SCANF & PRINTF

COMP 2001/2401 course notes

Stephanie Siu & Michael Suen

printf and scanf are two standard C programming language
functions for input and output. Both are functions in the stdio library
which means #include <stdio.h> isrequired at the top of your file.

scanf

Function arguments:
int scanf(const char * format, [varl], [var2],..)

scanf requires format placeholders within the format string to denote
what data type we would like the input to be read as by the computer.

Here are a table of some of the most commonly used placeholders:

PLACEHOLDER DATATYPE

%d or %i integer
%u unsigned int
%f floating-point
%]lf double floating-point
%c character
%s String

Example 1:

int number;
scanf (“%d”, &number);

In this example we have declared an integer called number.

The “%d” in scanf allows the function to recognise user input as being
of an integer data type, which matches the data type of our variable
number. The ampersand (&) allows us to pass the address of variable
number which is the place in memory where we store the information
that scanf read.

Example 2:
char word[256];

scanf (“%s”, word);

In this example we have declared a string called word.
The “%s” in scanf allows the function to recognise user input as being
of string data type, which matches the data type of our variable word.

Since we're using a string here we require the header file <string.h>,
but unlike the example of the integer before, we do not require the
ampersand (&) since string is an array of characters. An array is already
a pointer to a character data type in memory as we have already learned
before. Using the ampersand, the above example would be equivalent
to:

for (int 1=0;1<256;i+=1) {
scanf (“%s”, &word[i]);

}

Some extra uses of scanf

In a past assignment we were required to read strings one at a time
without the \n so that we could print them all on one line.

Square brackets in scanf allow us to define which characters to read
from input.

Example 1:
scanf (“%[JASON]s”, string);

In this example the program uses scanf to ask user for a string.

[JASON] determines the characters the program will only take the
characters], A, S, O and N.

So if the input were “SON”, variable S would become “SON”.
Whereas if the input were “SANE”, variable S would become “SAN”.

Example 2:
scanf (“%["\n]s”, string);

This example demonstrates part of the aforementioned assignment.
Here we have [“\n]. The not operator (*) is used on the character \n,
causes scanf to read everything but the character \n — which is
automatically added when you press return after entering input.

scanf also allows us to format our input in various ways. We can
ignore preceding white spaces or determine the number of integers we
would like to read from the user’s input.

Example 3:
scanf (” %s”, string);

In this example white space preceding $s, means that any leading
whitespaces before the string will be ignored.

So if the input was “ whoops”, our variable string would only take
“whoops”.

Example 4:
scanf (“%2d”, input);

In this example we have a number located between the ¢ and d, which
in this case is 2. The number determines the number of integers our
variable input (of integer type) will read.

So if the input was “3222”, our variable would only read “32".

printf
Function arguments:
int printf(const char * format, ..)

printf like scanf, also requires format placeholders.

Here are a table of some of the most commonly used placeholders:

PLACEHOLDER DATATYPE
%d integer
%u unsigned int
%f floating-point
%lf double floating-point
%c character
%s String

Example 1:

printf(“hello”);

In this example, the only argument we need in here is the string we’re
trying to print. This will print to stdout the string input.

Example 2:
int number = 9;

printf(“%d”, number);

In this example we have declared an integer called number, which takes
the value 9. The “%d” in printf£ allows the function to recognise the
variable number as being of integer data type.

Our output would simply be 9.

Example 3:
char letter = ‘a’;
int number = 9;

printf(“%c\n%d”, letter, number);

In this example we demonstrate how to print multiple variables.
Here, $c corresponds to our character variable called letter, and $d
corresponds to our integer variable called number. We have included
\n - a newline character - which will print a newline to separate our
two variables.
Our output will look like this: a

9

Example 4:
int x = 10;

printf (“%5d4”, x) ;

In this example we have declared an integer x with a value of 10. The
number located between % and d represents the indent value. The

example above will print: * 10”.
Example 5:
int* pointer = 5;

printf (“$p”,pointer);

In this example we have declared a pointer to an integer in memory and
assigned a value of 5 to it. We use “%p” to print to stdout the memory
address where pointer points to. This is also the same address that the
integer 5 is stored at. Memory addresses that print to stdout are actually

just hex numbers. What will print out is different for every computer
and different every time that this function is used.

Special & Important printfs

sprintf

Example 1:
int n = sprintf(storageString,”string”);
printf (“%s”, storage) ;

This function is used along with strings. There are at least 2 parameters.
The first parameter is where the string will be stored; the second
parameter is the formatted string that needs to be printed. The
formatted string that is defined in the same way that printf is with its
respective placeholders. The possible multi-parameters that are needed
in the function are defined the same way as printf. On success, this
function returns an integer indicating how long the formatted string is.
It is also followed by using printf to print the string to stdout.

fprintf

Example 1:
int n = fprintf (storageFile,”string”);

This function is used along with file reading and writing. Similar to
sprintf, it takes in at least 2 parameters and returns an integer
indicating how long the formatted string is. One of the big differences
between sprintf and fprintf is that the first parameter is not a string
where the formatted string will be stored, but a file where the formatted
string will be printed. Instead of printing to stdout, the formatted string
will appear in the file, similar to the >out . txt option in shell
command line.

