
CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Covering Points with Pairs of Concentric Disks∗

Anil Maheshwari† Saeed Mehrabi† Sasanka Roy‡ Michiel Smid†

Abstract

In this paper, we study the following problem moti-
vated by applications in wireless local area networks.
We are given a set of m pairs of concentric disks in d-
dimensional space, d ∈ {1, 2}, where each pair consists
of one disk with radius one and the other with radius
two. We are also given a set of n points such that the
union of the m pairs of disks covers all the n points.
The goal is to select exactly one disk from each pair
such that every point is covered by at least one disk
and the number of points covered by at least one disk
with radius one is maximized; we refer to this as the
sDiskCover problem.

When d = 1 (i.e., we have m pairs of intervals on the
real line), we give an exact algorithm that solves the
sDiskCover problem in O(m2n) time. We also consider
a special case of the problem for d = 1, and show that
it can be solved in O(mn) time. For d = 2, we prove
that the sDiskCover problem is NP-hard.

1 Introduction

In this paper, we study a problem that is moti-
vated by applications in wireless local area networks
(WLANs) [1]. In a WLAN, all the users (also called sta-
tions) receive data from access points. An access point
can operate exactly one frequency, which can be chosen
from many different frequencies at the beginning. When
an access point is activated by a single frequency, it cov-
ers a circular area inside a disk. Higher frequency has
higher speed, but lower coverage in disk area (i.e., covers
a disk with smaller radius); see Figure 1 for an example.
One can view different frequencies at an access point as
concentric disks that are centered at the access point
with different radii. Disks with smaller radius have
higher frequency, which means the corresponding ac-
cess point can provide data with higher speed. If a user
is within a higher-frequency region of an access point,
then they can be supplied data with higher speed; this
will correspond to the profit of the service provider who
installs the frequency at the access point. The service

∗This work is supported in part by NSERC.
†School of Computer Science, Carleton University, Ottawa,

Canada. anil@scs.carleton.ca, saeed.mehrabi@carleton.ca,

michiel@scs.carleton.ca.
‡ACMU, Indian Statistical Institute (ISI), Kolkata, India.

sasanka@isical.ac.in

Figure 1: The points in red (resp., black) are the loca-
tions of access points (resp., users). The areas within
red and black disks centered at each access point denote
higher-to-lower frequency disks of the access point. A
user can be served with the maximum speed if they are
within a red disk and the corresponding access point is
activated by that frequency.

provider has to provide services to all the users, which
might force the service provider to allocate lower fre-
quency at an access point to get a higher coverage area.1

The objective of the service provider is to increase sum
of the total speed provided to the users, which in turn
will maximize the profit made by the service provider.
In this paper, we formalize this problem with two types
of frequencies.

Problem statement. Let d ∈ {1, 2}. Then, an object
in d-dimensional space is a pair of disks, a disk with
radius one and a disk with radius two, such that the
disk with radius one is entirely contained in the one
with radius two. For an object i, we call the disk of i
with radius one (resp., two) the small disk (resp., big
disk) of i and denote it by sDisk(i) (resp., bDisk(i)).

Consider a set of n > 0 points p1, . . . , pn and a set
of m > 0 objects in d-dimensional space for some d ∈
{1, 2}. Then, the objective of the sDiskCover problem
is to select exactly one disk from each object such that

1Here, we assume that the union of lowest-frequency disks cov-
ers all the users.

32nd Canadian Conference on Computational Geometry, 2020

every point is contained in at least one disk and

n∑
i=1

min{1, |small(pi)|}

is maximized, where small(pi) is the set of selected small
disks that contain the point pi. In other words, we want
to select exactly one disk from each object such that all
the points are covered and the number of points covered
by at least one small disk is maximized.

Notation. For a point p in the plane, we denote the
x- and y-coordinates of p by x(p) and y(p), respectively.
Moreover, we denote the Euclidean distance between
two points pi and pj by dist(pi, pj). For an object i, we
denote the centres of sDisk(i) and bDisk(i) by sCentre(i)
and bCentre(i), respectively.

Consider an instance of the sDiskCover problem. Let
p be an input point that is contained in exactly one big
disk bDisk(i) (for some object i) and not contained in
any small disk. Then, any feasible solution must select
bDisk(i). Moreover, let M be the set of all input points
q(6= p) such that (i) q is covered by bDisk(i) and (ii) no
small disk covers q (i.e., q is only covered by big disks).
Then, we can include bDisk(i) into the solution, and
then remove the object i and the set M ∪ {p} from the
instance. Therefore, we assume the following through-
out the paper.

Assumption 1 Given an instance of the sDiskCover
problem, if an input point is not contained in any small
disk, then it is contained in at least two big disks.

2 One-dimensional Objects

In this section, we consider the sDiskCover problem for
n points and m one-dimensional objects: each object
is a pair of intervals on the real line (i.e., an interval
with length one and an interval with length two). For
an interval i, we denote its left and right endpoints by
left(i) and right(i), respectively. Moreover, we write p(i)
to denote the set of input points covered by i. For the
rest of this section, we refer to the small and big disks
of an object i as the small and big intervals of i and
denote them by sInt(i) and bInt(i), respectively (we still
use the term “object” whenever we are not referring to
a specific interval). Moreover, we assume that the input
points have distinct x-coordinates and x(pi) is distinct
from that of the endpoints of any interval in the input
objects, for all 1 ≤ i ≤ n.

Here, we first consider the sDiskCover problem in a
special case in which the objects are left-aligned : we
have x(left(sInt(i))) = x(left(bInt(i))) for all objects 1 ≤
i ≤ m. In Section 2.2, we will solve the problem without
this restriction. In this subsection, we assume that the
points are ordered from left to right as p1, p2, . . . , pn,

and the objects are sorted from left to right by the x-
coordinate of the right endpoint of their big interval.

2.1 Left-aligned Intervals

An object i on the real line is called left-aligned
if x(left(sInt(i))) = x(left(bInt(i))); a set of one-
dimensional objects is called left-aligned if every ob-
ject in the set is left-aligned. Given a set of n points
p1, . . . , pn and m one-dimensional left-aligned objects
on the real line, we give an exact O(mn)-time algorithm
for the sDiskCover problem.

For 1 ≤ i ≤ n and 1 ≤ j ≤ m, define A[i, j]
to be the objective value of an exact solution for the
problem on the points p1, p2, . . . , pi and the objects
o1, o2, . . . , oj . Similarly, define B[i, j] to be the objec-
tive value of an exact solution for the problem on the
points p1, p2, . . . , pi and the objects o1, o2, . . . , oj , as-
suming that bInt(oj) is in the solution. Our goal is
to compute A[n,m]; the actual solution that gives us
A[n,m] can be computed in the standard manner. We
next show how to compute A[i, j] and B[i, j]. First, we
need the following lemma.

Lemma 1 Consider an instance of the sDiskCover
problem, and let ` be the vertical line through
right(sInt(om)). Moreover, assume that pn lies to the
right of `, and let T denote the set of all big inter-
vals that intersect ` (including bInt(om)). Then, there
exists an exact solution S for the problem such that
S ∩ T ⊆ {bInt(om), bInt(om−1)} and S ∩ T 6= ∅.

Proof. Since pn lies to the right of `, we have |T | ≥ 2
by Assumption 1. If |T | = 2, then T = {om−1, om}
and so any feasible solution S must contain at least
one of bInt(om−1) and bInt(om). Hence, S ∩ T ⊆
{bInt(om), bInt(om−1)} and S ∩ T 6= ∅.

Now, assume that |T | > 2. Consider an exact so-
lution that contains neither bInt(om−1) nor bInt(om).
Then, pn must be covered by bInt(oi) in this solution,
for some i < m − 1, and so bInt(oi) ∈ T . We now re-
place bInt(oi) and sInt(om−1) with, respectively, sInt(oi)
and bInt(om−1) in this solution; let S be the result-
ing set of intervals. Since the objects are left-aligned,
these replacements do not leave any point uncovered:
any point that was covered by bInt(oi) ∪ sInt(om−1) is
still covered by sInt(oi) ∪ bInt(om−1). Moreover, since
i < m − 1 and oi ∈ T (i.e., bInt(oi) intersects `),
any point that was covered by sInt(om−1) is still cov-
ered by sInt(oi) ∪ sInt(om). Hence, S is a feasible solu-
tion for the problem and its objective value is at least
as big as that of the initial solution. Observe that
S ∩ T ⊆ {bInt(om), bInt(om−1)} and S ∩ T 6= ∅. �

Computing A[i, j]. Let ` denote the vertical line
through right(sInt(oj)). We consider two cases depend-
ing on whether pi lies to the right or to the left of `.

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

If pi lies to the right of `, then we can focus our at-
tention to bInt(oj) and bInt(oj−1) by Lemma 1. Let `′

be the vertical line through right(sInt(oj−1)) and let pi′

be the rightmost point that is to the left of `′. More-
over, let `′′ be the vertical line through left(sInt(oj))
and let pi′′ be the rightmost point that is to the left
of `′′. Now, if bInt(oj) is in the solution, then every
point to the right of `′ is covered by bInt(oj) and no
such point is contained in a small interval; hence, the
problem is reduced to B[i′, j]. On the other hand, if
bInt(oj−1) is in the solution, then we also take sInt(oj)
into the solution. Hence, the problem is reduced to
B[i′′, j − 1] + |p(sInt(oj))|. Therefore, we have A[i, j] =
max{B[i′, j], B[i′′, j − 1] + |p(sInt(oj))|}.

If pi is to the left of `, then we take sInt(oj) into the
solution. This is because if there exist a solution with
bInt(oj), then we can replace bInt(oj) with sInt(oj) with-
out decreasing the objective value. Now, let `′ denote
the vertical line through left(sInt(oj)) and let pi′ be the
rightmost point that is to the left of `′. Then, the prob-
lem is reduced to A[i′, j − 1] + p(sInt(oj)). In summary,
we compute A[i, j] as follows. First, assume that i > 1
and j > 1. If pn is to the right of `, then A[i, j] =
max{B[i′, j], B[i′′, j−1]+ |p(sInt(oj))|}; otherwise, if pn
is to the left of `, then A[i, j] = A[i′, j− 1] + p(sInt(oj)).
Now, assume that i = 1. If p1 is contained in at least one
small interval, then A[i, j] = 1; but, if p1 is contained
in no small interval, then A[i, j] = 0. Finally, assume
that j = 1. If there is at least one point that is not con-
tained in sInt(o1), then A[i, j] = 0; but, if every point is
contained in sInt(o1), then A[i, j] = |p(sInt(o1))|.

Computing B[i, j]. To compute B[i, j], let ` be the
vertical line through right(sInt(oj)). We again consider
two cases. If pi is to the right of `, then the problem
is simply reduced to B[i− 1, j]. If pi is to the left of `,
then the problem is reduced to A[i, j−1] because we can
remove the object oj from the instance (as we know that
bInt(oj) has been selected) and then solve the problem
with the same points and the objects o1, o2, . . . , oj−1.
Therefore,

B[i, j] =

{
B[i− 1, j], if pi is to the right of `,

A[i, j − 1], if pi is to the left of `.

Moreover, to compute the base cases, assume first
that i = 1. If at least one of sInt(o1), . . . , sInt(oj−1)
contains p1, then B[i, j] = 1; otherwise, B[i, j] = 0.
Now, if j = 1, then B[i, j] = 0 because we have taken
bInt(o1) into the solution.

Running time. The tables A and B each have size mn,
and we spend O(1) time to fill one entry of A or one
entry of B. Hence, the total time spent to fill out A
and B is O(mn) and so we have the following theorem.

Theorem 2 For a set of n points and m left-aligned
objects on the real line, the sDiskCover problem can be
solved in O(mn) time.

2.2 Arbitrary Intervals

Here, we remove the “left-aligned” restriction and as-
sume that the small interval of an object i can be any-
where within the big interval of the object as long as
dist(sCentre(i), bCentre(i)) ≤ 1/2 (i.e., the small interval
is entirely contained in the big interval). In this subsec-
tion, we assume that the objects are ordered from left to
right by the x-coordinate of the right endpoint of their
small interval.

Lemma 3 There exists an optimal solution for the
sDiskCover problem such that each point is covered by
at most two small intervals.

Proof. Take any optimal solution OPT for the prob-
lem. Let S(pi) denote the set of small intervals in OPT
that cover point pi for all i = 1, 2, . . . , n. For each
point p for which |S(p)| > 2, we do the following: let o`
(resp., or) be the object for which sInt(o`) ∈ S(p) (resp.,
sInt(or) ∈ S(p)) and x(left(sInt(o`)) ≥ x(left(sInt(oj)))
(resp., x(right(sInt(or)) ≤ x(right(sInt(oj)))) for all oj
such that sInt(oj) ∈ S(p). Now, for every small interval
in S(p) \ {sInt(o`), sInt(oj)}, we replace the small inter-
val in OPT by its big interval. Clearly, every point is
covered by at most two small intervals in the resulting
set. Moreover, one can verify that the resulting set of
intervals will still cover all the points and has the same
objective value as OPT. �

We now describe a dynamic programming algorithm.
Let T [i, j] denote the objective value of an optimal so-
lution for covering the points p1, p2, . . . , pi with the ob-
jects o1, o2, . . . , oj (where the latter ordering is by their
small interval). Then, the goal is to compute T [n,m].
To compute T [i, j], we assume in the following that the
union of the j objects cover all the i points (as otherwise
we set T [i, j] to −1). Now, take any optimal solution
OPT for T [i, j] and let pr be the rightmost point for
which OPT gets a credit; that is, pr is the rightmost
point that is covered by at least one small interval in
OPT. Then, by Lemma 3, pr is covered by either one
or two small intervals in OPT. Let us consider these in
two cases.

Point pr is covered by one small interval in OPT. Let
oa be the object such that sInt(oa) ∈ OPT and sInt(oa)
covers pr. Let ` (resp., `′) be the vertical line through
left(sInt(oa)) (resp., right(sInt(oa))). Moreover, let Ma

be the set of objects ot such that bInt(ot) intersects `′.
To see which interval of the objects in Ma \ {oa} are
in OPT, take any object ot ∈ Ma \ {oa}. Observe

32nd Canadian Conference on Computational Geometry, 2020

that if sInt(ot) ∈ OPT, then sInt(ot) does not cover
any points in {pr+1, . . . , pn}. Moreover, the points that
lie to the right of ` and to the left of pr are already
covered by sInt(oa) (and so for each of which OPT has
gained a credit). This means that, the only way OPT
could potentially gain points by having sInt(ot) is when
left(sInt(ot)) lies strictly to the left of `. In that case,
among all such sInt(ot), OPT must have the one with
leftmost left endpoint; consider this object and let t∗

be the index of its small interval (in the input order-
ing defined on small intervals). Notice that for all other
objects in Ma \ {oa}, we can have their big intervals in
OPT. Let pr′ for some r′ ≤ r, be the leftmost point
covered by sInt(ot∗). Then, in this case, we have

T [i, j] = max
pr∈{p1,...,pi}
oa∈{o1,...,oj}:
pr∈sInt(oa)

{f(sInt(oa), sInt(ot∗))

+ T [r′ − 1, t∗ − 1]},

where f(sInt(oa), sInt(ot∗)) denotes the number of points
covered by at least one of sInt(oa) and sInt(ot∗).

Point pr is covered by two small intervals in
OPT. Let oa and ob be the two objects such that
sInt(oa), sInt(ob) ∈ OPT and they both cover pr. As-
sume w.l.o.g. that x(left(sInt(oa))) ≤ x(left(sInt(ob)));
let ` (resp., `′) be the vertical line through left(sInt(oa))
(resp., right(sInt(ob))). Let Mab be the set of objects ot
such that bInt(ot) intersects `′. To see which interval of
the objects in Mab \ {oa, ob} are in OPT, take any ob-
ject ot ∈Mab \ {oa, ob}. Observe that if sInt(ot) ∈ OPT,
then sInt(ot) does not cover any point in {pr+1, . . . , pn}.
Moreover, the points that lie to the right of ` and to the
left of pr are already covered by sInt(oa) (and so for
each of which OPT has gained a point). This means
that, if x(left(sInt(ot))) ≥ x(left(sInt(oa))), then OPT
does not gain any points by having sInt(ot). Therefore,
the only way OPT could potentially gain points by hav-
ing sInt(ot) is when left(sInt(ot)) lies strictly to the left
of `. In that case, among all such sInt(ot), OPT must
have the one with leftmost left endpoint; consider this
object and let t∗ be the index of its small interval. No-
tice that for all other objects in Mab \ {oa, ob}, we can
have their big interval in OPT. Let pr′ , for some r′ ≤ r,
be the leftmost point covered by sInt(ot∗). Then, in this
case, we have

T [i, j] = max
pr∈{p1,...,pi}

{oa,ob}⊆{o1,...,oj}:
pr∈sInt(oa)∩sInt(ob)

{f(sInt(oa), sInt(ob), sInt(ot∗))

+ T [r′ − 1, t∗ − 1]},

where f(sInt(oa), sInt(ob), sInt(ot∗)) denotes the number
of points covered by at least one of sInt(oa), sInt(ob) and
sInt(ot∗). The base case is T [1, j] for all j = 1, . . . ,m;

we set T [1, j] = 1 if p1 is covered by at least one small
interval in {sInt(o1), sInt(o2), . . . , sInt(oj)} and T [1, j] =
0, otherwise.

Running time. Given an instance of the problem, we
can compute the order of the points and the intervals (as
required by the algorithm) in O(n log n) and O(m logm)
time, respectively. Moreover, within the same time
bound, we can preprocess the input to compute the
function f(sInt(o)) for all the input objects o. Each
entry of the table T can be computed in O(m2n) time,
and so we have the following theorem.

Theorem 4 For a set of n points and m arbitrary in-
tervals on the real line, the sDiskCover problem can be
solved in O(m2n) time.

3 Two-dimensional Objects

In this section, we consider the sDiskCover problem for
objects in the plane and show that the problem is NP-
hard. Recall that for each object i, we have two disks:
sDisk(i) whose radius is one and bDisk(i) whose ra-
dius is two. Throughout this section, we assume that
sCentre(i) = bCentre(i); i.e., the disks are centred at the
same point.

We show a polynomial-time reduction from Planar
Variable Restricted 3SAT (Planar VR3SAT, for short).
Planar VR3SAT is a constrained version of 3SAT in
which each variable can appear in at most three clauses
and the corresponding variable-clause graph is planar.
Efrat et al. [2] showed that Planar VR3SAT is NP-hard.

Let ISAT be an instance of Planar VR3SAT with K
clauses C1, C2, . . . , CK and N variables X1, X2, . . . , XN ;
we denote the two literals of a variable Xi by xi and
xi. We construct an instance IsDC of our problem such
that IsDC has a solution with objective value of at least
MNK + MK/2, for some M that we will determine
its value below, if and only if ISAT is satisfiable. Given
ISAT, we first construct the variable-clause graph G of
ISAT in the non-crossing comb-shape form of Knuth and
Raghunathan [3]. We assume w.l.o.g. that the variable
vertices lie on a vertical line and the clause vertices are
connected from left or right of that line; see Figure 2
(left) for an example. This representation has size poly-
nomial in N and K.

Gadgets. For each variable Xi ∈ ISAT, we replace the
corresponding variable vertex in G with two objects as
shown in Figure 2 (right); we call this pair of objects
the variable gadget of Xi. The top object serves as lit-
eral xi while the bottom object serves as literal xi. The
variable gadget initially contains three disjoint group of
points; we call each such group of points a cloud. There
is one cloud of K points that is shared between bDisk(xi)
and bDisk(xi), called a variable-shared cloud. Moreover,

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

X1

X2

X3

X4

X5

C1

C2

C3 C4

xi

xi

Figure 2: Left: an instance of the Planar VR3SAT
problem in the comb-shape form of Knuth and Raghu-
nathan [3]. Crosses on the edges indicate negations; for
example, C2 = (x1 ∨ x3 ∨ x5). Right: A variable gad-
get. The three clouds of the gadget are shown as small
shaded disks.

each of sDisk(xi) and sDisk(xi) contains one cloud, each
of which we refer to as a variable-small cloud. We de-
termine the number of points in a variable-small cloud
later.

Observation 1 Given any feasible solution S for the
sDiskCover problem, at most one of sDisk(xi) and
sDisk(xi) can be in S, for any variable Xi.

The idea behind the variable gadget (corresponding
to a variable Xi) is to ensure that also at most one of
bDisk(xi) and bDisk(xi) appears in any feasible solution.
Then, we set the variable to true if and only if bDisk(xi)
is in the solution. However, the gadget as it is now does
not enforce this. To enforce this, we must enforce one
of the small disks to be selected in any feasible solution
(hence, forcing its big disk not to be selected). To this
end, we will set the number of points in each variable-
small cloud (in the variable gadget) to a large enough
value that any feasible solution must contain at least
one small disk from every variable gadget in order for
its objective value to meet a minimum requirement. We
will determine this minimum requirement later.

If the literal xi (resp., xi) appears in a clause, then
the bottom object (resp., top object) of the gadget is
connected to the corresponding clause by a chain of ob-
jects, called a wire. A wire starting from the bottom
object (resp., top object) of a variable gadget and end-
ing at a clause has the following structure. (i) Every
object i in the wire has a cloud of K points in sDisk(i).
(ii) The big disk of the first object of the wire shares one
cloud of K points with the big disk of the bottom ob-
ject (resp., top object) in the variable gadget. (iii) The
big disks of every two consecutive objects in the wire
share one cloud of K points. We call the first object of
a wire (that shares a cloud with one of the objects in

Figure 3: An illustration of a clause gadget.

the variable gadget) the starting object of the wire.

For the clause gadget, where three wires meet, the
small disks of the last three objects (each arriving from
one of the wires) will have a non-empty intersection in
which we place one cloud containing K points; see Fig-
ure 3. We call this K points a clause cloud.

Construction details. Let S be a feasible solution for
the problem, and consider the object xi shown in Fig-
ure 2 (right). The variable-small cloud of this object is
covered by either sDisk(xi) or bDisk(xi) in S. If it is
covered by sDisk(xi) in S, then we must cover the other
clouds in this object by the starting objects of the wires
connected to xi. But, if it is covered by bDisk(xi) in
S, then we can select the small disk of the starting ob-
ject of each wire. Consequently, depending on whether
sDisk(xi) or bDisk(xi) is selected, one can see that the
clouds in the wires connected to this object are covered
in S in one of the two possible ways. (Here, we are as-
suming that S needs to meet the minimum requirement
for its objective value.) By re-scaling and adjusting the
length of a wire, we can ensure that exactly one of these
two possible coverings will let S to select the small disk
of the last object in the wire; the other will only let S
to select the big disk of the last object. In other words,
exactly one of these two possible ways allows S to gain
K points for covering the corresponding clause cloud.

By the discussion above, we set a variable Xi to true
if and only if bDisk(xi) is selected. By having an appro-
priate number of objects in each wire (while keeping the
size polynomial), we can assume that S gains K points
for covering the clause cloud (i.e., the small disk of the
last object in the wire is selected) if and only if bDisk(xi)
is selected (i.e., variable Xi is set to true). Notice that

32nd Canadian Conference on Computational Geometry, 2020

selecting bDisk(xi) forces S to select sDisk(xi). Now,
by adjusting the number of objects in a wire connect-
ing xi to a clause gadget, we also ensure that the big
disk of the last object of the wire is selected. That is,
sDisk(xi) is selected if and only if the big disk of the
last object of the corresponding wire is selected (i.e., S
does not gain any points from the corresponding clause
cloud). Finally, we require by re-scaling that the num-
ber of objects in each wire is even. This concludes the
consistency for the truth assignment of Xi.

We first prove that the number of objects in each
wire is polynomial in N and K. Consider an edge in
the graph and let L be its length. Notice that since the
drawing is polynomial in N and K, so is L. Moreover,
this edge can have either no bends or one bend. Our
goal is to have each wire consistent with the drawing of
its corresponding edge in G; hence, making each wire
having no bends or one bend. Suppose first that the
edge has no bends. Since the distance between every two
consecutive centres of the disks in the wire is three, we
have at most bL/3c objects in the wire. Now, suppose
that the edge has one bend and let L1 and L2 denote
the lengths of its segments (i.e., L = L1+L2). Then, by
a similar argument, the corresponding wire will have at
most bL1/3c + bL2/3c objects. We therefore conclude
that the number of objects in both cases is polynomial
in N and K.

In the full version of the paper, we prove that the
wires can be connected to variable gadgets such that
the objects from different wires do not intersect each
other (except at clause gadgets and/or slightly at vari-
able gadgets). To ensure this, we might require to “re-
route” some of the wires; hence, making new bends.
However, one can verify that the number of objects in
each wire remains polynomial in N and K. The proof
of the following lemma is given in the full version of the
paper.

Lemma 5 Let S be a feasible solution for the problem
with objective value of at least MNK + MK/2. Then,
S has exactly one big disk and exactly one small disk
from every variable gadget.

Lemma 5 gives us the minimum objective value for a
feasible solution that we will use to argue that then the
instance ISAT is satisfiable.

Lemma 6 There exists a feasible solution S for IsDC

with objective value of at least MNK + MK/2 if and
only if ISAT is satisfiable.

Proof. (⇒) Let S be a feasible solution for IsDC with
objective value of at least MNK+MK/2. By Lemma 5,
we know that there is exactly one big disk from every
variable gadget in S. For each variable Xi, 1 ≤ i ≤ N ,
we set the variable to true if and only if bDisk(xi) is
in S; otherwise, we set Xi to false. To show that this

results in a truth assignment, suppose for a contradic-
tion that there exists a clause C that is not satisfied by
this assignment. Take any variable X ∈ C. If x ∈ C,
then the variable X is set to false (resp., true) by the
assignment. This means that S has selected the small
disk of object x. Consequently, the big disk of the last
object in the wire connecting C to xi is selected by S:
the solution S did not gain K points from the cloud of
C. Analogously, if x ∈ C, then the variable X is set to
true by the assignment. This means that S has selected
sDisk(xi). Consequently, the big disk of the last object
in the wire connecting C to xi is selected by S: again,
the solution S did not gain K points from the cloud
of C. Therefore, S cannot have an objective value of
MNK + MK/2—a contradiction.

(⇐) Given a truth assignment for ISAT, we con-
struct a feasible solution S for IsDC with objective value
MNK + MK/2 as follows. For each variable Xi in
ISAT, where 1 ≤ i ≤ N : if Xi is set to true, then we add
bDisk(xi) to S; otherwise, we add sDisk(xi) to S. This
selection ensures that we get MK points from each vari-
able gadget. Moreover, by selecting the corresponding
disk of xi, we will select the disks in the wires connected
to xi accordingly by alternating between small and big
disks. The same also happens for the wires that are con-
nected to xi. One can consequently argue that, within
a wire, exactly half of the small disks are selected; that
is, we will gain MK/2 points by covering these clouds
using small disks. Therefore, S has the objective value
MNK + MK/2. �

By Lemma 6, we have the following theorem.

Theorem 7 The sDiskCover problem is NP-hard for
concentric disks in the plane.

References

[1] D. Bhaumick and S. C. Ghosh. Efficient multicast associ-
ation to improve the throughput in IEEE 802.11 WLAN.
MONET, 21(3):436–452, 2016.

[2] A. Efrat, C. Erten, and S. G. Kobourov. Fixed-location
circular arc drawing of planar graphs. J. Graph Algo-
rithms Appl., 11(1):145–164, 2007.

[3] D. E. Knuth and A. Raghunathan. The problem of
compatible representatives. SIAM J. Discrete Math.,
5(3):422–427, 1992.

