

COMP1406 - Assignment #4
(Due: Mon. Mar 5th @ 12 noon)

This assignment builds a very simple insurance company system. You will gain
practice with inheritance, overriding methods, an abstract class and abstract
methods. The insurance system will keep track of the insurance company's clients. Each client will have
at least one policy with the company. The last part of the assignment is unrelated ... and involves
creating a simple GUI window. Changes have been made (shown in yellow) on Feb 15th.

(1) Policy Classes

We will be creating this class hierarchy:

To begin, copy the code from the following Policy class:

public class Policy {

 private static int NEXT_POLICY_NUMBER = 1;

 private int policyNumber;

 protected float amount;

 public Policy(float amt) {

 amount = amt;

 policyNumber = NEXT_POLICY_NUMBER++;

 }

 public int getPolicyNumber() { return policyNumber; }

 public float getAmount() { return amount; }

 public String toString() {

 return String.format("Policy: %04d amount: $%1.2f", policyNumber, amount);

 }

 public boolean isExpired() {

 return false;

 }

}

Now define a DepreciatingPolicy class as a subclass of Policy which has the following:

 a private instance variable called rate of type float which represents the rate at which the policy
depreciates each time a claim is made. For example, a rate of 0.10 means that the value of the
policy (i.e., the amount) depreciates 10% each time a claim is made (we will discuss the making of
claims in the next section).

 a public constructor which takes a float representing the amount and another float representing
the rate. This constructor MUST make full/proper use of inheritance.

 a public get method for the rate.

 a toString() method that returns a String with the following example format:
DepreciatingPolicy: 0001 amount: $320.00 rate: 10.0%

You MUST make use of inheritance by calling the toString() from the superclass. Also, the rate
must be properly formatted.

 an instance method called isExpired() which returns true if the amount of this policy has
depreciated to 0 (assume a value less than 0.01 is zero). You MUST write this method without
any IF/SWITCH/TERNARY conditional statements.

 an instance method called depreciate() which reduces the amount of the policy by the rate
percentage. For example, if the amount is $100 and the rate is 0.10, then the amount after this
method is called should be $90.

Define an ExpiringPolicy class as a subclass of Policy which has the following:

 a private instance variable called expiryDate of type Date (from java.util.Date package) that
contains the date after which the policy is invalid.

 a public constructor which takes a float representing the amount and a Date representing the
expiryDate. This constructor MUST make full/proper use of inheritance.

 a public constructor which takes a float representing the amount. This constructor MUST make
full/proper use of inheritance. The expiryDate should then be set to exactly one year after the
policy was created. Here is how you can do this:

GregorianCalendar aCalendar = new GregorianCalendar();
aCalendar.add(Calendar.YEAR,1);
expiryDate = aCalendar.getTime();

 a public get method for the expiryDate.

 a toString() method that makes use of inheritance by calling the toString() from the superclass
and returns a String with the following example format which includes the parentheses (i.e., look
at the SimpleDateFormat class described in section 13.3 of the course notes in order to see how
to format the date properly). Notice the difference (underlined) between expired and no-expired
policies:

ExpiringPolicy: 0001 amount: $320.00 expired on: April 30, 2001 (12:08PM)

ExpiringPolicy: 0006 amount: $500.00 expires: May 23, 2023 (4:46AM)

 An instance method called isExpired() which returns true if the computer's current date is ON or
AFTER the expiryDate and false otherwise. (Hint: the Date class has methods before(Date d)
and after(Date d) ... see section 13.3 of the course notes).

Now test your new classes with the following program:

import java.util.*;

public class PolicyTester {

 public static void main(String args[]) {

 System.out.println(new Policy(320));

 DepreciatingPolicy p1 = new DepreciatingPolicy(500.1f, 0.1f);

 System.out.println(p1);

 p1.depreciate();

 System.out.println(p1);

 System.out.println(new ExpiringPolicy(1000));

 Date expDate = new GregorianCalendar(2021, 0, 2, 23, 59).getTime();

 ExpiringPolicy p2 = new ExpiringPolicy(2000, expDate);

 System.out.println(p2);

 System.out.println(p2.isExpired());

 expDate = new GregorianCalendar(2013, 3, 1, 23, 59).getTime();

 ExpiringPolicy p3 = new ExpiringPolicy(2000, expDate);

 System.out.println(p3);

 System.out.println(p3.isExpired());

 }

}

Here is the expected output (your date on line 4 will differ):

Policy: 0001 amount: $320.00

DepreciatingPolicy: 0002 amount: $500.10 rate: 10.0%

DepreciatingPolicy: 0002 amount: $450.09 rate: 10.0%

ExpiringPolicy: 0003 amount: $1000.00 expires: May 16, 2018 (01:18PM)

ExpiringPolicy: 0004 amount: $2000.00 expires: January 02, 2021 (11:59PM)

false

ExpiringPolicy: 0005 amount: $2000.00 expired on: April 01, 2013 (11:59PM)

true
__

(2) The Clients

We will now define the following hierarchy:

To begin, copy the code from the following Client class:

import java.util.*;

public abstract class Client {

 private static final int MAX_POLICIES_PER_CLIENT = 10;

 private static int NEXT_CLIENT_ID = 1;

 private String name;

 private int id;

 protected Policy[] policies;

 protected int numPolicies;

 public Client(String n) {

 name = n;

 id = NEXT_CLIENT_ID++;

 policies = new Policy[MAX_POLICIES_PER_CLIENT];

 numPolicies = 0;

 }

 public String getName() { return name; }

 public int getId() { return id; }

 public Policy[] getPolicies() { return policies; }

 public int getNumPolicies() { return numPolicies; }

 public String toString() {

 return String.format("Client: %06d amount: %s", id, name);

 }

}

Create the following in the Client class:

 a public method called totalCoverage() which returns a float containing the total amount of
coverage of all the client's policies.

 a public method called addPolicy(Policy p) which adds the given Policy to the array of policies,
provided that the limit has not been reached ... and returns the Policy object, or null if not added.

 a public method called openPolicyFor(float amt) which creates a new Policy for the amount
specified in the parameter and adds it to the client using (and returning the result from) the
addPolicy() method

 a public method called openPolicyFor(float amt, float rate) which creates a new
DepreciatingPolicy for the amount and rate specified in the parameters and adds it to the client
using (and returning the result from) the addPolicy() method.

 a public method called openPolicyFor(float amt, Date expire) which creates a new
ExpiringPolicy for the amount and expiry date specified in the parameters and adds it to the
client using (and returning the result from) the addPolicy() method above.

 a public method called getPolicy(int polNum) which examines all Policy objects in policies. If
one is found whose policyNumber matches the input parameter, then it should be returned by the
method. Otherwise null is returned.

 a public method called cancelPolicy(int polNum) which removes the police from the client's list
with the given policy number, if found. It should return true if the policy was found, otherwise it
should return false. When a policy is removed from the array, the empty location in the array
should be replaced by the last policy in the array.

 a public abstract method called makeClaim(int polNum) that returns a float.

Now create the two subclasses of Client, one called IndividualClient and the other called
CompanyClient. Try compiling them. Notice that your test code will not compile. That's because
subclasses DO NOT inherit constructors and java requires a constructor to be available. Do the
following:

 Create a constructor (taking a single String argument) for each of these subclasses that calls the
one in Client.

 Go back and alter your toString() method in Client class so that the proper client type is

displayed. For example: CompanyClient 0001: Bob B. Pins To do this, you will want

to figure out how to get the name of the class as a String. (hint: type this. and then let IntelliJ show a

list of available methods. You need to find out what class you have and then find out the name of the class).

 Implement the makeClaim(int polNum) method in the IndividualClient class. If the policy with that
number is not found or has expired, then nothing is to be done, just return 0. IndividualClients
are allowed to make only 1 claim per regular Policy but DepreciatingPolicys and
ExpiringPolicys can have multiple claims. So, you should cancel a regular policy after a claim is
made on it. If the claim is being made for a DepreciatingPolicy, then you must make sure to
depreciate the policy. This method should return the amount of the policy (amount after
depreciating in the case of DepreciatingPolicys) if the claim was made ok, otherwise 0 is
returned.

 In the Policy class, implement a method called handleClaim() that returns the amount of the
policy.

 In the DepreciatingPolicy class, implement handleClaim() so that it returns the amount of the
policy but also depreciates the policy. Note that the amount returned is the amount of the policy
before it was depreciated.

 In the ExpiringPolicy class, implement handleClaim() so that it returns the amount of the policy
as long as the policy has not yet expired, otherwise it returns 0.

 In the CompanyClient class, implement the makeClaim(int polNum) method so that it first checks
to make sure the policy is one belonging to this client and then uses the double-dispatching
technique by calling the handleClaim() method. You MUST NOT use any IF statements to
determine the policy type ... that's would undo the advantages of double-dispatching. Note that
CompanyClients DO NOT have their policy removed afterwards, and so you should make use of
the getPolicy() method. If no policy is found with the given polNum, return 0;

__

(3) Testing

Now test what you have done with the following program:

import java.util.GregorianCalendar;

public class ClientTester {

 public static void main(String args[]) {

 // Create an individual client, open some policies and then make some claims

 IndividualClient ic = new IndividualClient("Bob B. Pins");

 ic.openPolicyFor(100);

 ic.openPolicyFor(200, 0.10f);

 ic.openPolicyFor(300, new GregorianCalendar(2020, 0, 2, 23, 59).getTime());

 ic.openPolicyFor(400, new GregorianCalendar(2009, 5, 4, 12, 00).getTime());

 Policy p = new Policy(500);

 System.out.println("Here are the Individual Client's policies:");

 for (int i=0; i<ic.getNumPolicies(); i++)

 System.out.println(" " + ic.getPolicies()[i]);

 System.out.println("Making claims:");

 System.out.println(String.format(" Claim for policy 0001: $%6.2f",ic.makeClaim(1)));

 System.out.println(String.format(" Claim for policy 0002: $%6.2f",ic.makeClaim(2)));

 System.out.println(String.format(" Claim for policy 0003: $%6.2f",ic.makeClaim(3)));

 System.out.println(String.format(" Claim for policy 0004: $%6.2f",ic.makeClaim(4)));

 System.out.println(String.format(" Claim for policy 0005: $%6.2f",ic.makeClaim(5)));

 System.out.println("Here are the Individual Client's policies after claims:");

 for (int i=0; i<ic.getNumPolicies(); i++)

 System.out.println(" " + ic.getPolicies()[i]);

 System.out.println(String.format("The total policy coverage for this client: $%1.2f",

 ic.totalCoverage()));

 // Create a company client, open some policies and then make some claims

 CompanyClient cc = new CompanyClient("The Pillow Factory");

 cc.openPolicyFor(1000);

 cc.openPolicyFor(2000, 0.10f);

 cc.openPolicyFor(3000, new GregorianCalendar(2020, 0, 2, 23, 59).getTime());

 cc.openPolicyFor(4000, new GregorianCalendar(2009, 5, 4, 12, 00).getTime());

 System.out.println("\nHere are the Company Client's policies:");

 for (int i=0; i<cc.getNumPolicies(); i++)

 System.out.println(" " + cc.getPolicies()[i]);

 System.out.println("Making claims:");

 System.out.println(String.format(" Claim for policy 0006: $%7.2f",cc.makeClaim(6)));

 System.out.println(String.format(" Claim for policy 0007: $%7.2f",cc.makeClaim(7)));

 System.out.println(String.format(" Claim for policy 0008: $%7.2f",cc.makeClaim(8)));

 System.out.println(String.format(" Claim for policy 0009: $%7.2f",cc.makeClaim(9)));

 System.out.println(String.format(" Claim for policy 0005: $%7.2f",cc.makeClaim(5)));

 System.out.println("Here are the Company Client's policies after claims:");

 for (int i=0; i<cc.getNumPolicies(); i++)

 System.out.println(" " + cc.getPolicies()[i]);

 System.out.println(String.format("The total policy coverage for this client: $%1.2f",

 cc.totalCoverage()));

 System.out.println("Cancelling policy #12 ... did it work: " + cc.cancelPolicy(12));

 System.out.println("Cancelling policy #8 ... did it work: " + cc.cancelPolicy(8));

 System.out.println(String.format("The total policy coverage for this client: $%1.2f",

 cc.totalCoverage()));

 }

}

Here is the expected output:

Here are the Individual Client's policies:

 Policy: 0001 amount: $100.00

 DepreciatingPolicy: 0002 amount: $200.00 rate: 10.0%

 ExpiringPolicy: 0003 amount: $300.00 expires: January 02, 2020 (11:59PM)

 ExpiringPolicy: 0004 amount: $400.00 expired on: June 04, 2009 (12:00PM)

Making claims:

 Claim for policy 0001: $100.00

 Claim for policy 0002: $180.00

 Claim for policy 0003: $300.00

 Claim for policy 0004: $ 0.00

 Claim for policy 0005: $ 0.00

Here are the Individual Client's policies after claims:

 ExpiringPolicy: 0004 amount: $400.00 expired on: June 04, 2009 (12:00PM)

 DepreciatingPolicy: 0002 amount: $180.00 rate: 10.0%

 ExpiringPolicy: 0003 amount: $300.00 expires: January 02, 2020 (11:59PM)

The total policy coverage for this client: $880.00

Here are the Company Client's policies:

 Policy: 0006 amount: $1000.00

 DepreciatingPolicy: 0007 amount: $2000.00 rate: 10.0%

 ExpiringPolicy: 0008 amount: $3000.00 expires: January 02, 2020 (11:59PM)

 ExpiringPolicy: 0009 amount: $4000.00 expired on: June 04, 2009 (12:00PM)

Making claims:

 Claim for policy 0006: $1000.00

 Claim for policy 0007: $2000.00

 Claim for policy 0008: $3000.00

 Claim for policy 0009: $ 0.00

 Claim for policy 0005: $ 0.00

Here are the Company Client's policies after claims:

 Policy: 0006 amount: $1000.00

 DepreciatingPolicy: 0007 amount: $1800.00 rate: 10.0%

 ExpiringPolicy: 0008 amount: $3000.00 expires: January 02, 2020 (11:59PM)

 ExpiringPolicy: 0009 amount: $4000.00 expired on: June 04, 2009 (12:00PM)

The total policy coverage for this client: $9800.00

Cancelling policy #12 ... did it work: false

Cancelling policy #8 ... did it work: true

The total policy coverage for this client: $6800.00

__

(4) A GUI

Define a class called AlarmApp that creates the following window by laying the components out
manually using relocate() and setPrefSize():

Note that the GUI MUST contain the following:

 a white background Pane (i.e., "-fx-background-color: white;"),

 three inner Pane objects with borders (i.e., "-fx-background-color: white; -fx-border-color:

gray; -fx-padding: 4 4;"),

 Labels on those bordered panes (i.e., "-fx-background-color: white; -fx-translate-y: -8; -

fx-translate-x: 10;"),

 a large (e.g., 48px or anything reasonable) system font Label with a dark green color in the
"Remaining Time" pane,

 right-aligned TextFields in the Current Time and Alarm Time panes with the given times shown,

 a ComboBox with prompt text "Select Alarm" and it should contain 3 entries: "Weekday",
"Saturday" and "Sunday",

 three Buttons,

 and two RadioButtons belonging to the same ToggleGroup.

The dimensions of everything is as follows:

__

IMPORTANT SUBMISSION INSTRUCTIONS:

Submit your ZIPPED IntelliJ project file that contains all your .java files as you did during the first tutorial for
assignment 0.

 YOU WILL LOSE MARKS IF YOU ATTEMPT TO USE ANY OTHER COMPRESSION FORMATS SUCH
AS .RAR, .ARC, .TGZ, .JAR, .PKG, .PZIP, etc.

 If your internet connection at home is down or does not work, we will not accept this as a reason for
handing in an assignment late ... so make sure to submit the assignment WELL BEFORE it is due !

 You WILL lose marks on this assignment if any of your files are missing. So, make sure that you hand in
the correct files and version of your assignment. You will also lose marks if your code is not written neatly
with proper indentation. See examples in the notes for proper style.

