
Computing the Minimum Diameter for Moving Points:
An Exact Implementation Using Parametric Search∗

Jörg Schwerdt† Michiel Smid† Stefan Schirra‡

1 Introduction

Parametric Search, developed by Megiddo [8], is a power-
ful algorithmic technique that can be used to solve a large
variety of geometric optimization problems, see e.g. [1]. Al-
though this technique is ingenious, it is, in general, hard
to implement. In this paper, we report on the implementa-
tion of (a practical variant of) an algorithm that is based on
parametric search, and that is due to Gupta et al. [7]. As far
as we know, this is the first implementation of a parametric
search algorithm.

The algorithm of [7] solves the following problem. We
are given a set of n points in the plane that are moving at
constant but possibly different velocities. The diameter of
the points at time t is the largest Euclidean distance among
all pairs of points at time t. Our goal is to compute the time
t∗ at which the diameter is minimum.

This problem can be solved trivially as follows. For each
pair of points, the square of their distance defines a quadratic
function in t, i.e., a parabola. The minimum diameter is ob-
tained by finding the lowest point on the upper envelope of
these

(
n
2

)
parabolas. This gives an algorithm with running

time O(n2 logn), and using O(n2) space. It was shown in [7],
that the problem can be solved, using parametric search, in
O(n log3 n) time, using O(n) space. The latter algorithm is
complicated and not practical; it uses e.g. an optimal par-
allel sorting algorithm. Therefore, we have implemented a
variant of it, which has running time O(n log6 n).

We implemented this algorithm in C++ using LEDA [9,
10] and CGAL [5, 6]. In our first implementation we used
the number type double in all numerical computations. For
many problem instances the implementation could not find
the minimum diameter. During parametric search an inter-

∗ This paper is based on the first author’s Master’s Thesis [12].
† Fakultät für Informatik, Otto-von-Guericke-Universität

Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany.
E-mail: {schwerdt,michiel}@cs.uni-magdeburg.de.

‡ Max-Planck-Institut für Informatik, Im Stadtwald, D-66123
Saarbrücken, Germany. E-mail: stschirr@mpi-sb.mpg.de. This
work was (partially) supported by the ESPRIT IV LTR Project
No. 21957 (CGAL).

val containing t∗, the time at which the diameter is min-
imum, is maintained and repeatedly made smaller until it
is finally shrunken to t∗. For many problem instances the
interval does not collapse to a single point due to rounding
errors and a fairly small interval was reported in the end.
We got rid of these precision problems by using the number
type real [3, 4] from LEDA [9] in the numerical computa-
tions, cf. Section 4.

Our implementation of the algorithm of Gupta et al. [7]
shows that parametric search is not at all a purely theoreti-
cal and totally impractical technique in algorithm design in
general and computational geometry in particular.

2 Applying Parametric Search

We assume that the reader is familiar with the parametric
search technique, see [8, 1, 7]. Recall that t∗ denotes the time
at which the diameter of the moving points is minimum. In
order to apply parametric search, we need a sequential algo-
rithm A and a parallel algorithm B, each of which decides
if a given t ∈ IR is smaller, larger, or equal to t∗.

Let Zpq(t) denote the square of the Euclidean distance
between the moving points p and q. Note that Zpq(t) is a
parabola. Let t∗pq be the time at which p and q are closest.
Finally, let D(t) denote the diameter at time t.

Lemma 2.1 We have t < t∗ iff t < t∗pq for all points p and

q such that Zpq(t) = D2(t). A similar claim can be used to
decide if t > t∗.

Based on this lemma, algorithms A and B do the fol-
lowing. They first compute the positions of the points at
time t. Then they compute all diametral pairs, i.e., all pairs
p, q such that Zpq(t) = D2(t). Finally, for each such pair,
they check if t < t∗pq, t > t∗pq, or t = t∗pq. Algorithm A can
be implemented in TA(n) = O(n logn) time, whereas algo-
rithm B can be implemented on a PRAM such that it takes
TB(n) = O(log n) time using P (n) = n processors.

Both A and B perform computation and comparison
steps. Each computation step only involves the basic opera-
tions +,−, ∗, and /, whereas each comparison step involves
determining the sign of a polynomial at the value t. The co-
efficients of such a polynomial depend on the moving points
only, and, as we will see later, its degree is at most three.

The parametric search algorithm computes t∗ by sequen-
tially simulating the parallel algorithm B on the unknown
value t∗. Comparisons are resolved by running algorithm
A on the roots of the corresponding polynomials. As is
shown in [8], the total time for finding t∗ is bounded by
O(P (n)TB(n) + TA(n)TB(n) logP (n)) = O(n log3 n).

3 The Implementation

The implementation of the sequential algorithm A does the
following. First, it calls a LEDA routine to sort the points—
at a given time t—by their x-coordinates. Then the convex
hull of the points is constructed by running Andrew’s modi-
fication of Graham’s Scan (see [11]) on the sorted sequence.
Next, the rotating calipers algorithm is used to compute all
diametral pairs of the convex hull. Finally, for each diame-
tral pair p, q, it is decided if t < t∗pq, t > t∗pq, or t = t∗pq. The
entire algorithm has running time O(n logn).

Since the optimal parallel algorithm B is complicated, we
decided to implement a simpler, and slower, variant. This
algorithm does the following.

Using parallel merge-sort in a bottom-up fashion, the
points—at time t—are sorted by their x-coordinates. This
algorithm consists of O(log n) stages. At the beginning of
stage i, we have n/2i sorted sequences, each of length 2i.
For each element x, there is one processor that uses binary
search to find the rank of x in the neighboring sequence.
Given these ranks, we can merge pairs of neighboring se-
quences. The entire sort algorithm takes O(log2 n) time,
using n processors. The polynomials that occur during com-
parison steps have degree one.

The convex hull of the sorted sequence is computed by
parallel bottom-up merging. Again, this algorithm consists
of O(logn) stages. At the beginning of stage i, we have the
convex hulls of the leftmost 2i points, the next 2i points,
and so on. For each pair of neighboring convex hulls, there
is one processor that computes their upper and lower tan-
gents using binary search. For resolving a comparison, nine
cases have to be distinguished (see [11, Figure 3.21]), eight
of which lead to a polynomial in t of degree two. Unfor-
tunately, one case (concave–concave in [11, Figure 3.21])
leads to a polynomial of degree three. In this case, we do
not proceed as in [11], but change the tangent finding al-
gorithm, thereby slowing it down (see [12] for details). As
a result, one stage may take O(log3 n) parallel time. The
entire parallel convex hull algorithm takes O(log4 n) time
using n processors. All polynomials that occur have degree
two.

Given the convex hull, all diametral pairs are obtained as
follows. For each hull edge e = (p, q), there is one processor
that uses binary search to find the at most two points a and b
that are at maximum distance from the line through e. (The
distances of the hull vertices to this line form a uni-modal
sequence.) Then the four pairs (p, a), (p, b), (q, a), and (q, b)
are inserted into appropriate positions of an array. All this
takes O(logn) time using n processors. The polynomials
that occur have degree two.

At this point, we know that the array contains all di-
ametral pairs. By playing a tournament in parallel, level
by level, these pairs are found in another O(logn) time us-
ing n processors. Again, the polynomials that are involved
have degree two. Finally, given all diametral pairs, it can
be decided in O(1) time using n processors, whether t < t∗,
t > t∗, or t = t∗. The comparisons in this final step do not
depend on t∗ and, hence, no polynomials are involved.

The entire algorithm B takes O(log4 n) time and uses n
processors. Moreover, the polynomials that arise at com-
parison steps all have degree at most two.

The sequential simulation of B on the value t∗ is straight-
forward, and the total time for finding t∗ is bounded by
O(n log6 n).

4 Computing Exact Results

Due to precision problems our implementation with doubles
often could not find t∗, but reported an interval only. Fig. 1
gives an example. The reported interval might be a suf-

exact: − 507777
587485

+ 1
1174970

√
1239667408036

double: (0.0832666379676957336. . . ,
0.0832783171914589365. . .)

real: 0.0832783171914590203. . .

Figure 1: Results for t∗.

ficiently good approximation to t∗ and in our examples it
usually was. However, when we got the result of the im-
plementation with double arithmetic we had no idea how
good an approximation we had got. Even worse, we did not
really know whether the fact that we got an interval and not
a single time was caused by precision problems or a bug in
the implementation.

Replacing double arithmetic by exact rational arithmetic
is not sufficient, because quadratic irrationals, real num-
bers of the form A + B

√
C, where A, B, and C are ratio-

nal, arise in the computations (as roots of the polynomials).
Fortunately the number type real [3, 4] in LEDA [9] pro-
vides exact computation for arithmetic expressions involv-
ing +,−, ·, / and

√
. To be more precise, it provides exact

comparisons of reals and hence the use of reals ensures cor-
rect control flow in the implementation: All decisions made
in branching steps are correct, i.e., as if the computation
would have been done with infinite precision.

In C++-code reals are very easy to use, they can be used
exactly like doubles [3]. The switch from double to real in
our code was simplified by the use of a preliminary version
of the CGAL kernel [6], which provides geometric objects,
especially points, parametrized by number types.

In addition, we wrote a number type which maintains
quadratic irrationals symbolically in the form A+B

√
C us-

ing LEDA rationals to represent A, B, and C. In the
implementation all arithmetic operations are over elements
from the same real quadratic field. In addition to arith-
metic operations in a real quadratic field we had to provide
a comparsion operation for quadratic irrationals from differ-
ent extension fields. This comparison is made by repeated
squaring.

5 Running Times

In our implementation we used the newest version of the
LEDA number type real which incorporates recent results
on separation bounds [2]. The old version was much too
slow. For the old version it would have been necessary to
provide reasonable separation bounds calculated by hand.
The new version automatically finds such good bounds.

Fig. 2 shows ranges of running times in seconds of our
double and real version for “random” point sets of size n ∈
{500, . . . , 3000} on a SUN SPARCstation 4. In the examples
a moving point p was created by randomly choosing four
integers x, y, vx, vy in the range [−500, 500]. The position
of point p at time t is then p(t) = (x, y) + t (vx, vy). For
each value of n we created 10 different example point sets.
It turned out that the exact real version is about 6 times

500 1000 1500 2000 2500 3000

20

40

60

80

100

120

Figure 2: Running times in seconds for real version and
double version .

slower than the inherently inexact double version, which
returned time t∗ in less than 20% of our test examples. The
implementation with symbolic quadratic irrationals is about
40 times slower than the double version.

References

[1] P.K. Agarwal, M. Sharir and S. Toledo. Applications of
parametric searching in geometric optimization. J. Algo-
rithms 17 (1994), pp. 292–318.

[2] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra.
A strong and easily computable separation bound for
arithmetic expressions involving square roots. In Pro-
ceedings of the 8th ACM-SIAM Symposium on Discrete
Algorithms, 1997, pp. 702–709.

[3] C. Burnikel, J. Könemann, K. Mehlhorn, S. Näher,
S. Schirra, and C. Uhrig. Exact geometric computation
in LEDA. In Proceedings of the 11th ACM Symposium
on Computational Geometry, 1995, pp. C18–C19.

[4] C. Burnikel, K. Mehlhorn, and S. Schirra. The LEDA
class real number. Technical Report MPI-I-96-1-001,
Max-Planck-Institut für Informatik, Saarbrücken, Jan-
uary 1996.

[5] CGAL Project. cf. http://www.cs.ruu.nl/CGAL/
[6] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and

S. Schönherr. The CGAL kernel: A basis for geometric
computation. In M.C. Lin and D. Manocha, editors, Ap-
plied Computational Geometry: Towards Geometric En-
gineering, Proceedings First ACM Workshop on Applied
Computational Geometry, 1996, Springer LNCS 1148,
pp. 191–202.

[7] P. Gupta, R. Janardan and M. Smid. Fast algorithms for
collision and proximity problems involving moving geo-
metric objects. Computational Geometry: Theory and
Applications 6 (1996), pp. 371-391.

[8] N. Megiddo. Applying parallel computation algorithms in
the design of serial algorithms. Journal of the ACM 30
(1983), pp. 852–865.

[9] K. Mehlhorn, S. Näher, and C. Uhrig. The LEDA User
Manual;
cf. http://www.mpi-sb.mpg.de/LEDA/leda.html

[10] K. Mehlhorn and S. Näher. LEDA: A platform for com-
binatorial and geometric computing. Communications of
the ACM 38 (1995), pp. 96–102.

[11] F.P. Preparata and M.I. Shamos. Computational Ge-
ometry, an Introduction. Springer–Verlag, 1985.

[12] J. Schwerdt. Das Diameterproblem einer bewegten
Punktemenge: eine Implementierung mit Hilfe von Para-
metric Search. Master’s Thesis (Diplomarbeit), Univer-
sität des Saarlandes, Saarbrücken, 1996.

