Geometric spanners with few edges and degree five
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Abstract

An O(nlogn)-time algorithm is presented that, when

given a set S of n points in R? and an integer k with
0 < k < n, computes a graph with vertex set S,
that contains at most n» — 1 + k edges, has stretch
factor O(n/(k+1)), and whose degree is at most five.
This generalizes a recent result of Aronov et al., who
obtained this result for two-dimensional point sets.

Keywords: Computational geometry, spanners, mini-
mum spanning trees.

1 Introduction

Given a set S of n points in R? and a real number
t > 1, a graph G with vertex set S is called a t-spanner
for S, if for any two points p and ¢ in S, there exists
a path in G between p and ¢ whose length is at most
t times the Euclidean distance |pq| between p and q.
Here, the length of a path is defined to be the sum
of the Euclidean lengths of all edges on the path. A
path in G between p and ¢ whose length is at most
t|pq| is called a t-spanner path. The stretch factor (or
dilation) of G is defined to be the smallest value of ¢
for which G is a t-spanner.

The problem of constructing a t-spanner for any
given point set has been studied intensively. Salowe
(1991) and Vaidya (1991) were the first to show that,
for any constant ¢ > 1 and for any constant dimen-
sion d > 2, a t-spanner with O(n) edges can be com-
puted in O(nlogn) time, where the constant factors
in the Big-Oh bounds depend on the stretch factor ¢
and the dimension d. Since then, many more algo-
rithms have been discovered that compute spanners
with O(n) edges and that have other properties; see
the survey papers by Eppstein (2000), Gudmundsson
and Knauer (2006), and Smid (2000).

Das and Heffernan (1996) considered a dual ver-
sion of the spanner problem: Given a bound on the
number of edges, what is the smallest stretch factor
that can be obtained? They present an O(nlogn)-
time algorithm that constructs, when given any set S
of n points in R? and any real constant € > 0, a graph
that contains at most (1 + €)n edges, whose degree is
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at most three, and whose stretch factor is bounded
by a constant that only depends on € and d. Das and
Heffernan left open the problem of determining the
smallest possible stretch factor when n + o(n) edges
are allowed.

Since any graph with a finite stretch factor is con-
nected, it must have at least n — 1 edges. Let S be a
set of n points in the plane that are regularly spaced
around a circle. Eppstein (2000) shows that every
connected graph with vertex set S and consisting of
n—1 edges (i.e., every spanning tree of S) has stretch
factor (n). He also shows that, for any set S of n

points in R?, the minimum spanning tree has stretch

factor O(n); in fact, the stretch factor can easily be

shown to be at most n — 1; see Lemma 2 below.
Aronov et al. (2005) generalize these results for

the case when the points are in R2. They show that,
for any set S of n points in the plane and for any
integer k with 0 < k < n, in O(nlogn) time, a graph
with vertex set S and consisting of n — 1 + k edges
can be computed, whose stretch factor is O(n/(k+1)).
They also show that there exists a set S of n points,
such that every connected graph with vertex set S
and consisting of n — 1 + k edges has stretch factor
Q(n/(k+ 1)).

The algorithm of Aronov et al. is based on proper-
ties of the minimum spanning tree and the Delaunay
triangulation. In particular, it uses the facts that,
for two-dimensional point sets, (i) these structures
can be computed in O(nlogn) time, (ii) the stretch
factor of the Delaunay triangulation is bounded by
a constant, and (iii) the Delaunay triangulation is
a planar graph. As a result, their analysis is only
valid for two-dimensional point sets: First, in dimen-
sion d > 3, it is unlikely that the minimum spanning
tree can be computed in O(nlogn) time; see Erickson
(1995). Second, for d > 3, no non-trivial upper bound
on the stretch factor of the Delaunay triangulation is
known. Finally, again for d > 3, the Delaunay trian-
gulation is not a planar graph; in particular, it may
have ©(n?) edges.

In this paper, we show that, by using a minimum
spanning tree of a bounded degree spanner for S (as
opposed to a minimum spanning tree of the point set
itself), the result of Aronov et al. is in fact valid for
any constant dimension d > 2. Moreover, we show
that this result can be obtained by a graph having
degree five.

2 Properties of the minimum spanning tree
of a spanner

Let S be a set of n points in R?, let ¢ > 1 be a real
number, and let G be an arbitrary ¢-spanner for S.
Let T be a minimum spanning tree of G. In this
section, we prove some properties of 7' that will lead
to our generalization of the result by Aronov et al.



These properties basically state that 7" has “approx-
imately” the same properties as an exact minimum
spanning tree of the point set S.

Lemma 1 Let p and q be two distinct points of S.
Then every edge on the path in T between p and q
has length at most t|pq|.

Proof. Let P be the path in T between p and ¢, and
let (z,y) be an arbitrary edge on P. We will prove
by contradiction that |zy| < t|pg|. Hence, we assume
that |zy| > t|pg|.

Let @ be a t-spanner path in G between p and q.
Since the length of @ is at most t|pg|, every edge of
@ has length at most t|pg|. In particular, (z,y) is
not an edge of ). We may assume without loss of
generality that z is between p and y on the path P.
Starting at z, follow the path P towards p, and let
2’ be the first vertex that is on @. Similarly, starting
at y, follow the path P towards ¢, and let 3’ be the
first vertex that is on ). Let P’ be the subpath of
P between the vertices ' and g’, and let Q' be the
subpath of @) between the vertices 2’ and y'. Then,
P’ and @' do not have any edge in common, and these
two subpaths form a simple cycle in G that contains
the edge (z,y).

Let G' be the graph obtained from T, by adding
all edges of Q' (that are not in T yet), and deleting
the edge (z,y). Then G’ is a connected subgraph of
G on the point set S, and, since the weight of Q' is
less than the weight of (z,y), the weight of G’ is less
than the weight of 7. This is a contradiction and,
thus, we have shown that |zy| < t|pg|. |

Lemma 2 The minimum spanning tree T of the t-
spanner G is a (t(n — 1))-spanner for S.

Proof. Let p and ¢ be two distinct points of S, and let
P be the path in T between p and ¢q. By Lemma 1,
each edge of P has length at most t|pg|. Since P
contains at most n—1 edges, it follows that the length
of P is at most t(n — 1)|pg|. |

Lemma 3 Let m be an integer with 1 <m <mn —1,
and let T' and T" be two vertex-disjoint subtrees of
T, each consisting of at most m vertices. Let p be a
vertex of T, let q be a vertex of T", and let P be the
path in T between p and q. If x is a verter of T' that
15 on the subpath of P within T', and y is a vertex of
T" that is on the subpath of P within T", then

lzy| < (2¢(m — 1) +1)|pg|.

Proof. Let P' be the subpath of P between p and
2. By Lemma 1, each edge of P’ has length at most
t|pq|. Since P’ contains at most m—1 edges, it follows
that this path has length at most ¢(m — 1)|pg|. On
the other hand, since P’ is a path between p and
x, its length is at least |pz|. Thus, we have |pz| <
t(m — 1)|pg|. A symmetric argument can be used to
show that |gy| < t(m — 1)|pg|. Therefore, we have

lzy| < |zp| + |pq| + lqyl
< t(m —1)|pqg| + |pqg| + t(m — 1)|pq|,

completing the proof of the lemma. |

3 A graph with n + O(k) edges and stretch
factor O(n/k)

Let S be a set of n points in R?, and let k¥ be an integer
with 1 < k < n. Fix a constant ¢t > 1, and let G be a

t-spanner for S whose degree is bounded by a constant
that only depends on the dimension d. Clearly, the
minimum spanning tree 7" of G has bounded degree
as well. Thus, T contains a centroid edge, i.e., an
edge whose removal from T yields two subtrees, each
consisting of at most an vertices, for some constant
a < 1 that depends on the degree of T. In fact,
a centroid edge can be computed in O(n) time. By
repeatedly choosing a centroid edge in the currently
largest subtree, we can remove £ = O(k) edges from
T, and obtain vertex-disjoint subtrees 1y, 71, ...,Ty,
each containing O(n/k) vertices. Observe that the
vertex sets of these subtrees form a partition of S.
Let X be the set of endpoints of the £ edges that are
removed from T'. Then, the size of X is at most 2/,
which is O(k).

We define G’ to be the graph with vertex set S
that is the union of

1. the trees Ty, T1,...,Ty, and

2. a t-spanner G" for the set X, consisting of O(k)
edges.

We first observe that the number of edges of G’ is
bounded from above by n — 1 + O(k).

Lemma 4 The graph G' has stretch factor O(n/k).

Proof. Let p and ¢ be two distinct points of S. Let
¢ and j be the indices such that p is a vertex of the
subtree T; and q is a vertex of the subtree T;.

First assume that ¢ = j. Let P be the path
in T; between p and q. Then, P is a path in G'.
By Lemma 1, each edge on P has length at most
t|pg|. Since T; contains O(n/k) vertices, the num-
ber of edges on P is O(n/k). Therefore, since t is a
constant, the length of Pis O(n/k) - |pq|.

Now assume that i # j. Let P be the path in
T between p and g. Let (x,z') be the edge of P for
which z is a vertex of T}, but z' is not a vertex of
T;. Similarly, let (y,y") be the edge of P for which y
is a vertex of T}, but y' is not a vertex of T;. Then,
both (z,z') and (y,y') are edges of T' that have been
removed when the subtrees were constructed. Hence,
z and y are both contained in X and, therefore, are
vertices of G". Let P; be the path in T; between p
and z, let P, be a t-spanner path in G"” between z
and y, and let P; be the path in T}; between y and q.
The concatenation @ of P;, Py, and F; is a path in
G' between p and q.

Since both P; and P; are subpaths of P, it fol-
lows from Lemma 1 that each edge on P; and P; has
length at most ¢|pg|. Since T; and T; contain O(n/k)
vertices, it follows that the sum of the lengths of P;
and P; is O(n/k) - |pqg|. The length of P,, is at most
t|zy| which, by Lemma 3, is also O(n/k) - |pg|. Thus,
the length of @ is O(n/k) - |pq|. ]

We take for G the t-spanner of Das and Heffernan
(1996). This spanner can be computed in O(nlogn)
time, and each vertex has degree at most three. Given
@, its minimum spanning tree T can be computed in
O(nlogn) time. Since a centroid edge can be com-
puted in O(n) time, the subtrees Ty, T4, . .., Ty can be
computed in O(nlogn) time. Finally, we take for G"
the t-spanner of Das and Heffernan. This spanner G"
can be computed in O(klog k) = O(nlogn) time, and
each vertex has degree at most three.

For these choices of G and G", the graph G' has
stretch factor O(n/k), it contains n — 1+ O(k) edges,
and it can be computed in O(nlogn) time. We an-
alyze the degree of G': Consider any vertex p of G'.
If p ¢ X, then the degree of p in G’ is equal to the
degree of p in T', which is at most three. Assume that



p € X. The graph G" contains at most three edges
that are incident to p. Similarly, the tree T' contains
at most three edges that are incident to p, but, since
p € X, at least one of these three edges is not an edge
of G'. Therefore, the degree of p in G’ is at most five.
Thus, each vertex of G’ has degree at most five.

Let ¢ be a constant such that the graph G’ contains
at most n — 1 + ck edges.

4 The main result

We are now ready to prove the main result of this
paper. Let S be a set of n points in R?, and let k be
an integer with 0 < k < n. Consider the constant ¢
that was introduced above.

First assume that £k < ¢. Let G be a t-spanner
for S, for some constant ¢, in which each vertex has
degree at most three, and let G’ be a minimum span-
ning tree of G. Then, G' hasn —1 < n — 1+ k edges,
degree at most three and, by Lemma 2, the stretch
factor of G' is at most t(n—1), which is O(n/(k+1)).

If ¢ < k < n, then we apply the results of Section 3
with k replaced by k/c. This gives a graph G' with
at most n — 1 + k edges, degree at most five, and
strech factor O(n/(k+1)). Thus, we have proved the
following result:

Theorem 1 Let S be a set of n points in R?, and let
k be an integer with 0 < k < n. In O(nlogn) time, a
graph with vertex set S can be computed that has the
following properties:

1. The graph contains at most n — 1 + k edges.
2. The graph has stretch factor O(n/(k +1)).
3. Each vertex of the graph has degree at most five.

Aronov et al. (2005) gave an example of a set S
of n points in the plane, such that every connected
graph with vertex set S and consisting of n — 1 + &
edges has stretch factor Q(n/(k + 1)). Therefore, the
result in Theorem 1 is optimal. An interesting open
problem is whether the degree can be reduced.
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