| = k and F1 ∩ S = ∅.
(b) The objective of P1 is to place a set F1 of k facilities such that the maximum

possible payoff of P2 is minimized. In other words, the objective of P1 is to
choose a set F = F1 of size k that minimizes maxS |UF∪S(S)|, where the
maximum is taken over all sets S, with |S| = k and F ∩ S = ∅.

In this paper, we consider the case when k = 1. Thus, P1 will place a single
facility inside P , after which P2 places another facility inside P . In the next
section, we characterize an optimal placement for P2 and show that, given any
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placement of a facility by P1, an optimal strategy for P2 can be computed in
O(m+n(logn+logm)) time, where m is the number of vertices of P . In Section
3, we will provide an algorithm that computes an optimal strategy for P1.

2 Computing an Optimal Placement for P2

Let f (= first) and s (= second) be the facilities in P that are placed by players
P1 and P2, respectively.

Given any placement of the facility f by P1, we will provide an algorithm
that computes a point s that maximizes |U{f,s}({s})| over all points s ∈ P , where
s 6= f .

Consider the set U = {u1, u2, . . . , un} of users. For each user ui, let di denote
the geodesic distance between ui and f , and let Γi denote the set of points in
the polygon P whose geodesic distance to ui is at most di (see Figure 1).

Observation 1 A user ui ∈ U is served by a facility s placed by P2 if and only
if s belongs to Γi.

Hence, if we consider the arrangement inside P defined by the set of regions
Γ = {Γ1, Γ2, . . . Γn}, then an optimal placement for P2 belongs to a cell in this
arrangement having maximum depth.

For any two points p1 and p2 in P , denote the geodesic path between p1 and
p2 by λ(p1, p2). The length of a geodesic path λ is denoted by |λ|. The anchor
of f with respect to ui is defined to be the last vertex on the path λ(ui, f) from
ui to f ; we denote this anchor by ai(f). If f is visible from ui then we define
ai(f) = ui. Let Ci denote the circle centered at ai(f) and passing through f .
For any two points p1, p2 ∈ P , denote the line segment joining them by [p1, p2].

ui

f

Γi

ai(f )

Fig. 1. Span of the user ui
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For any anchor vertex ai(f), let li denote the line tangent to the circle Ci

and passing through the point f (see Figure 2(a)). Consider the line segment
[c, d] ⊂ liof maximum length that is completely contained in P and that contains
f . Observe that [c, d] divides the polygon into two parts. Denote the part which
contains ui by Pi.

Lemma 1. For any user ui, Γi ⊆ Pi.

ui

ai(f )

f

vj

lic d

v
f
j+1 vrj+1

α

Pi

r

Ci

(a)

ui

f

vj

r li

Ci

c d

vj+1

r∗

ai(f )

(b)

Fig. 2. Illustration of the proof of Lemma 1

Proof. If ai(f) = ui, then there is nothing to prove. In the rest of the proof,
we assume that ai(f) 6= ui. It is sufficient to prove that for any point q ∈ [c, d],
|λ(ui, q)| > |λ(ui, f)|. Observe that [ai(f), f ] divides Pi in two parts. Without
loss of generality, assume that d and ui belong to the same sub-polygon and that c
belongs to the other sub-polygon. For all points q ∈ [c, f ], the shortest path from
ui to q is through ai(f). Hence, for all points q ∈ [c, f ], |λ(ui, q)| > |λ(ui, f)|.
Assume there exists a point r in [f, d], such that |λ(ui, r)| < |λ(ui, f)|. Let
r ∈ [f, d] be such a point that is closest to f .

Claim: The set of vertices in λ(ui, r) is a subset of the set of vertices in λ(ui, f).
Proof of Claim. Let the vertices on the path λ(ui, f) be

λ(ui, f) = (v1, v2, . . . , vj , v
f
j+1, . . . , v

f
τ , f)

and let the vertices on the path λ(ui, r) be

λ(ui, r) = (v1, v2, . . . , vj , v
r
j+1, . . . , v

r
ω, r),
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see Figure 2(a). Observe that the line joining vj and vfj+1 either intersects the
line segment [f, r] or intersects some edge in λ(vj , r). If this line intersects [f, r]
then that contradicts the fact that r is the closest point from f in [f, d] for

which |λ(ui, r)| < |λ(ui, f)|. Hence, the line joining vj and vfj+1 intersects an
edge of λ(vj , r) (see Figure 2(a)) at a point α. From the convexity properties

of geodesic paths and the triangle inequality, |λ(vj , vfj+1, α)| < |λ(vj , vrj+1, α)|.
This contradicts the fact that the shortest path between vj and r is via vrj+1.
Hence the claim holds.

We continue with the proof of Lemma 1. Let j be the index such that r is the
intersection of li and the line joining the two consecutive vertices vj and vj+1 of
λ(ui, f) (see Figure 2(b)). Denote the intersection between li and the line joining
vj+1 and vj+2 by r∗. Observe that |λ(ui, r

∗)| < |λ(ui, r)|. This contradicts the
fact that r is the closest point from f in [f, d] for which |λ(ui, r)| < |λ(ui, f)|.
Hence r must be the intersection of li and the line joining ai(f) and bi, where bi is
the vertex previous to ai(f) on the path λ(ui, f). But |λ(ai(f), f)| < |λ(ai(f), r)|.
Therefore, |λ(ui, f)| < |λ(ui, r)|. Hence, we arrive at a contradiction. �

For any anchor vertex ai(f), let Zi denote the set of points in P which are
at distance at most |ai(f)f | from ai(f).

Observation 2 For any two users ui and uj, we have (Γi∩Γj)\{f} = ∅ if and
only if (Zi ∩ Zj) \ {f} = ∅.

Proof. Observe that Zi ⊆ Γi and Zj ⊆ Γj . Therefore, if (Zi∩Zj)\{f} 6= ∅, then
(Γi ∩ Γj) \ {f} 6= ∅.

Assume that (Zi ∩ Zj) \ {f} = ∅. Observe that both Zi and Zj contain the
point f . Hence, both the circles Ci and Cj share the same tangent lij passing
through f . Now lij divides P into two disjoint subpolygons Pi and Pj . Observe
that Pi ⊂ Γi and Pj ⊂ Γj . Therefore, (Γi ∩ Γj) \ {f} = ∅. �

Observation 3 For any placement of a facility f by P1, an optimal placement
of a facility by P2 is the point s̊ 6= f in P that pierces the maximum number of
regions among {Z1, Z2, . . . Zn}.

The arrangement of the regions Z1, Z2, . . . Zn divides P into cells. All points
within the same cell pierce the same set of regions. Define the depth of a cell
to be the number of regions pierced by any point in that cell. The cell with
maximum depth contains f , because all regions Z1, Z2, . . . Zn contain f .

Consider a circle Cε with radius ε > 0 that is centered at f ; this circle pierces
all cells containing f (see Figure 3(a)). Observe that Cε∩P can be a set of disjoint
subsets of Cε. If f is in the interior of P , then we can choose ε such that Cε is
completely contained in the interior of P . If f belongs to the boundary of P ,
then we can choose ε such that Cε ∩ P is a single connected subset of Cε (see
Figure 3(a) where Cε ∩ P consists of three disjoint sets µ1, µ2, and µ3).

Consider any optimal placement s for P2. Let γ be the cell that contains s.
From the previous discussion, any point in γ acts as an optimal placement for
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Fig. 3. Arrangement of the regions {Z1, Z2, . . . Zn}

P2. Hence, the intersection point between the boundary of γ and Cε is also an
optimal placement. Thus, one of the optimal placements for P2 belongs to the
set αε = {Ci ∩ Cε : 1 ≤ i ≤ n}.

Consider any optimal placement of facility s̊ ∈ αε for P2. Let s̊ be the in-
tersection point between Ci and Cε. Consider the perpendicular bisector ` of f
and s̊. Let `ε ⊆ ` be the maximal line segment in P that contains the midpoint
of the line segment joining f and s̊ (see Figure 3(b)).

Observation 4 The line segment `ε passes through ai(f).

Proof. Observe that [̊s, f ] is a chord of the circle Ci. The perpendicular bisector
of any chord always passes through the center of the circle. Hence, the result
holds. �

Note that `ε divides P into two sub-polygons, one containing f and the other
containing s̊. If P2 places its facility at s̊, P2 will serve the set of users ui such
that ai(f) belongs to the sub-polygon containing s̊. As ε tends to 0, `ε tends to
the line joining f and ai(f). Hence, for all ai(f), if we consider the chord passing
through f and ai(f), then we can find an optimal placement for P2. Note that
all anchor vertices are visible from f . Thus, using an angular sorting, we can
find an optimal placement for P2. We obtain the following result.

Theorem 1. Let P be a polygon with m vertices and let U be a set of n point-
users in P . Given the placement of a point f ∈ P by P1, a point s ∈ P maxi-
mizing P2’s payoff can be computed in O(m+ n(logm+ log n)) time.

Proof. Let f be any placement of a facility by P1. Consider the visibility region
Vf of f in P , i.e., the set of points which are visible from f . Observe that
P \ Vf consists of a set of possibly disjoint sub-polygons of P . For each such
sub-polygon Pi, for all points q ∈ Pi, the anchor vertex on the path λ(q, f) will
be the same. Given f , we can construct a data structure in O(m) time that
can report the anchor vertex on the path λ(q, f), for any query point q ∈ P , in
O(logm) time [6]. Using this data structure, in O(n logm) time, we can find the



The Discrete Voronoi Game in a Simple Polygon 7

set of all anchor vertices on the paths from users in U to f . Once we have the list
of anchor vertices, using angular sorting, we can compute the half plane passing
through f which contains the maximum number of anchor vertices. Hence the
result follows. �

3 Computing an Optimal Placement for P1

As before, let P be a simple polygon with m vertices and let U = {u1, u2 . . . un}
be a set of n point-users in P . We will present an algorithm that computes an
optimal placement of a facility for P1.

For any placement of f by P1, let ν(f) = maxs |Uf∪s({s})|, where the maxi-
mum is taken over all points s in P with s 6= f . Our objective is to find a point
f̊ ∈ P which minimizes ν; we call such a point an optimal placement for P1.
Observe that there are two cases:

Case 1: f̊ belongs to the boundary of P .
Case 2: f̊ is in the interior of P .

In Section 3.1, we will give an algorithm that computes an optimal placement
on the boundary of P for P1. Formally, we will show how to compute a point fb
on the boundary of P such that ν(fb) = minf ν(f), where the minimum is taken
over all points f on the boundary of P . In Section 3.2, we will give an algorithm
that computes an optimal placement in the interior of P for P1.

3.1 The boundary case

Let us begin our discussion with the following two simple observations (see Figure
4).

Observation 5 For any placement f by P1, where f is on any convex vertex
of P , there exists a placement s for P2 such that ν(f) = n.

Observation 6 Let (vi, vi+1) be an edge of P such that at least one of vi and
vi+1 is a convex vertex. For any placement f by P1 on the edge (vi, vi+1), there
exists a placement s for P2 such that ν(f) = n.

Hence, an optimal placement for P1 must be either at a reflex vertex or on
an edge (vi, vi+1) for which both vi and vi+1 are reflex vertices.

Observation 7 Let (vi, vi+1) be an edge of P such that both vi and vi+1 are
reflex vertices. For any placement f by P1 on the edge (vi, vi+1), ν(f) ≥ ν(vi)
and ν(f) ≥ ν(vi+1).

Proof. Let p and q be arbitrary placements by P1 and P2, respectively. The
perpendicular bisector of p and q divides P into two sub-polygons. Denote the
sub-polygon that contains p by P+(p, q), and the other sub-polygon by P−(p, q).
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f

s

(a)

f

s

(b)

Fig. 4. (a) Illustration of Observation 5 (b) Illustration of Observation 6

vi f
vi+1

s(vi)
s

Fig. 5. Illustration of the proof of Observation 7

Let f be any placement by P1 on the edge (vi, vi+1) (see Figure 5). Let
s(vi) be an optimal placement for P2, when P1 places its facility at vi. Hence,
ν(vi) is the number of users in P−(vi, s(vi)). When P1 places its facility at f ,
there always exists a placement s by P2, such that s serves the set of users in
P−(vi, s(vi)) (see Figure 5). Therefore, ν(f) ≥ ν(vi) and the claim holds. �

Thus, there is optimal placement, on the boundary of P , for P1 that is at a
reflex vertex of P . By checking all reflex vertices, we can compute an optimal
placement for P1 on the boundary of P in O(m2 logm) time.

3.2 The interior case

In this section, we present an algorithm that computes an optimal placement
for P1 in the interior of the polygon P . Let R denote the set of reflex vertices
of P . Consider the set L of all maximal line segments which are fully contained
in P and contain at least two points from R ∪ U (see Figure 6(a)). The set L
tessellates P into a collection of cells. Denote the tessellation by Π(P ).

Recall the notion of an anchor vertex defined in Section 2.

Lemma 2. For any cell C in Π(P ), for any two points f1 and f2 in C, and for
any user ui, we have ai(f1) = ai(f2).

Proof. Assume there exists a user ui whose anchor vertex ai(f1) on the geodesic
path from ui to f1 is different from the anchor vertex ai(f2) on the geodesic
path from ui to f2.
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vk

ui
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Fig. 6. (a) Tessellation of P (b) Illustration of the proof of Lemma 2

Let vj be the last vertex that is common to the paths λ(ui, f1) and λ(ui, f2).
Observe that one of ai(f1) and ai(f2) is not equal to vj , because otherwise,
we would have ai(f1) = ai(f2) = vj . Assume, without loss of generality, that
ai(f2) 6= vj (see Figure 6(b)).

Let vk be the vertex next to vj on the shortest path from vj to f2. Observe
that f1 and f2 are on different sides of the line joining vj and vk. Hence, f1 and
f2 belong to two different cells of the tessellation Π(P ). �

Let C be any cell in Π(P ). For any user ui, all points f in C have the same
anchor vertex; denote this anchor vertex by aCi . Assign a weight wC

i which is
the number of shortest paths from any user uj to any point f ∈ C, in which aCi
is the anchor vertex.

Recall that a chord of P is a closed line segment whose interior is contained
in the interior of P and whose endpoints are on the boundary of P . Let f be any
placement by P1. Any chord passing through f divides P into two sub-polygons,
which we call half polygons with respect to f . From Section 2, we know that
for any placement f by P1, the maximum number of users that P2 can serve,
by placing one facility, is equal to maxPf

∑
aC
i ∈Pf

|wC
i |, where Pf is any half

polygon with respect to f , i.e., the maximum number of anchor vertices in any
half polygon with respect to f .

For any point f in any cell C, we define the weighted half-space depth of f to
be maxPf

∑
wC

j such that aj ∈ Pf . Observe that an optimal placement for P1

in the cell C corresponds to a point with minimum weighted half-space depth.

Lemma 3. One of the optimal placements for P1 belongs to the set of vertices
of the tessellation Π(P ).

Proof. Assume that none of the optimal placements for P1 belongs to the set of
vertices of Π(P ). Let f be any optimal placement for P1. Suppose f belongs to
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Fig. 7. Illustration of the proof of Lemma 3

the cell C ∈ Π(P ). Let v any vertex of this cell. Let δ be the payoff of P1, when
P1 places a facility at v, and assume that δ is less then the optimal payoff of P1.
Then there exists a half-polygon Pv bounded by a chord cv, which contains n−δ
users. With out loss of generality, we may assume that cv is passing through some
anchor vertex aj . Since aj is visible from v, aj is also visible from f . Consider
the chord cf passing through f and aj (see Figure 7). Consider the half polygon
Pf bounded by cf . Observe that Pv \Pf = ∅, because otherwise, v and f belong
to different cells of Π(P ). It follows that the claim holds. �

Since the cardinality of R ∪ U is at most n+m, the number of cells and the
number of vertices in the tessellation Π(P ) is O((n+m)4). For each vertex, we
can check the optimal payoff of P1 in O(m+ n(logn+ logm)) time. Hence, we
have proved the following result.

Theorem 2. Let P be a polygon with m vertices and let U be a set of n point-
users in P . An optimal placement of a facility for P1 can be computed in poly-
nomial time.

4 Conclusion

We have considered the Discrete Voronoi Game for a Simple Polygon P . The
game consists of two players P1 and P2, and a finite set of users in a simple
polygon P . Initially, P1 places one facility in P , after which P2 places another
facility in P . Each user is then assigned to one of the facilities according to the
nearest neighbor rule, where distances are measured using the geodesic distance
in P . We have shown that an optimal strategy for P2, given any placement of
P1, can be found in O(m+ n(logm+ log n)) time, and an optimal strategy for
P1 can be found in polynomial time.
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There are many open problems in this area. Obtaining an algorithm to find
an optimal placement for P1 and P2, where each of them places k > 1 facilities
is a problem that remains to be solved. Another variant of the game where the
two players place k > 1 facilities alternately is also an interesting problem to
study.
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