
By:
THE HOMIES

STRUCT, UNION AND
ENUM

2401 NOTES

Structures

types into one.
even structures. Each variable in the structure is called a structure member.

Defining a structure

To define a structure, you use the struct keyword.

struct struct_name{ structure_member };

The following example defines the person structure:

struct person{

char first[32]; //first field an array of chars
char last[32]; //second field an array of chars
int age; //third field an int

};

Note that the above code is only defining a person structure. There are two ways
to declare a structure variable:

Declaring a structure

You can declare structure variables together with the structure defintion:

struct struct_name {

structure_member;
...

} instance_1,instance_2 instance_n;

Or, you can declare the structure variable after you define the structure:

struct struct_name instance_1,instance_2 instance_n;

Using typedef

For more concise code, you can use the typedef
structure. So when you want to create a strucuture variable, you can omit the
keyword struct.

typedef struct{

char first[32]; //first field an array of chars
char last[32]; //second field an array of chars
int age; //third field an int

}person;

person student;
person teacher;

A structure allows you to wrap one or more variables that may be in different data
It can contain any valid data type like int ,char, float, array, pointer or

keyword to create a synonym for a

Accessing a structure member

To access a structure member, we use the dot operator ‘ . ‘ between the structure
name and member:

structure_name.structure_member

The following example demonstrates how to access the first name of structure
person:

person student;
student.first = "Richard";

We can also use the dot operator to access a nested structure and its members:

typedef struct{

person teacher[0];
person students[50];

}course;

course COMP2401;

COMP2401.students[0].first = "Richard";

Advantages of structures

Having a label that refers to the entire structure is convenient for two reasons.

First, it allows assignment statements between structure variables. This allows you
to copy data from one structure to another:

struct_intance1 = struct_intance2

Second, is passing a structure as a parameter to a function:

displayStudent(person info){

printf(“ %s %s: %d”, info.first info.last, info.age);
}

main()
{
person student;

displayStudent(student

Arrays and Structures

Just like you can have an array of any data type, you can have an array of structs.

typedef struct{

char first[32]; //first field an array of chars
char last[32]; //second field an array of chars
int age; //third field an int

}person;

person students[60]; //array of struct person

strcpy(students[0].first, “Richard”);
strcpy(students[0].last, “Ison”);
students[0].age = 19;

Pointers and Structures

The address of a structure variable can be stored in a pointer variable, just like the
address of any other type of variable.

struct fraction {

int x, y;
};

struct fraction f[3], *g;

f[0].x=3;
f[0].y = 5;

g = &(f[0]);

There are two syntaxes to access the bytes of the structure using the pointer
variable.

(*g).x = 5;
g‐>y=11; //preferred syntax

A pointer variable for a structure can also be used to dynamically allocate memory.

g = (struct fraction *) malloc (sizeof(struct fraction));

Union

Definition

A union is a type of structure that can be used where the amount of memory used is a key factor.

Similarly to the structure the union can contain different types of data types. Each time a new variable

is initialized from the union it overwrites the previous and uses that memory location. This is most

useful when the type of data being passed through functions is unknown, using a union which contains

all possible data types can remedy this problem.

Defining a Union

 union person {
 char name;

 int age;

 double height;

 };

Declaring a Union

Since the union is still a type of structure the method for declaring it is as follows:

 union person {

 char name;

 int age;

 double height;

 }newPerson;

Or

 Person newPerson;

Initializing a Union

The process of initializing variables in a union is the same as a union but the results are what make

unions unique. The dot operator is still used in order to reach the data types inside of the union.

Person newPerson;

 newPerson.age = 20;

 newPerson.height = 6.2;

Once the height variable is initialized the variable age is overwritten and no longer exists.

ENUM

Defining an Enumeration

 An enumeration provides the data type with a set of values. An enumeration constant is a type

of an integer. A variable type takes and stores the values of the enumeration set defined by that type.

Enumerations can be used with indexing expressions also as operands with arithmetic and relational

operators. Enumerations can be also be used as an alternate way to use “#define”.

Declaring an Enumeration

There are two different types of enumerations declarations:

Creating a named type:
enum exampletype {THIS, IS, A, TEST};

 Creating an unnamed type:
enum {THIS, IS, ANOTHER, TEST};

Both examples work, it simply comes down to preference, and which one you seem to work faster with.

Example of an Enumeration

 enum Django {<- defines an enumeration type

 One, Two, Ps3, Four, Five} stuff; <- Variable stuff created to work with

 enum Django gamestation = Ps3; <- gamestation is now assigned to the Django set, Ps3.

Advantages of Enumerations

There are some advantages to enumerations:

1. Numeric values are automatically assigned

2. It allows your code to become generally understandable by others or yourself

3. Enums allow certain debuggers to print the values of an enumeration constant

