
COMP 1406B In-Class Test #2 (W2018)

Name:__ Student#: _________________

(1) [5 marks] Consider a Student class as follows:

public class Student {

private double costPerCourse; // amount of $$$ per course

public double computeTuition(int numberOfCourses) {

 return costPerCourse * numberOfCourses;

 }

 ... // Some methods have been omitted

}

Now assume we have a subclass of Student called SeniorStudent. The method below is defined in
the SeniorStudent class and it overrides the one in Student. Complete the method so that
SeniorStudents pay for courses as follows: costPerCourse for each of the first 2 courses and then 1/2
times costPerCourse for any additional course(s). For example, a senior student will pay
2*costPerCourse to take two courses, but pay 3*costPerCourse to take four courses.

Your method MUST make use of the superclass method computeTuition. You MAY NOT access the
costPerCourse attribute within your method since it is private and you MAY NOT use a get method for
the costPerCourse value.

@Override

public double computeTuition(int numCourses) {

 if(numCourses <= 2){ // 1 mark check lower 3

 return super.computeTuition(numCourses); // 1 mark return normal cost

 }

 return super.computeTuition(numCourses) // 1 mark compute normal part

 + 0.5*super.computeTuition(numCourses-2);// ½ mark for multiply by 0.5

 } // ½ mark numCourses-2

 // 1 mark using super.computeTuition

}

(2) [9 marks ... 1/2 each] For each statement below, circle T if the statement is true, otherwise circle F:

[T F] Every object that we define will be a direct or indirect subclass of Object.

[T F] Subclasses always have direct access to all attributes and methods from their superclasses..

[T F] The super keyword can be used to call a specific constructor in the superclass.

[T F] super.super.x() will allow you to call a method x() two superclasses up in the hierarchy.

[T F] Abstract classes are just like concrete classes except that they can have abstract methods.

[T F] The keyword interface in java defines a class that can have regular methods, but not attributes.

[T F] Both this() and super() can be called in a single constructor.

[T F] Java has eight primitive data types. String is one of them.

[T F] Every object has a toString() method that returns a String.

[T F] Both abstract classes and interfaces are blueprints that define “what” an inheriting class is.

[T F] Arrays in Java can be extended (made bigger) by calling their append() method.

[T F] When you call new Student() at least two constructors are actually executed.

[T F] If the MP3 class directly extends the Music class, then MP3 song = new Music(); is valid.

[T F] A TextField can have its text color changed.

[T F] TextField t1 has an integer in it. The following adds one to that number: ((int) t1.getText()) +1;

[T F] setDisable(true) will hide a component from the window.

[T F] A Pane can contain another Pane.

[T F] The same Pane code can be used in more than one application window.

Tutorial Section:
 Monday at 8:30 B1
 Friday at 2:30 B2

(3) Consider the Smellable interface and the concrete Fruit, Flower and Dog classes shown below.

public interface Smellable {

 public int smell();

}

public class Fruit implements Smellable{

 public int calories;

 // ... code omitted ... //

}

public class Flower implements Smellable {

 public String colour;

 // ... code omitted ... //

}

public class Dog implements Smellable {

 public int weight;

 // ... code omitted ... //

}

(a) [1 mark] Write a single line of code that creates an array that can hold 50 things that have the ability to

smell (i.e., Fruit, Flower or Dog objects) and stores its reference in a variable called smellyThings.

Smellable[] smellyThings = new Smellable[50]; // 1 mark

// Object[] smellyThings = new Object[50]; // also acceptable

(b) [3 marks] Assume that the array, from (a), is always full and has no null items. Fill in the missing line(s)

of code in the two methods below that take this array as input. The top method must return the total
amount of calories of all food in the array. The bottom method must return the number of flowers with the
specified input colour. In both cases, write the code as efficiently/short as possible to get your marks.
The … depends on the type of array you created in part (a)

public int totalCalories(... smellyThings) {

 int total = 0;

 for (int i=0; i<smellyThings.length; i++) {

 if(smellyThings[i] instanceof Fruit){ // ½ instance of

 total += 1; // ½ check if Fruit

 }

 }

 return total;

}

public int flowersWithThisColour(... smellyThings, String colour) {

 int count = 0;

 for (int i=0; i<smellyThings.length; i++) {

 if(smellyThings[i] instanceof Flower){

 if(((Flower)smellyThings[i]).colour.equals(colour)){

 count += 1;

 } // ½ check if Flower

 } // ½ cast to Flower

 } // ½ check is colour is same

 return count; // ½ use .equals in check

}

(c) [2 marks] Complete the method below as efficiently as possible so that it prints out all the weights of the

Dogs in the array. Again, the array from part (a) will be passed as input to the method. Each weight
must be printed on a separate line.

public void weightsOfDogs(... smellyThings) {

 for (int i=0; i<smellyThings.length; i++) { // ½ instanceof

 if(smellyThings[i] instanceof Dog){

 System.out.println(((Dog)smellyThings[i]).weight);

 // 1 typecast to Dog

 // ½ access weight properly

 }

 }

}

