The closest pair problem:
A plane sweep algorithm

Michiel Smid*

November 8, 2003

Let S be a set of n points in the plane. We want to compute a closest pair in S, i.e., two distinct points P and Q in S such that

$$d(P, Q) = \min \{d(p, q) : p, q \in S, p \neq q\}.$$

Here, $d(p, q)$ denotes the Euclidean distance between the points p and q,

$$d(p, q) = \left((p_x - q_x)^2 + (p_y - q_y)^2 \right)^{1/2}.$$

We will solve this problem using the plane sweep paradigm. Hence, we move (sweep) a vertical line SL, the sweep line, from left to right over the points of S. During the sweep, we maintain the invariant that we have computed a closest pair among all points to the left of SL. Once the sweep line has visited the rightmost point, the invariant implies that we have found a closest pair in the entire set S.

During the algorithm, we maintain two data structures. The Y-structure contains information that is needed to update the closest pair each time SL hits at a point of S. Observe that if SL hits at a point of S, this Y-structure will change, i.e., it has to be updated. The positions at which the Y-structure changes are maintained in the X-structure.

The main problem is to find out how the X- and Y-structures look like. Here are the two main observations. Let p be a point of S, let S' be the set of all points of S that are to the left of p, and let δ be the minimum distance in the set S'. Assume the sweep line hits at point p. At this moment, we know

*School of Computer Science, Carleton University, Ottawa, Ontario, Canada K1S 5B6. E-mail: michiel@scs.carleton.ca.
the value of δ (because of the invariant). In order to maintain the invariant, we have to compute the minimum distance in the set $S' \cup \{p\}$. We can do this by assigning
\[
\delta := \min(\delta, d(p, S')).
\] (1)

Observation 1 In order to execute (1), we do not have to consider points of S' whose x-coordinates are less than or equal to $p_x - \delta$.

Let S'' be the set of all points of S' whose x-coordinates are larger than $p_x - \delta$. (Of course, these x-coordinates are at most equal to p_x.) Then Observation 1 says that we only have to consider points of S''.

Observation 2 In order to execute (1), we only have to consider points of S' whose y-coordinates are between $p_y - \delta$ and $p_y + \delta$. Moreover, there are at most six such points. (The last claim follows from the fact that all pairs of points of S' have distance at least δ.)

Now we can describe the X- and Y-structures. The X-structure is an array $A[1..n]$ containing the points of S sorted by their x-coordinates, whereas the Y-structure is a balanced binary search tree containing the points of S'' sorted by their y-coordinates.

More precisely, if the sweep line SL is the vertical line through point p of S, then we have (refer to Figure 1)

1. a variable r whose value is the position in the X-structure where point p is stored, i.e., $A[r] = p$,

2. a variable δ whose value is the minimum distance among all points to the left of SL, i.e., the minimum distance among the points in $A[1..r-1]$,

3. a variable ℓ whose value is the index of the leftmost point in the X-structure whose x-coordinate is larger than $p_x - \delta$, i.e.,
\[
\ell = \min\{i : (A[i])_x > p_x - \delta\}
\]
(hence, $S'' = A[\ell..r-1]$),

4. a Y-structure, implemented as a balanced binary search tree, storing the points of $A[\ell..r-1]$ sorted by their y-coordinates. (By Observation 1, only these points are of interest to us, whereas by Observation 2, we have to be able to search these points by y-coordinate.)
The plane sweep algorithm for computing the closest pair in the set S is given in Figure 2. I hope it is clear that this algorithm correctly solves the closest pair problem for any point set S. There remains one problem to be solved: how do we implement line (\ast)? We have to search in the Y-structure for all points having a y-coordinate between $p_y - \delta$ and $p_y + \delta$. By Observation 2, there can be at most six such points. Therefore, we do the following: We search in Y for the six successors of $p_y - \delta$, i.e., the six points that are immediately above the point $(p_x, p_y - \delta)$. These six points surely include all points q in the Y-structure for which $p_y - \delta < q_y < p_y + \delta$. Observe that in a balanced binary search tree, one successor can be found in $O(\log n)$ time.

We now have completely specified the algorithm. Let us consider the running time. The initialization takes $O(n \log n)$ time: It takes $O(n \log n)$ time to sort the points; the rest takes $O(1)$ time. (Observe that after the first while-loop, the value of ℓ is at most three.) Consider the main while-loop, in which r runs from 3 to n. In one iteration, we need $O(\log n)$ time to search for the six points q, update δ, and insert p into Y. The inner while-loop may take much time, because we may have to delete a large number of points.
Algorithm \textit{fast_closest_pair}(S)
\((\ast S \text{ is a set of } n \text{ points in the plane } \ast)\)
sort the points from left to right, and store them in an array \(A[1..n]\);
\(\delta := d(A[1], A[2]); \ r := 3; \ p := A[r]; \)
\(\ell := 1; \)
while \((A[\ell])_x \leq p_x - \delta\)
do \(\ell := \ell + 1\)
endwhile;
is\(\text{initialize an empty balanced binary search tree } Y;\)
for \(i := \ell \text{ to } r - 1\)
do insert \(A[i]\) into \(Y\)
endfor;
\((\ast \text{ the initialization is now complete } \ast)\)
while \(r \leq n\)
do for each point \(q\) in \(Y\) such that \(p_y - \delta < q_y < p_y + \delta\) \((\ast)\)
do \(\delta := \min(\delta, d(p, q))\)
endfor;
is\(\text{insert } p \text{ into } Y;\)
if \(r < n\)
then \(p := A[r + 1];\)
\(\text{while } (A[\ell])_x \leq p_x - \delta\)
do delete \(A[\ell]\) from \(Y;\)
\(\ell := \ell + 1\)
endwhile
endif;
endwhile;
\(r := r + 1\)
endwhile;
return \(\delta\)

Figure 2: The plane sweep closest pair algorithm.
from Y. Observe, however, that each point can be deleted from Y only once. Moreover, one such deletion takes $O(\log n)$ time. Therefore, the entire main while-loop takes $O(n \log n)$ time. We have proved the following result.

Theorem 1 Algorithm fast closest pair(S) computes the closest pair in a set of n points in the plane in $O(n \log n)$ time.

Exercise 1 Try to generalize this algorithm to points in three dimensions. What are the difficulties that you encounter?

We now consider a very simple variant of algorithm fast closest pair(S). Its running time is $\Theta(n^2)$ in the worst case, but for random inputs, it will be quite fast. Moreover, it is very easy to implement.

We only maintain the array $A[1..n]$ and the variables δ, ℓ and r. (That is, there is no Y-structure!) During one iteration of the main while-loop, we compute the distance from p to all points in $A[\ell..r-1]$. This algorithm is still correct, because these points include those having a y-coordinate between $p_y - \delta$ and $p_y + \delta$. The pseudocode is given in Figure 3.

Exercise 2 Prove that the worst-case running time of the new algorithm closest pair(S) is $\Theta(n^2)$.

Exercise 3 Implement algorithm closest pair(S) in your favorite programming language. In order to save square root operations, compute δ^2 instead of δ. Test your implementation on random inputs for different values of n. Count how many times line (**) is executed, and try to express this number as a function of n. This number is quadratic in n in the worst case, but for random inputs, it should be much smaller. In algorithm fast closest pair(S), the corresponding line is executed a linear number of times.
Algorithm closest_pair(S)
(* S is a set of n points in the plane *)
sort the points from left to right, and store them in an array A[1..n];
\(\ell := 1 \);
while \((A[\ell])_x \leq p_x - \delta \)
do \(\ell := \ell + 1 \)
endwhile;
(* the initialization is now complete *)
while \(r \leq n \)
do for \(i := \ell \) to \(r - 1 \)
do \(\delta := \min(\delta, d(p, A[i])) \) (**)
endfor;
if \(r < n \)
then \(p := A[r + 1] \);
while \((A[\ell])_x \leq p_x - \delta \)
do \(\ell := \ell + 1 \)
endwhile
endif;
r := r + 1
endwhile;
return \(\delta \)

Figure 3: A simple variant of the plane sweep closest pair algorithm. This one has a high worst-case running time, but will be fast on random inputs.