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ABSTRACT. Given a weighted graph G = (V,E) and a real number t ≥ 1, a t-spanner of G
is a spanning subgraph G′ with the property that for every edge xy in G, there exists a path
between x and y in G′ whose weight is no more than t times the weight of the edge xy. We
review results and present open problems on different variants of the problem of constructing
plane geometric t-spanners.

1 Introduction

Given a weighted graph G = (V,E) and a real number t ≥ 1, a t-spanner of G is a spanning
subgraph G′ with the property that for every edge xy in G, there exists a path between x
and y in G′ whose weight is no more than t times the weight of the edge xy. Thus, shortest-
path distances in G′ approximate shortest-path distances in the underlying graph G and the
parameter t represents the approximation ratio. The smallest t for which G′ is a t-spanner of
G is called the spanning ratio of the graph G′. In the literature, the terms stretch factor is also
used.

Spanners have been studied in many different settings. The various settings depend
on the type of underlying graph G, on the way weights are assigned to edges in G, on the
specific value of the spanning ratio t, and on the function used to measure the weight of a
shortest path. We concentrate on the setting where the underlying graph is geometric. In this
context, a geometric graph is a weighted graph whose vertex set is a set of points in R2 and
whose edge set consists of line segments joining two vertices. The edges are weighted by the
Euclidean distance between their endpoints. Given a geometric graph G = (V,E), a t-spanner
of G is a spanning subgraph G′ with the property that for every edge xy ∈ G, there is a path
from x to y in G′ such that the sum of the weights of the edges in this path is no more than t
times d(x, y), where d(x, y) denotes the Euclidean distance between x and y. In the literature,
the main focus has been on the case where the underlying graph is the complete geometric
graph. We review this case as well as other variants.

There is a vast literature on different methods for constructing t-spanners with various
properties in this geometric setting (see [52] for a comprehensive survey of the area). Aside
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from trying to build a spanner that has small spanning ratio, additional properties of the
spanners are desirable. Typical goals in this area include the construction of t-spanners that
also have few edges, bounded degree, fault tolerance, and low weight, to name a few. Notice
that some of these properties actually oppose each other. For example, a graph with few edges
or bounded degree cannot have a high fault-tolerance. Therefore, one needs to balance the
various properties.

Our goal in this survey is to review results related to the following problem: Given a
finite set P of points in R2, construct a plane t-spanner of the complete geometric graph with
vertex set P , for some constant t ≥ 1. We also explore the setting where the underlying graph
is not the complete graph but some other type of graph such as the unit-disk graph or the
visibility graph of a set of line segments. Finally, we touch on plane spanners with bounded
spanning ratio. In addition to surveying various results related to the construction of plane t-
spanners, we also mention several open problems in the area and provide some proof sketches
of a few results so that the reader may get a flavour of the different techniques used in this
area.

In the rest of this paper, we say that a graph is a spanner if it is a t-spanner for some
constant t.

2 Plane Spanners

In what follows, unless specified otherwise, we assume that the underlying graph is the com-
plete geometric graph. We let P be a finite set of points in the plane. The following is the
central question addressed in this section: Given the point set P , is it always possible to
construct a plane spanner? What constraints does planarity place on the spanning ratio?

2.1 Upper and Lower Bounds

In his seminal paper, Chew [24] was the first to study the question of determining whether
it is possible to construct a plane spanner. First, he observed that requiring planarity does
indeed impose a lower bound on the spanning ratio. Consider four points placed at the four
corners of a square. Every plane geometric graph embedded on those 4 points has a span-
ning ratio of at least

√
2. This was the best known lower bound on the spanning ratio until

Mulzer [50] showed that every triangulation of a regular 21-gon has spanning ratio at least√
2.005367532 ≈ 1.41611. This leads us to our first open problem:

Open Problem 1. What is the best lower bound on the spanning ratio of plane geometric graphs?
Specifically, is there a t >

√
2.005367532 and a point set P , such that every triangulation of P

has spanning ratio at least t?
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2.2 Variants of Delaunay Graphs

All of the known methods for constructing plane constant spanners of a point set are related to
various types of Delaunay graphs. The L1-metric Delaunay graph of P is the plane graph that
is constructed in the following way. Two points x, y ∈ P form an edge of the Delaunay graph
provided there is a point in R2 such that x and y are its nearest neighbours in the L1 metric
(see [53] for a comprehensive review of Delaunay Graphs and Voronoi Diagrams). Note that
the unit circle in the L1 metric is a diamond (a unit square tilted by 45 degrees); see Figure 1.
The planarity of this graph is only ensured provided that no 4 points lie on the boundary of a
tilted square. Chew [24] showed that the L1-metric Delaunay graph is a

√
10-spanner of the

complete Euclidean geometric graph. Note that the L∞-metric Delaunay graph has an axis
parallel square as its unit circle. Thus, the L1 Delaunay graph of a point set is identical to
the L∞ Delaunay graph of the same point set rotated by 45 degrees. Therefore, Chew’s result
implies that the L∞ Delaunay graph is a

√
10-spanner. Recently, Bonichon et al. [7] showed

that the L1 and L∞ Delaunay graph is a
√

4 + 2
√

2-spanner and that this is tight in the worst
case.

Given a set of points P , the Yao∞4 (P ) is defined as follows. Two points x, y ∈ P form
an edge of Yao∞4 (P ) provided there is an axis parallel square with x as a vertex of the square,
y on the boundary of the square and no other points of P in the interior of the square. Notice
that the Yao∞4 (P ) graph is a subgraph of the L∞ Delaunay graph on P . The Yao∞4 (P ) was
shown to be an 8

√
2-spanner[12].

In the journal version of [24], Chew [26] improved the result by showing that one
can construct a plane graph whose spanning ratio is at most 2. He proved that a Delaunay
graph built using a convex distance function defined by an equilateral triangle having one
vertical side, as opposed to the L1-metric diamond or L∞-metric square, has a spanning ratio
of 2 and that this bound is tight in the worst case. He refers to these equilateral triangles as
tilted equilateral-triangles (see Figure 1). The tilted equilateral-triangle Delaunay graph of a
planar point set P is constructed in the following manner. Two points x, y ∈ P share an edge
provided that there exists a tilted equilateral triangle with x and y on its boundary and no
points of P in its interior. Using the results of Bonichon et al. [5], a simple inductive proof of
the spanning ratio of 2 with applications to routing was given [15].

A natural question that Chew [26] posed is whether or not the standard (i.e., Eu-
clidean) Delaunay triangulation is a spanner. By placing the points on the boundary of a
circle, Chew noticed that the spanning ratio of the Delaunay triangulation can be at least
π/2 − ε for any ε > 0; See Figure 3(a). This led him to conjecture that not only is the stan-
dard Delaunay triangulation a spanner but that its spanning ratio is strictly less than 2. This
conjecture was recently settled by Xia[57] who showed that the Delaunay triangulation has a
spanning ratio of at most 1.998.

The first to show that the standard Delaunay triangulation of a point set is indeed
a spanner were Dobkin et al. [30]. They showed that the spanning ratio of the Delaunay
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Tilted equilateral triangle L1-metric diamond

Figure 1: Tilted equilateral triangle and L1-metric diamond.

triangulation is at most (1 +
√

5)π/2 ≈ 5.08.

Almost all of the proofs in the literature are constructive. We give the reader a flavour
of how some of these proofs proceed by highlighting one of the cases in Dobkin et al. ’s proof.
Let DT(P ) be the standard Delaunay triangulation of P and VOR(P ) the Voronoi diagram
of P . It is well-known that DT(P ) and VOR(P ) are duals of each other. Given two points
x, y ∈ P , construct a path from x to y in DT(P ), in the following way. For ease of exposition,
assume that x and y are on a horizontal line, unit distance apart, with x to the left of y.
Let PVOR(P )(x, y) = [x = p1, p2, . . . , pk = y] be the sequence of sites of VOR(P ) whose cells
intersect the segment xy ordered from x to y. We call PVOR(P )(x, y) a Voronoi path. By the
duality relation between Delaunay triangulations and the Voronoi diagram, this path consists
of Delaunay edges. The Voronoi path is called one-sided provided that all of the sites lie in one
closed half-plane defined by the line containing xy. See Figure 2 for an example. Denote by cj
the intersection point of the segment xy with the Voronoi edge separating the cells of pj and
pj+1. Notice that by construction the circle centred at cj with radius cjpj , denoted C(cj , pj),
has pj and pj+1 on its boundary and is empty of all other points of P . Furthermore, the arc
of C(cj , pj) defined clockwise from pj to pj+1 is longer than the segment pjpj+1. Therefore,
when PVOR(P )(x, y) is a one-sided Voronoi path, its length is bounded by half the boundary of
the union of the circles C(cj , pj), j = 1, . . . , k − 1. Since the boundary of the union of these
circles has length at most π, the length of PVOR(P )(x, y) is at most π/2. When the Voronoi path
is not one-sided, its spanning ratio can be unbounded. In this case, Dobkin et al. showed how
to construct a path with spanning ratio at most (1 +

√
5)π/2. The argument in this case is

slightly more involved.

Subsequently, Keil and Gutwin [42] showed that the spanning ratio of the Delaunay
triangulation is at most 4π

√
3/9 ≈ 2.42. Their proof is inductive and also relies heavily on the

empty circle property of Delaunay triangulations. Cui et al. [27] then improved the upper
bound on the spanning ratio for points in convex position. They showed that when points are
in convex position, the upper bound on the spanning ratio is at most the root of some function
bounded above by 2.33. Finally, Xia[57] showed an upper bound of 1.998.
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Figure 2: One-sided Voronoi path from x to y shown in bold.

Open Problem 2. What is the best upper bound on the spanning ratio of the Delaunay tri-
angulation? Can one prove a smaller upper bound on the spanning ratio for points in convex
position?

When considering the above problems, one also needs to consider the issue of lower
bounds. Chew [26] conjectured that the worst-case spanning ratio of the Delaunay triangula-
tion is π/2 and showed that by placing points on the boundary of a circle, one can approach
this bound. The fact that one-sided Voronoi paths also have a spanning ratio of at most π/2
led many to believe that π/2 was the correct bound. Surprisingly, it was shown recently that
the worst-case spanning ratio of the Delaunay triangulation is actually greater than π/2 [14].
There exists a set of points in convex position for which the spanning ratio of the Delaunay
triangulation is at least 1.581. See Figure 3(b). The lower bound can be slightly improved to
1.5846 if points do not need to be in convex position. Moreover, it is shown that the lower
bound on the spanning ratio of the Delaunay triangulation is essentially the same for random
point sets. The lower bound when points are not in convex position has been further improved
to 1.5932[58].

Open Problem 3. What is the best lower bound on the worst-case spanning ratio of the Delau-
nay triangulation? Can one construct a point set such that the spanning ratio of its Delaunay
triangulation is strictly greater than 1.5932? For points in convex position, can one construct a
point set such that the spanning ratio is strictly greater than 1.581?

Although all of the known upper bounds on the spanning ratio of planar graphs are
obtained using some variant of the Delaunay graph, the following question still remains open.
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Figure 3: (a) Construction providing a lower bound of π/2 − ε on the spanning ratio. (b)
Construction providing lower bound of 1.581. The basic construction consists of two unit
semicircles separated by a fixed distance that is optimized to maximize the spanning ratio.
The shortest path from p to p′ in the Delaunay triangulation has spanning ratio at least 1.581.

Open Problem 4. What is the best upper bound on the spanning ratio of a plane graph? The
best that is currently known is an upper bound of 1.998.

2.3 Minimum Spanning Ratio

One question that comes to mind when contemplating the above problem is how to compute,
for a given point set, the plane graph with minimum spanning ratio. The complexity of the
problem is unknown, however, there is strong evidence to suggest that the problem is NP-
hard. Recently, Klein and Kutz [45] showed that computing, when given a point set and a real
number t > 1, the t-spanner with the minimum number of edges is NP-hard. In fact, Cheong
et al. [23] showed that even computing the spanning tree with minimum spanning ratio of a
given point set is an NP-hard problem. However, their proof does not imply the NP-hardness of
the problem in the plane setting because the spanning tree of minimum spanning ratio need
not be plane. This leads to the following two open problems:

Open Problem 5. Is computing the plane graph of minimum spanning ratio for a given point set
an NP-hard problem?

Open Problem 6. Is computing the plane spanning tree of minimum spanning ratio for a given
point set an NP-hard problem?

2.4 α-Diamond Spanners

The empty circle property is the key property of Delaunay triangulations that is exploited to
prove the upper and lower bounds on the spanning ratio. However, there does not seem to
be anything particularly special about circles. One can view the empty circle property as each
edge of the triangulation having an empty buffer region on one side of the edge. In other
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words, each edge of the triangulation has a fixed proportional amount of space on one of its
sides that is guaranteed to be empty of points. Das and Joseph [29] formalized this notion in
the following way.

Definition 1. Given a point set P and two points x, y ∈ P , the segment xy has the α-diamond
property provided that at least one of the two isosceles triangles with base xy and base angle α
does not contain any point of P . Note that the apices of the isosceles triangles need not be points
of P . See Figure 4.

α
x

y

a

b

Figure 4: Segment xy has the α-diamond property and segment ab does not

A plane graph has the α-diamond property when every edge of the graph has the α-
diamond property for some fixed α. Moreover, a plane graph has the d-good polygon property
if for every visible pair of vertices a, b on a face f , the shortest distance from a to b around
the boundary of f is at most d times the Euclidean distance between a and b. Two vertices
a, b form a visible pair provided that the segment ab does not intersect the exterior of the face.
Das and Joseph showed that an α-diamond plane graph with the d-good polygon property
has a spanning ratio of at most 8dπ2/(α2 sin2(α/4)). This was slightly improved to 8d(π −
α)2/(α2 sin2(α/4)) [19]. Notice that when the value of d is 1, then a plane graph with the
α-diamond property must be a triangulation. Das and Joseph showed that certain special
types of triangulations possess the α-diamond property for fixed values of α. The empty circle
property implies that Delaunay triangulations have the α-diamond property for α = π/4. Das
and Joseph also proved that the minimum weight triangulation and the greedy triangulation
each have the α-diamond property with α = π/8. The minimum weight triangulation of a
point set is defined as the triangulation whose sum of the lengths of its edges is minimum
over all possible triangulations of the given point set. It was recently shown that computing
such triangulations is NP-hard [51]. The greedy triangulation is one that is constructed in
the following way. Starting with just the vertices, edges are added in non-decreasing order
as long as planarity is not violated. Drysdale et al. [31] improved the value of α for greedy
triangulations to arctan(1/

√
5). Bose et al. [19] subsequently improved this to π/6.

Open Problem 7. Can the spanning ratio for plane graphs with the α-diamond property and
the d-good polygon property be improved? Specifically, can one show that the spanning ratio is
strictly less than 8d(π − α)2/(α2 sin2(α/4))?
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Open Problem 8. Is the α-value for greedy triangulations greater than π/6?

Open Problem 9. Is the α-value for minimum weight triangulations greater than π/8?

2.5 Convex Delaunay Spanners

Chew [24, 26] showed that the Delaunay graph constructed using two different convex dis-
tance functions (based on the diamond and the tilted equilateral triangle) results in a spanner
of the complete Euclidean graph. This begs the question whether or not the Delaunay graph
constructed using an arbitrary convex distance function results in a spanner of the complete
Euclidean graph. Bose et al. [10] answered this in the affirmative by showing that the Delau-
nay graph constructed using any convex distance function results in a spanner of the complete
Euclidean graph where the spanning ratio depends on the shape of the compact convex set
used to define the distance function.

2.6 Proximity-Based Plane Spanners

We already noted that it is the empty region property of Delaunay graphs that makes them
spanners. The above generalizations show that the type of empty region around each edge
is not particularly important but simply the fact that an empty region exists. This leads to
questions such as whether or not other kinds of geometric proximity graphs are spanners. A
geometric graph is a proximity graph when some sort of an empty region property defines the
edges of the graph. Many proximity graphs are non-plane or disconnected. One well-known
class of proximity graphs are the β-skeletons [43]. A β-skeleton of a set P of points in the
plane, denoted BSKELβ(P ), is a proximity graph where the proximity region for two points
x, y ∈ P is a function of β (see Figure 5):

1. For β = 0, the proximity region is the line segment xy.

2. For 0 < β < 1, the proximity region is the intersection of the two disks of radius
d(x, y)/(2β) passing through both x and y.

3. For 1 ≤ β < ∞, the proximity region is the intersection of the two disks of radius
βd(x, y)/2 centred at the points (1− β/2)x+ (β/2)y and (β/2)x+ (1− β/2)y.

4. For β = ∞, the proximity region is the infinite strip perpendicular to the line segment
xy.

The edge xy is in the β-skeleton of P if the proximity region of xy does not contain any
other points of P . Notice that different values of the parameter β give rise to different graphs.
Note also that different graphs may result for the same value of β if the proximity regions
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are constructed with open rather than closed disks. When the proximity region is constructed
with an open disk, it is referred to as the open β-skeleton, otherwise, it is referred to as
the closed β-skeleton otherwise. For the range 0 ≤ β < 1, the β-skeleton is not necessarily
plane and for the range β > 2, the β-skeleton is not necessarily connected. The range of
interest for plane connected graphs is β ∈ [1, 2]. The extreme values in this range define some
well-known families of plane connected proximity graphs. The Relative Neighbourhood Graph
(RNG), which is also the open 2-skeleton, was first defined as a geometric graph where two
vertices x, y are adjacent provided that there is no third vertex z in the graph with the property
that max(d(x, z), d(y, z)) < d(x, y). The Gabriel Graph (GG), which is the closed 1-skeleton,
was first defined as a geometric graph where two vertices x, y are adjacent provided that there
is no third vertex z in the graph with the property that d(x, z)2 + d(z, y)2 ≤ d(x, y)2. It is well-
known that RNG(P ) ⊆ GG(P ) ⊆ DT(P ). See Jaromczyk and Toussaint [38] for a survey of
various proximity graphs.

β = 0 0 < β < 1 β = 1 β > 1 β = ∞

x y x y x y x y x y

Figure 5: The proximity regions for various values of β.

Bose et al. [13] were the first to study the spanning properties of β-skeletons. For
the range β ∈ [1, 2], they showed that the spanning ratio can be at least (1/2 − o(1))

√
n

and is always at most n − 1. They also showed that Gabriel graphs have a spanning ratio
of at most 4π

√
2n− 4/3 and exhibited a family of point sets where the Gabriel graph has a

spanning ratio of at least 2
√
n/3 thereby showing that the bound is Θ(

√
n). They proved that

the spanning ratio of the RNG is at most n−1 and that there exist point sets where this bound
is achieved. Moreover, even for points uniformly distributed in the unit square, they showed
that the spanning ratio for the Gabriel graph and all β-skeletons with β ∈ [1, 2] tends to infinity
in probability as

√
log n/ log log n. Wang et al. [55], subsequently, showed that the spanning

ratio of Gabriel graphs is at most
√
n− 1 and that there exist point sets where this ratio is

achieved. For β ∈ [1, 2], they provide an upper bound on the spanning ratio that depends on
β, specifically, (n− 1)γ where γ = 1− log2(

√
2/β).

Open Problem 10. For the range β ∈ [1, 2], is there a stronger lower bound of the spanning
ratio that depends on β?

Open Problem 11. For the range β ∈ [1, 2], is the upper bound on the spanning ratio of (n−1)γ ,
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where γ = 1− log2(
√

2/β), tight? It is tight for the GG, where β = 1 and RNG, where β = 2.

In the range β ∈ [0, 1], the resulting β-skeletons are not necessarily plane. For example,
the 0-skeleton is the complete graph. However, recently, Bose et al. [8] studied the spanning
properties of the family of graphs RGGβ(P ) := BSKELβ(P )∩DT(P ) for β ∈ [0, 1] called Relaxed
Gabriel Graphs. Since GG(P ) ⊆ BSKELβ(P ) ∩ DT(P ), this family of graphs is connected and
plane, hence the name Relaxed Gabriel graphs for this family. They showed upper and lower
bounds on the spanning ratio for BSKELβ(P ) that depend on β ∈ [0, 1]. The upper bound on
the spanning ratio of RGGβ(P ) is O(nγ), where γ = 1

2 − 1
2

(
log
(
1 + cos α2

))
and β = sin(α/2).

For the lower bound, they showed that there exist point sets where the spanning ratio of

RGGβ(P ) is Ω(nγ), with γ = 1
2 − 1

2

(
log

(
1 +

√
1+cos α

2
2

))
and β = sin(α/2).

Open Problem 12. Are these upper and lower bounds tight?

2.7 Bounded-Degree Plane Spanners

Another question that comes to mind is whether or not it is possible to build a plane spanner
with bounded degree. All of the above plane spanners can have unbounded degree.

Bose et al. [17] were the first to show the existence of a plane t-spanner (for some
constant t), whose maximum vertex degree is bounded by a constant. To be more precise,
they showed that the Delaunay triangulation of any set P of points in the plane contains a
subgraph, which is a t-spanner for P , where t = 4π(π+ 1)

√
3/9, and whose maximum degree

is at most 27. Subsequently, Li and Wang [48] reduced the degree bound to 23 by showing
the following: For any real number γ with 0 < γ ≤ π/2, the Delaunay triangulation contains
a subgraph that is a t-spanner, where t = max{π2 , 1 + π sin γ

2} · 4π
√
3

9 , and whose maximum
degree is at most 19 + d2π/γe. For γ = π/2, the degree bound is 23. In [21], Bose et al.
improved the degree bound to 17 and generalized the result to α-diamond triangulations
(i.e. they showed that every α-diamond triangulation contains a subgraph that is a plane
bounded-degree spanner). Kanj and Perkovic [39] showed how to compute a plane spanner
of maximum degree 14 that is a subgraph of the Delaunay triangulation. A breakthrough in
this area came with the paper by Bonichon et al. [6]. They presented a simple and elegant
method for constructing a plane 6-spanner with maximum degree 6. Their algorithm is based
on the Delaunay triangulation where the empty region is an equilateral triangle. This is the
same graph that Chew [26] showed was a 2-spanner. The beauty of their construction method
comes from using an alternative view of this graph highlighted in [5]. In [9], it was shown
how to construct a strong plane spanner with maximum degree 7 that is a subgraph of the
standard Delaunay triangulation and a strong plane spanner with maximum degree 6 that
is not necessarily a subgraph of the Delaunay triangulation. Given a geometric graph G, a
t-spanner G′ of G is strong if for every edge xy ∈ G, there is a path from x to y in G′ such that
the sum of the lengths of the edges in this path is no more than t times d(x, y) and every edge
on this path has length at most d(x, y).
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Open Problem 13. What is the smallest maximum degree that can be achieved for plane span-
ners that are subgraphs of the standard Delaunay triangulation?

Open Problem 14. What is the smallest maximum degree that can be achieved for plane span-
ners?

If one does not insist on having a plane spanner, then it is possible to construct a
spanner with maximum degree 3 [28]. It is easy to see that there exist point sets such that
every graph of maximum degree 2 defined on that point set has unbounded spanning ratio. As
such, the more interesting question becomes whether the planarity constraint actually imposes
a higher lower bound on the maximum degree. Thus, we have the following open problem:

Open Problem 15. With the constraint of constructing a plane spanner, is there a lower bound
on the maximum degree that is greater than 3? That is, can we show the following: For every
real number t > 1, there exists a set P of points, such that every plane degree-3 spanning graph
of P has spanning ratio greater than t.

3 Low Weight Plane Spanners

The weight of a graph is the sum of the weights of its edges. A lower bound on the weight
of a connected graph is the weight of the minimum spanning tree. A graph is said to have
low weight if its weight is O(1) times the weight of the minimum spanning tree. As such,
one objective in this area is to build plane spanners that have constant spanning ratio and
low weight. Gudmundsson et al. [37] presented a very general method to compute, for any
given spanner G, a subgraph of G whose spanning ratio is at most 1 + ε times that of G and
whose weight is at most O(1) times the weight of the minimum spanning tree. The constant
hidden in the O(1) is fairly large. When considering plane graphs specifically, Levcopoulos
and Lingas [46] showed that, for any given real number r > 2, the Delaunay triangulation can
be used to construct a plane graph that is a t-spanner for t = (r − 1)4π

√
3/9 and whose total

weight is at most 1 + 2/(r − 2) times the weight of a minimum spanning tree. Subsequently,
Kanj et al. [40] showed how this method can be generalized to build bounded degree plane
spanners. They showed that for any integer constant k ≥ 14 and r > 2, one can build a
plane t-spanner with maximum degree k, where t = (r − 1)(4π

√
3/9)/(1 + 2π(k cos(π/k)))

and whose total weight is at most 1 + 2/(r − 2) times the weight of the minimum spanning
tree.

Open Problem 16. Are these bounds tight?

4 (1 + ε)-Plane Steiner Spanners

As we have seen in Section 2.1, there exist point sets that do not admit a plane spanner with
spanning ratio arbitrarily close to 1. Let P be a set of n points in the plane. In this section, we
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consider plane Steiner spanners, which are plane graphs whose vertex sets contain P . Vertices
that do not belong to P are called Steiner points. It turns out that by allowing O(n) Steiner
points, we can obtain a spanning ratio of 1 + ε, for any fixed ε > 0. We emphasize that the
spanning ratio is defined only in terms of point-pairs in the set P .

We give a sketch of the construction, which is due to Arikati et al. [2]. The starting
point is to consider the plane Steiner spanner problem in the L1 metric. Thus, we want to
construct a plane graph, whose vertex set contains P , such that any two points x and y of P
are connected by a path whose L1 length is at most 1 + ε times the L1 distance between x and
y.

A box is defined to be an axes-parallel rectangle whose longest side is at most twice as
long as its shortest side. A doughnut is defined to be the set-theoretic difference B \B′ of two
boxes B and B′, where B′ is contained in B; see Figure 6. We put the following additional
restriction on any doughnut: For any edge e′ of the inner box B′, consider the corresponding
edge e of the outer box B; for example, if e′ is the top edge of B′, then e is the top edge of B.
We require that the distance between e and e′ is either zero or at least the length of e′.

B

B′

e′h

e′v

≥ e′v ≥ e′v

≥ e′h

Figure 6: The doughnut B \B′.

Let C be a square that contains all points of P . Using an algorithm of Arya et al. [3],
we can compute, in O(n log n) time, a subdivision of C into O(n) cells, such that each cell is
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either a box or a doughnut. Moreover, each box contains at most one point of P , whereas
each doughnut is empty of points. Notice that the edges of this subdivision define a graph. We
augment this graph in the following way.

Consider a box B in the subdivision and let ` be the length of its shortest side. On each
side of B, we place O(1/ε) Steiner points such that successive Steiner points have distance ε`.
Then we connect these Steiner points by a grid; see Figure 7. If B contains a point, say p,
of P , then we also add horizontal and vertical rays from p to the edges of B. By turning all
intersection points into Steiner points, we obtain a plane graph inside B consisting of O(1/ε2)
vertices. For each doughnut B \B′, we do a similar construction, one for the outer box B and
one for the inner box B′, as illustrated in Figure 7. Again, this results in a plane graph inside
B \B′ consisting of O(1/ε2) vertices.

p

Figure 7: Adding Steiner points to boxes and doughnuts.

Since the number of cells in the subdivision is O(n), we obtain a plane graph whose
vertex set contains P and that has O(n/ε2) Steiner points. Let x and y be two points of P ,
and consider the Manhattan path M (with two segments) between x and y. It is not difficult
to see that our graph contains a path between x and y whose length is at most 1 +O(ε) times
the length of M . Thus, our graph is a plane Steiner (1 + O(ε))-spanner of the point set P for
the L1 metric.

To obtain a plane Steiner (1 + ε)-spanner for the Euclidean metric, we take O(1/ε)
coordinate systems, obtained by rotating the X- and Y -axes by angles of iε, for 0 ≤ i <
2π/ε. For each coordinate system, we construct the plane Steiner spanner for the L1 metric
corresponding to that system. By overlaying all these graphs, Arikati et al. [2] show that we
obtain a plane graph with O(n/ε4) Steiner points. Since for any two points x and y in P , there
is a coordinate system such that the L1 distance (in this system) is within a factor of O(ε) of
the Euclidean distance between x and y, this gives indeed a plane Steiner (1 +O(ε))-spanner
of P . By replacing ε by δε, for some small constant δ, we obtain a plane Steiner (1+ε)-spanner
of P .

Open Problem 17. Can the dependence on ε in the solution sketched above be improved?
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We finally mention that Arikati et al. [2] showed that these results can be generalized
to the case when we are given a set P of n points and a collection of polygonal obstacles (none
of which contains any point of P ) of total complexity O(n). For this case, we obtain a plane
graph with O(n/ε4) Steiner points such that the following is true: For any two points x and y
in P , the graph contains a path between x and y whose length is at most 1+ ε times the length
of a shortest obstacle-avoiding path between x and y. Maheshwari et al. [49] have given
a slightly simplified version of this construction which, in fact, is efficient even in external
memory.

5 Dilation

In Section 4, we considered Steiner spanners for a given set P of points in the plane. When
measuring the spanning ratio of such a spanner, we considered only pairs of points in P , i.e.,
we did not consider the spanning ratio for pairs x, y, where x or y is a Steiner point. In this
section, we do take these pairs into account.

For any geometric graph G, we denote its spanning ratio by SP(G). Let P be a (finite
or infinite) set of points in the plane. The dilation of P is defined to be the infimum of SP(G),
over all plane graphs G = (V,E) for which P ⊆ V and V \ P is finite.

Figure 8: All triangulations with spanning ratio 1.

In Figure 8, triangulations with spanning ratio 1 are given; the two figures on the left
constitute infinite families, whereas the figure on the right is one single triangulation with
six vertices. Eppstein [35] has shown that these are the only triangulations with spanning
ratio 1. Notice that any finite point set P that is contained in the vertex set of one of these
triangulations has dilation 1. Klein and Kutz [44] have shown that the dilation of every other
point set is strictly larger than 1.
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Ebbers-Baumann et al. [34] have shown that if P is the (infinite) set of points on a
closed convex curve, then its dilation is larger than 1.00157. They have also shown that the
dilation of every finite point set is less than 1.1247.

Open Problem 18. What is the smallest value of t such that every finite set of points in the plane
has dilation at most t? It is known that 1.00157 ≤ t ≤ 1.1247.

It turns out that even for small point sets, it is very difficult to determine their dilation:

Open Problem 19. What is the dilation of the vertices of a regular 5-gon? It is known that this
dilation is at most 1.02046; see [34].

We now turn to the so-called geometric dilation. Consider a plane geometric graph
and let x and y be two distinct points “on” G, i.e., each of x and y is either a vertex or in
the interior of some edge. Let SPG(x, y) be the ratio of the shortest-path distance between x
and y in G to the Euclidean distance d(x, y). The geometric dilation of G is defined to be the
supremum of SPG(x, y) over all such pairs x, y. For example, consider a triangle T and let α
be its largest acute angle. If we consider T to be a graph whose vertex set consists of the three
vertices of T , then the spanning ratio of T is equal to 1. On the other hand, the geometric
dilation of T is at least 1/sin(α/2), which is at least 2.

The geometric dilation of a finite set P of points in the plane is defined to be the
infimum of the geometric dilations of all finite plane graphs whose vertex sets contain P .

As opposed to the dilation of the vertex set of the regular n-gon Pn, its geometric
dilation has been determined by Ebbers-Baumann et al. [33]: The geometric dilations of P3

and P4 are 2/
√

3 and
√

2, respectively. For n ≥ 5, the geometric dilation of Pn is equal to π/2.

In Dumitrescu et al. [32], it is shown that the geometric dilation of every finite point
set is less than 1.678. Furthermore, they showed that the geometric dilation of the vertices of
the 19× 19 grid is larger than (1 + 10−11)π/2.

Open Problem 20. What is the smallest value of t such that every finite set of points in the plane
has geometric dilation at most t? It is known that (1 + 10−11)π/2 ≤ t ≤ 1.678.

6 Variants

In the previous sections, the underlying graph has been the complete geometric graph. We
now review some results when the underlying graph is not necessarily the complete geometric
graph but a subgraph. We explore two different settings: one where the underlying graph is
the visibility graph of a set of line segments and the other where the underlying graph is the
unit-disk graph. We begin with the former.

15



6.1 Constrained Setting

Before we can review the results in the constrained setting, we need to outline precisely what
is meant by the constrained setting. Let P be a set of points in the plane and let L be a set of
non-crossing line segments whose endpoints are in P . Two line segments intersect properly
if they share a common interior point. Two points x and y of P are visible with respect to L
provided the segment xy does not properly intersect any segment of L. The visibility graph of
P constrained to L, denoted VIS(P,L), is the geometric graph whose vertex set is P and whose
edge set contains L as well as one edge for each visible pair of vertices (See Figure 9). All
edges, including the constrained edges, are weighted by their length. A spanning subgraph
of VIS(P,L) whose edge set contains L is a geometric graph constrained to L. In such a
graph, the elements of L are referred to as the constrained edges, whereas all other edges are
referred to as unconstrained edges or visibility edges. The underlying graph in this subsection is
VIS(P,L). Thus, a constrained geometric graph G(P,L) is a constrained t-spanner of VIS(P,L)
provided that for every edge xy in VIS(P,L), the length of the shortest path between x and
y in G(P,L) is at most t times the Euclidean distance between x and y. Note that if G(P,L)
is a constrained t-spanner, then for every pair x, y of points in P (not just visible edges), the
shortest path from x to y inG(P,L) is at most t times the shortest path from x to y in VIS(P,L).
The fundamental question to address here is: Given VIS(P,L), does there always exist a plane
constrained spanner G(P,L) of VIS(P,L)?

Figure 9: The visibility graph VIS(P,L) where segments of L are shown in bold.

Chew [24, 26] mentioned that his technique (see in Section 2.1) can be extended to
the constrained setting. Karavelas [41] noted that the proof in Dobkin et al. [30] can also be
extended to the constrained setting, thereby asserting that the Constrained Delaunay triangu-
lation, denoted CDT(P,L), is a (1 +

√
5)π/2-spanner of VIS(P,L). The constrained Delaunay

triangulation was independently introduced by Chew [25] and Wang and Schubert [54]. It
is a generalization of the standard Delaunay triangulation. Two visible points x, y ∈ P form
an edge in CDT(P,L) provided that there exists a disk with x and y on its boundary that
does not contain any point z ∈ P that is visible to both x and y. Subsequently, Bose and
Keil [18] proved that the spanning ratio of the CDT(P,L) is at most 4π

√
3/9. If one replaces

an empty disk with an empty equilateral triangle in the definition of CDT(P,L), one gets a
generalization of the empty equilateral triangle Delaunay graph used by Chew [26]. Recently,
Bose et al. [16] showed that the constrained empty equilateral triangle Delaunay graph is a
2-spanner. They also showed how to construct a plane 6-spanner of VIS(P,L) with maximum

16



degree 6 + c, where c is the maximum number of segments incident to a vertex.

Bose et al. [19] also generalized the results of Das and Joseph [29] to the constrained
setting. A constrained graph G(P,L) is said to have the visible α-diamond property if, for every
unconstrained edge e in the graph, at least one of the two isosceles triangles, with e as the
base and base angle α, does not contain any points of P visible to the endpoints of e. Refer
to Figure 10. Furthermore, G(P,L) has the d-good polygon property if for every visible pair
of vertices a and b on a face f , the shortest distance from a to b around the boundary of f
is at most d times the Euclidean distance between a and b. Bose et al. [19] generalized the
results on α-diamond spanners in the following way: Given fixed α ∈ (0, π/2) and d ≥ 1, if
a constrained plane graph G(P,L) has both the visible α-diamond property and the d-good
polygon property, then its spanning ratio is at most 8(π−α)2d

α2 sin2(α/4)
.

e

α

α

α

α

4(e)

a(e)

Figure 10: The edge e has the visible α-diamond property.

Open Problem 21. Essentially, all of the questions that are open in the unconstrained setting
are also open in the constrained setting since the constrained setting is a generalization of the
unconstrained one.

6.2 Unit-Disk Graphs

Given a set P of points in the plane, the unit-disk graph, denoted UDG(P ), is the geometric
graph whose vertex set is P with two vertices being joined by an edge provided the length
of the edge is at most a specified unit. There has been much interest in studying spanners
of UDG(P ) in the wireless network community since these graphs are often used to model
wireless adhoc networks (see [4] for an overview of the area).

The question to address in this area is: Does there always exist a plane spanner of
the unit-disk graph? Before answering this question, we first highlight a connection between
strong spanners and spanners of the unit-disk graph. Recall that given a geometric graph G, a
t-spanner G′ of G is strong if for every edge xy ∈ G, there is a path from x to y in G′ such that
the sum of the lengths of the edges in this path is no more than t times d(x, y) and every edge
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on this path has length at most d(x, y). It is the latter property that distinguishes a spanner
from a strong spanner. Note that any method for constructing a plane strong spanner of the
complete geometric graph becomes a technique for constructing a plane spanner of the unit-
disk graph. That is, if a graph G is a plane strong spanner of the complete geometric graph,
then G ∩ UDG is a plane strong spanner of UDG, provided UDG is connected.

Bose et al. [20] were the first to show that one can construct a strong plane spanner of
the complete geometric graph by proving that the Delaunay triangulation is a strong 4π

√
3/9-

spanner. They showed that the proof by Keil and Gutwin [42] can be generalized to show that
the Delaunay triangulation is indeed a strong spanner. This implies that DT(P ) ∩ UDG(P ) is
a plane spanner of UDG(P ). In [21], Bose et al. showed that one can construct a bounded-
degree plane spanner of UDG(P ) where the maximum degree is at most 17.

The algorithms to obtain the above results are all centralized. This means that the
algorithm is aware of the whole graph. Since there is interest in studying these spanners in the
wireless network community, it should be noted that centralized algorithms are undesirable
in that setting. In the wireless network setting, the challenge is to compute these spanners
in a local manner. A wireless ad hoc network consists of a set P of n wireless nodes in the
plane. Each wireless node u ∈ P can only communicate directly with nodes that are within its
communication range. If we assume that this range is equal to one unit for each node, then
one can see how the unit-disk graph UDG(P ) models a wireless ad hoc network. We now
describe what it means for an algorithm to be local in this setting.

In the wireless setting, it is assumed that UDG(P ) is connected and that each node
knows its position and the position of all its neighbours within its communication range. The
position information (or some other identifier) is used to distinguish the nodes. For simplicity,
a message is often defined as the x-coordinate and y-coordinate of a point since that is the
content of most messages in the algorithms described below. Nodes communicate with each
other by broadcasting messages and the metric used to measure the performance of different
construction algorithms is the total number of messages broadcast as a function of the number
of nodes. The construction algorithm is usually synchronized and a communication round is
defined as the period between the sending of a message and the complete processing of the
message on the receiver side. For any positive integer k, let Nk(v) = {w | there is a path
in UDG(P ) between v and w with at most k edges}. If every node v can compute the value
of any computable function with domain Nk(v) by an algorithm, we define this algorithm
to be a k-local algorithm. For example, let DT (P ) be a function that returns the Delaunay
triangulation of P , then the localized algorithm where each node v runs DT (N2(v)) is a 2-
local algorithm. Computing Nk(v) is typically more expensive than computing Nk−1(v) in a
localized environment, therefore, it is desirable to design k-local algorithms with the smallest
k as possible.

Let UDEL(P ) be the intersection between the unit-disk graph and the Delaunay trian-
gulation of P . Gao et al. [36] proposed a localized algorithm to build a plane graph called
the restricted Delaunay graph (RDG), which is a supergraph of UDEL(P ). In RDG, each node
u maintains a set E(u) of edges incident on u. These edges in E(u) satisfy that 1) each edge in
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E(u) is at most one unit; 2) the edges are consistent, i.e., uv ∈ E(u) if and only if uv ∈ E(v);
3) the graph obtained is plane; and 4) all the Delaunay edges with length at most one are
guaranteed to be in the union of the E(u)’s. However, the total message complexity of their
algorithm is O(n2).

In [47], Li et al. defined a k-localized Delaunay triangle as a triangle ∆uvw whose
interior of the circumcircle disk(u, v, w) does not contain any node of Nk(u), Nk(v) or Nk(w),
and all edges of the triangle ∆uvw have a length of no more than one unit. They also defined
the k-localized Delaunay graph, denoted by LDel(k)(P ), as the graph that contains exactly
all Gabriel edges with length at most one and the edges of all k-localized Delaunay triangles.
They showed that LDel(k)(P ) is a supergraph of UDEL(P ) and plane if k ≥ 2. They also
defined PLDel(P ) as the plane graph obtained by removing intersecting edges, which do not
belong to LDel(2)(P ), from LDel(1)(P ). Notice that PLDel(P ) is a subgraph of LDel(1)(P ),
a supergraph of LDel(2)(P ) and also a t-spanner of UDG(P ) for t = 4π

√
3

9 .

In [47], Li et al. also proposed a 3-local algorithm to compute PLDel(P ) with total
communication cost ofO(n). If we assume that sending each ID costs at most one message, the
the constant in the O(n) bound is at most 49. Also, their algorithm needs four communication
rounds. Araújo et al. [1] improved the work of Li et al. [47] by proposing a fast 2-local
algorithm to compute PLDel(P ). Their algorithm only needs one communication round and
the message complexity can be bounded by 11n. Bose et al. [11] improved the work of Araújo
et al. [1] by presenting an efficient 2-local algorithm to compute PLDel(P ). Their algorithm
needs one communication round and the message complexity can be bounded by 5n.

Open Problem 22. Can one reduce the total number of messages in order to compute a plane
local spanner of UDG(P )?

Wang and Li [56] presented a 3-local algorithm that computes a plane spanner of
UDG(P ) with degree bound 23. The communication cost of their algorithm is O(n). Very
recently, Kanj et al. [40] presented, for any given k ≥ 14 and λ > 2, a b(8/π)(λ + 1)2c-local
algorithm that constructs a plane spanner of UDG(P ) with degree bound k. Both of these
two algorithms are based on the construction of the 2-localized Delaunay graph LDel(2)(P ).
Although LDel(2)(P ) could be constructed with communication cost O(n) [56] by using the
result of [22], the constant in the O(n) bound could be several hundred.
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