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Abstract. Keylogging and phishing attacks can extract user identity and sensitive account information for
unauthorized access to users’ financial accounts. Most existing or proposed solutions are vulnerable to session
hijacking attacks. We propose a simple approach to counter these attacks, which cryptographically separates a
user’s long-term secret input from (typically untrusted) client PCs; a client PC performs most computations
but has access only to temporary secrets. The user’s long-term secret (typically short and low-entropy) is input
through an independent personal trusted device such as a cellphone. The personal device provides a user’s
long-term secrets to a client PC only after encrypting the secrets using a pre-installed, “correct” public key of a
remote service (the intended recipient of the secrets). The proposed protocol (MP-Auth) realizes such an approach,
and is intended to safeguard passwords from keyloggers, other malware (including rootkits), phishing attacks
and pharming, as well as to provide transaction security to foil session hijacking. We report on a prototype
implementation of MP-Auth, and provide a comparison of web authentication techniques that use an additional
factor of authentication (e.g. a cellphone, PDA or hardware token).

1 Introduction

Passwords enjoy ubiquitous use for online authentication. Although many more secure (typically also more complex
and costly) authentication protocols have been proposed, the use of passwords for Internet user authentication
remains predominant. Due to the usability and ease of deployment, most financial transactions over the Internet
are authenticated through a password. Hence passwords are a prime target of attackers, for economically-motivated
exploits including those targeting online bank accounts and identity theft.

Online banking – as one example of highly critical Internet services – often requires only a bank card number
(as userid) and password. Users input these credentials to a bank website to access their accounts. An attacker can
easily collect these long-term secrets by installing a keylogger program on a client PC, or embedding a JavaScript
keylogger [43] on a phishing website. In today’s Internet environment, software keyloggers are typically installed
on a user PC along with common malware and spyware [35]. An increasing number of phishing sites also install
keyloggers on user PCs, even when users do not download or click any link on those sites [2]. Client security is a
big problem, regardless of the software/hardware platform used, as when plaintext sensitive information is input to
a client PC, such malware has instant access, compromising (reusable) long-term secrets. We argue that for some
common applications, passwords are too important to input directly to a typical user PC on today’s Internet; and
that the user PC should no longer be trusted with such plaintext long-term secrets, which are intended to be used
for user authentication to a remote server.

To safeguard a long-term password, we build on the following simple idea: use a hand-held personal device, e.g., a
cellphone or PDA to encrypt the password (combined with a server generated random challenge) under the public key
of an intended server, and relay through a (possibly untrusted) PC only the encrypted result in order to login to the
server website. This simple challenge-response effectively turns a user’s long-term password into a one-time password
in such a way that long-term passwords are not revealed to phishing websites, or keyloggers on the untrusted PC.

The resulting protocol, called MP-Auth (short for M obile Password Authenti-cation), is proposed primarily to
protect a user’s long-term password input through an untrusted (or rather, untrustworthy) client PC. For usability
and other reasons, the client PC is used for the resulting interaction with the website, and performs most computa-
tions (e.g. session encryption, HTML rendering etc.) but has access only to temporary secrets. The capabilities we
require from a mobile device include encryption, alpha-numeric keypad, short-range network connection (wire-line or

? Version: March 30, 2007. This is an extended version of a paper to appear in the proceedings of Financial Cryptography
and Data Security 2007 (FC 2007). This report also updates the version of May 5, 2006, originally filed as Technical Report
TR-06-08, School of Computer Science, Carleton University. Contact author: mmannan@scs.carleton.ca.



2

Bluetooth), and a small display. Although we highlight the use of a cellphone, the protocol can be implemented using
any similar “trustworthy” device (e.g. PDAs or smart phones), i.e., one free of malware. There are known attacks
against mobile devices [18], but the trustworthiness of such devices is currently more easily maintained than a PC,
in part because they contain far less software; see Section 3.3 for further discussion of mobile device security. The
use of a mobile device in MP-Auth is intended to protect user passwords from easily being recorded and forwarded
to malicious parties, e.g., by keyloggers installed on untrustworthy commodity PCs.

Another simple attack to collect user passwords is phishing. Although phishing attacks have been known for at
least 10 years (see [16]), few, if any, anti-phishing solutions exist today that are complete and deployable. In MP-
Auth, we encrypt a password with the “correct” public key of a web server (e.g. a bank), so that the password is not
revealed to any phishing websites. MP-Auth is intended to protect passwords from keyloggers as well as various forms
of phishing (including deceptive malware, DNS-based attacks or pharming, as well as false bookmarks). New malware
attacks (bank-stealing Trojans or session-hijacking, e.g. Win32.Grams [8]; see also CERT [31]) attempt to perform
fraudulent transactions in real-time after a user has logged in, instead of collecting userids and passwords for later use.
Most existing or proposed solution techniques are susceptible to these new attacks, e.g., Phoolproof [40] (presented in
FC’06), and two-factor authentication such as a password and a passcode generator token (e.g. SecurID). MP-Auth
protects against session hijacking, by providing transaction integrity through a transaction confirmation step. Unlike
standard two-factor techniques, MP-Auth does not store any secret on the mobile device.

Much of the related work in the literature concerns the trustworthiness of public computers, e.g., in Internet cafés
and airport lounges. Home computers are generally assumed to be trusted. Solutions are primarily designed to deal
with the problem of untrusted computers in public settings. In reality, most user PCs are not safe anywhere; an
improperly patched computer – home or public – generally survives only minutes1 when connected to the Internet.
There are also now many anti-phishing proposals (e.g. [43], [59]), and software “tools” designed to detect spoofed
websites (e.g. eBay toolbar, SpoofGuard, Spoofstick, Netcraft toolbar). However, most of these are susceptible to
keylogging attacks.2 On the other hand, several authentication schemes which use a trusted personal device, generally
prevent keyloggers, but do not help against phishing or session hijacking attacks. In contrast, the goal of MP-Auth
is to protect passwords from both keyloggers and phishing sites, and provide transaction security.

Our Contributions. We propose MP-Auth, a protocol for online authentication using a personal device such as a
cellphone in conjunction with a PC. The protocol provides the following benefits without requiring a trusted proxy
(e.g. [10]), or storing a long-term secret on a cellphone (e.g. Phoolproof [40]).

1. Keylogging Protection. A client PC does not have access to long-term user secrets. Consequently keyloggers
(software or hardware) on the PC cannot access critical passwords.

2. Phishing Protection. Even if a user is directed to a spoofed website, the website will be unable to decrypt a
user password. Highly targeted phishing attacks (spear phishing) are also ineffective against MP-Auth.

3. Pharming Protection. In the unlikely event of domain name hijacking [23], MP-Auth does not reveal a user’s
long-term password to attackers. It also protects passwords when the DNS cache of a client PC is poisoned.

4. Transaction Integrity. With the transaction confirmation step (see Section 2) in MP-Auth, a user can detect
any unauthorized transaction during a login session, even when an attacker has complete control over the user
PC (through e.g. SubVirt [26] or Blue Pill [45]).

5. Applicability to ATMs. MP-Auth is suitable for use in ATMs, if an interface is provided to connect a
cellphone, e.g., a wire-line or Bluetooth interface. This can be a step towards ending several types of ATM fraud
(see Bond [7] for a list of ATM fraud cases).

We provide a comprehensive survey of related authentication schemes used in practice and/or proposed to date, and
compare these to MP-Auth; this survey may be of independent interest. We analyzed MP-Auth using AVISPA [3];
no attacks were found. We have also implemented a prototype of MP-Auth for performance testing.

Organization. The MP-Auth protocol, threat model and operational assumptions are discussed in Section 2. A
brief analysis of MP-Auth messages, discussion on how MP-Auth prevents common attacks, and circumstances
under which MP-Auth fails to provide protection are outlined in Section 3. Discussion on usability and deployment
issues related to MP-Auth are provided in Section 4. Section 5 summarizes our MP-Auth prototype implementation.
Related work, including commercial one-time password generators, and a number of web authentication techniques
proposed in the literature, is discussed in Section 6. Section 7 concludes. Appendix A provides AVISPA test code for
MP-Auth and related discussion.
1 An average time between attacks of 4 minutes, as of Mar. 28, 2007, is reported at http://isc.sans.org/survivaltime.html.
2 PwdHash [43] can protect passwords from JavaScript keyloggers, but not software keyloggers on client PCs.
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2 MP-Auth: A Protocol for Online Authentication

In this section, we describe the MP-Auth protocol, including threat model assumptions.

Threat Model and Operational Assumptions. The primary goals of MP-Auth are to protect user passwords
from malware and phishing websites, and to provide transaction integrity. We assume that a bank’s “correct” public
key is available to users (see below for discussion on public key installation). We assume that mobile devices are
malware-free. A browser on a PC uses a bank’s SSL certificate to establish an SSL connection with the bank website
(as per common current practice). The browser may be duped to go to a spoofed website, or have a wrong SSL
certificate of the bank or the verifying certificating authority. The protocol does not protect user privacy (of other
than the user’s password) from an untrusted PC; the PC can record all transactions, generate custom user profiles
etc. Visual information displayed to a user on a PC screen is also not authenticated by MP-Auth, i.e., a malicious
PC can display misleading information to a user without being (instantly) detected. Denial-of-service (DoS) attacks
are not addressed.

Protocol Steps in MP-Auth. For notation see Table 1. Before the protocol begins, we assume that user U ’s
cellphone M is connected to B (via wire-line or Bluetooth). The protocol steps are described below (see also Fig. 1).

U, M, B, S User, a cellphone, a browser on the untrusted user PC, and the server, respectively.
IDS, IDU Server ID and user ID, respectively. IDU is unique in the server domain.
P Long-term (pre-established) password shared between U and S.
RS Random number generated by S.
{data}K Symmetric (secret-key) authenticated encryption (see e.g. [17], [5]) of data using key K.
{data}ES

Asymmetric (public-key) encryption of data using S’s long-term public key ES.
X, Y Concatenation of X and Y .
KBS Symmetric encryption key shared between B and S (e.g. an SSL key).
f(·) A cryptographically secure hash function.
v(·) A visualization function that maps any arbitrary binary string into easy-to-read words [21].

Table 1. Notation used in MP-Auth

Untrusted Client 

Browser (B)

Cellphone (M)

User (U)

Server (S)

1 2. SSL tunnel

4
6

5
8

3

7

9

Fig. 1. MP-Auth protocol steps

1. U launches a browser B on the untrusted PC, and visits the bank website S.
2. B and S establish an SSL session; let KBS be the established SSL secret key.
3. S generates a random nonce RS , and sends the following message to B.

B ← S : {IDS , RS}KBS
(2.1)

4. B decrypts message (2.1) and forwards it to M .

M ← B : IDS , RS (2.2)

We describe an additional step called session ID verification (see below) in cases where protecting the integrity
of RS is useful.
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5. M displays IDS, and prompts the user to input the userid and password for S. A userid (e.g. bank card number)
may be stored on the cellphone for convenience; the password should not be stored or auto-remembered.

6. M generates a random secret nonce RM and encrypts RM using ES . M calculates the session key KMS and
sends message (2.4) to B (here, the userid IDU is, e.g., a bank card number).

KMS = f(RS , RM ) (2.3)

M → B : {RM}
ES

, {f(RS), IDU , P}KMS
(2.4)

7. B (via SSL) encrypts message (2.4) with KBS , and forwards the result to S.
8. From message (2.4), after SSL decryption, S decrypts RM using its corresponding private key, calculates the

session key KMS (as in equation (2.3)), decrypts the rest of message (2.4), and verifies P , IDU and RS . Upon
successful verification, S grants access to B on behalf of U . S sends the following message for M to B (indicating
login success).

B ← S : {{f(RM )}KMS
}KBS

(2.5)

9. B forwards {f(RM )}KMS
to M . M decrypts to recover f(RM ) and verifies its local copy of RM . Then M displays

success or failure to U .

Transaction Integrity Confirmation. In MP-Auth, M and S establish a session key KMS known only to them;
malware on a user PC has no access to KMS . Attackers may modify or insert transactions through the untrusted
PC. To detect and prevent such transactions, MP-Auth requires explicit transaction confirmation by U (through
M). The following messages are exchanged (after step 9) for confirmation of a transaction with summary details T

(RS1 is a server generated random nonce, used to prevent replay).

M oo

{T, RS1}KMS

B oo

{{T, RS1}KMS
}KBS

S (2.6)

M
{f(T, RS1)}KMS

// B
{{f(T, RS1)}KMS

}KBS
// S (2.7)

M displays T to U in a human-readable way (e.g. “Pay $10 to Vendor V from the Checking account”), and asks for
confirmation (yes/no). When the user confirms T , the confirmation message (2.7) is sent from M to S (via B). From
message (2.7), S retrieves f(T, RS1), and verifies with its local copy of T and RS1. Upon successful verification, T is
committed. confirmation step after each transaction, transactions may be confirmed in batches (e.g. four transactions
at a time); then, T will represent a batch of transactions in the above message flows.

In an environment where a client machine is less likely to have malware, e.g., an ATM, transaction confirmation
may not be needed, if the session ID verification step (see below) is implemented. Also, some transactions may
not require confirmation. For example, adding a new user account or setting up an online bill payment for a phone
company should require user confirmation, but when paying a monthly bill to that account, omitting the confirmation
step would seem to involve little risk. Similarly, fund transfers between user accounts without transaction confirmation
may pose no significant risks to users. A bank may configure the set of sensitive transactions that will always require
the confirmation step (ideally, a user might also add to that set). Deciding to omit the requirement of explicit
confirmation should be done with hesitation. As reported in a Washington Post article [54], attackers compromised
customers’ trading accounts at several large U.S. online brokers, and used the customers’ funds to buy thinly traded
shares. The goal is to boost the price of a stock they already have bought and then to sell those shares at the higher
price. This incident indicates that seemingly innocuous transactions may be exploited by attackers if transactions
requiring confirmation are not diligently selected by banks.

Session ID Verification. To detect modification to RS in message (2.2), we add a session ID verification step after
step 4. Both B and M compute a session ID sid = v(RS). B and M display sid to U . U proceeds only if both
session IDs are the same. (For more on this, see Parallel Session Attacks in Section 3.2.) To minimize user errors, M

shows a list of session IDs (one derived from RS and others chosen randomly), and asks U to select the correct sid

corresponding to the one displayed on B.
We assume that users will be able to distinguish differences in sid, especially when sid is easily human-verifiable,

e.g., plain English words, distinct images. Note that malware on a PC can display any arbitrary sequence of words
or images. Hence the session ID verification step may only help for ATMs (where we assume an attacker may install
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a false keyboard panel and card reader on an otherwise trustworthy ATM). When a user accesses an online bank
website from a PC, the transaction confirmation step must be implemented; omitting session ID verification in such
a case may allow attackers (view-only) access to the user account, but the attackers cannot perform any (meaningful)
transaction. (Note that for only viewing a user’s transactions, attackers can deploy simple malware on the user PC
to capture images of web pages containing the transactions.)

Password Setup/Renewal. In order to secure passwords from keyloggers during password renewal, we require that
the password is entered through the cellphone keypad. We assume that the initial password is set up via a trustworthy
out-of-band method (e.g. regular phone, postal mail), and U attempts a password renewal after successfully logged
into S (i.e. KMS has been established between M and S). The following message is forwarded from M to S (via B)
during password renewal (Pold and Pnew are the old and new passwords respectively).

M
X , where X = {IDU , Pold, Pnew}KMS

// B
{X}KBS

// S (2.8)

Public Key Installation. One of the greatest practical challenges of deploying public key systems is the distri-

bution and maintenance (e.g. revocation, update) of public keys. MP-Auth requires a service provider’s public key
to be distributed (and updated when needed) and installed into users’ cellphones. The distribution process may
vary depending on service providers; we recommend that it not be primarily Internet-based. Considering banking
as an example, we visualize the following key installation methods (but note that we have not user-tested these
for usability):

1. at a bank branch, preferably during an account setup (see Section 4 for usability issues).
2. through in-branch ATM interfaces (hopefully free of “fake” ATMs).
3. through a cellphone service (authenticated download) as data file transfer.
4. through removable flash memory card for cellphones (e.g. microSD card) mailed to users, containing the public

key (for web-only banks). In this case, one might consider the cost of an attack involving fake mailings to users.

A challenge-response protocol or integrity cross-checks (using a different channel, e.g., see [53]) should be used to
verify the public key installed on a cellphone, in addition to the above procedures. For example, the bank may
publish its public key on the bank website, and users can cross-check the received public key, e.g., comparing visual

hashes [42] or public passwords [20].

Authentication Without a Personal Device. It may happen that while traveling, a user may lose her cellphone,
and cannot use MP-Auth to log in to her bank. As a secondary authentication technique to be used in such emergency
situations, one-time codes could be used. For example, banks may provide users a list of pass-codes (e.g. 10 digit
numbers) printed on a paper which can be used for secondary login; i.e., a userid and pass-code entered directly on a
bank login page allows emergency access to a user’s account. However, such logins should be restricted to perform only
a limited set of transactions; sensitive operations, e.g., adding a payee or changing postal address must not be allowed.

Requirements and Drawbacks of MP-Auth. MP-Auth requires users possess a malware-free (see Section 3.3)
personal device. Public keys of each target website (e.g. bank) must be installed on the personal device. (We assume
that there are only a few financially critical websites that a typical user deals with.) The correctness, i.e., integrity
of installed public keys must also be maintained. A communication channel between a personal device and PC is
needed, in such a way that malware on the PC cannot infect the personal device.3 For ATMs, users must compare
easy-to-read words [21] or easily distinguishable images [42] generated from random binary strings.

3 Security and Attack Analysis

In this section, we provide a brief informal security analysis of MP-Auth. We motivate a number of design choices
in MP-Auth messages and their security implications, and discuss several attacks that MP-Auth is resistant to. We
also list successful but less likely attacks against MP-Auth.

As a confidence building step, we have tested MP-Auth using the AVISPA (Automated Validation of Internet
Security Protocols and Applications) [3] analysis tool, and found no attacks. AVISPA is positioned as an industrial-
strength technology for the analysis of large-scale Internet security-sensitive protocols and applications. AVISPA test
code for MP-Auth and discussion are provided in Appendix A. The test code is also available online [27]. We have
not at this point carried out other formal analyses or security proofs for MP-Auth.
3 The first crossover virus was reported [32] in February 2006.
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3.1 Partial Message Analysis and Motivation

Here we provide motivation for various protocol messages and message parts. In message (2.1), S sends a fresh RS to
B, and B forwards IDS , RS to M . IDS is included in message (2.2) so that M can choose the corresponding public
key ES . When U starts a session with S, a nearby attacker may start a parallel session from a different PC, and
grab M ’s response message (2.4) (off-the-air, from the Bluetooth connection) to login as U . However, as S generates
a new RS for each login session (i.e. U and the attacker receive different RS from S), sending message (2.4) to S by
any entity other than B would cause a login failure.

The session key KMS shared between M and S, is known only to them. Both M and S influence the value of
KMS (see equation (2.3)), and thus a sufficiently random KMS is expected if either of the parties is honest (as well as
capable of generating secure random numbers); i.e., if a malicious party modifies RS to be 0 (or other values), KMS

will still be essentially a random key when M chooses RM randomly. To retrieve P from message (2.4), an attacker
apparently must guess KMS (i.e. RM ) or S’s private key. If both these quantities are sufficiently large (e.g. 160-bit
RM and 1024-bit RSA key ES) and random, an offline dictionary attack on P becomes computationally infeasible.
We encrypt only a small random quantity (e.g. 160-bit) by ES , which should always fit into one block of a public
key cryptosystem (including elliptic curve). Thus MP-Auth requires only one public key encryption. Browser B does
not have access to KMS although B helps M and S establish this key. With the transaction integrity confirmation
step, all (important) transactions must be confirmed from M using KMS ; therefore, any unauthorized (or modified)
transaction by attackers will fail as attackers do not have access to KMS .

3.2 Unsuccessful Attacks Against MP-Auth

We list several potential attacks against MP-Auth, and discuss how MP-Auth prevents them. We also discuss some
MP-Auth steps in greater detail, and further motivate various protocol components/steps.

a) Remote Desktop Attacks. A malicious browser B can collect message (2.4) and then deny access to U . B can
use message (2.4) to login to S, and provide an attacker a remote desktop, e.g., a Virtual Network Computing (VNC)
terminal, in real-time to the user PC. However, this attack will be foiled by the transaction integrity confirmation step.

b) Session Hijacking Attacks. In a session hijacking attack, malware may take control of a user session after the
user successfully establishes a session with the legitimate server; e.g., B may leak KBS to malware. The malware
may actively alter user transactions, or perform unauthorized transactions without immediately being noticed by the
user. However, such attacks will be detected by the transaction integrity confirmation step of MP-Auth.

Untrusted Host’s 

Browser (B)
Remote

server (S)

 

Attacker (A)

Malware in B

communicates with A

A’s SSL session 

B’s SSL session 

Fig. 2. Setup for a parallel session attack

c) Parallel Session Attacks. In a parallel session attack [12], mes-
sages from one protocol run are used to form another successful run
by running two or more protocol instances simultaneously. Generally
a parallel session attack may effectively be prevented through the
proper chaining of protocol messages. However, in MP-Auth, there
is no authentication between M and B, making such an attack pos-
sible even when protocol messages are linked correctly. An attack
against MP-Auth, without session ID verification, is the following
(see Fig. 2). When U launches B to visit S’s site, malware from U ’s
PC notifies a remote attacker A. A starts another session with S as
U , and gets message (2.1) from S, which the attacker relays to U ’s
PC. The malware on U ’s PC drops the message (2.1) intended for
U when B attempts to send the message to M , and forwards the
attacker’s message to M instead. The malware then relays back U ’s
response (i.e., from M) to A. Now A can login as U for the current session, although A is unable to learn P . However,
this attack fails against MP-Auth if session ID verification is used, because the session IDs displayed on B and M

will be different, and assumed to be detected by the user. The transaction integrity confirmation step makes such
parallel session attacks meaningless (view-only) even without session ID verification. We reiterate that the transac-
tion integrity confirmation step must be implemented on a PC environment, as session ID verification is useless on
a compromised PC.

3.3 Remaining Attacks Against MP-Auth
Although MP-Auth apparently protects user passwords from malware installed on a PC or phishing websites, here
we discuss some other possible attacks against MP-Auth which, if successful, may expose a user’s plaintext password.

a) Mobile Malware. We have stated the requirement that the personal (mobile) device be trusted. An attack could
be launched if attackers can compromise mobile devices, e.g., by installing a (secret) keylogger. Malware in mobile
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networks is increasing as high-end cellphones (smart phones) contain millions of lines of code. For example, a Sept.
2006 study [18] reported that the number of existing malware for mobile devices is nearly 162 (in comparison, there
are more than 100, 000 viruses in the PC world4). Worms such as Cabir [13] are designed to spread in smart phones
by exploiting vulnerabilities in embedded operating systems. Regular cellphones which are capable of running J2ME
MIDlets have also been targeted, e.g., by the RedBrowser Trojan [14]. However, currently cellphones remain far more
trustworthy than PCs, thus motivating our proposal.

In the future, as mobile devices increasingly contain much more software, the requirement of trustworthy cell-
phones becomes more problematic, and their use for sensitive purposes such as online banking makes them a more
attractive target. Limited functionality devices (with less software, implying more trustworthy) may then provide
an option for use with MP-Auth. Even if MP-Auth is implemented in such a special-purpose or lower functional-
ity device (e.g. an EMV CAP reader5), the device can hold several public keys for different services; in contrast,
users may require a separate passcode generator for each service they want to access securely in standard two-factor
authentication proposals. Another possibility of restricting mobile malware may be the use of micro-kernels [22],
formally verifiable OS kernels [52], protections against virtual-machine based rootkits (VMBRs) [26], or a virtualized
Trusted Platform Module (vTPM) [48] on cellphones to restore a trustworthy application environment. The Trusted
Computing Group’s (TCG’s) Mobile Phone Work Group (MPWG) is currently developing specifications [34] for
securing mobile phones.

In version 9 of the Symbian OS (a widely used cellphone OS), Symbian has introduced capabilities and data

caging [47]. A capability allows access to a set of APIs for an application, which is managed through certification,
e.g., Symbian Signed.6 About 60% of APIs are avilable to all applications without any capabilities. Some capabilities
are granted at installation time by a user. Some sensitive APIs (e.g. ReadDeviceData, TrustedUI) are granted only
after passing Symbian Signed testing. Capabilities such as DRM must be granted by the device manufacturer, e.g.,
Nokia. Controlled capabilities may restrict functionality of unauthorized applications (or malware). Access to the
file system for applications and users is restricted through data caging. Caging enforces data privacy so that an
application can access only its private directories and directories marked as ‘open’.

Enforcement of capabilities and data caging is done by Symbian Trusted Computing Base (TCB). TCB is a
collection of software including the kernel, file system, and software installer. However, TCB will become an attractive
attack target, and it may contain bugs in itself. Secure hardware, e.g., Trusted Platform Module (TPM) may help
achieve goals of Symbian Platform Security.

Anti-virus software (e.g. Trend Micro [51]) for mobile platforms may also help maintain trustworthiness of cell-
phones. Malware targeting mobile phones is still limited, and leveraging the experience of working to secure traditional
PC platforms may help us achieve a relatively secure mobile computing environment. However, considering the cur-
rent state of mobile phone security, MP-Auth would perform better on devices whose software upgrade is tightly
controlled (e.g. only allowing applications which are digitally signed by a trustworthy vendor).

b) Common-Password Attacks. Users often use the same password for different websites. To exploit such behavior,
in a common-password attack, attackers may break into a low-security website to retrieve userid/password pairs,
and then try those in financially critical websites, e.g., for online banking. MP-Auth itself does not address the
common-password problem (but see e.g., PwdHash [43]).

c) Social Engineering. Some forms of social engineering remain a challenge to MP-Auth (and apparently, other
authentication schemes using a mobile device). For example, malware might prompt a user to enter the password
directly into an untrusted PC, even though MP-Auth requires users to enter passwords only into a cellphone. In a
“mixed” phishing attack,7 emails are sent instructing users to call a phone number which delivers, by automated
voice response, a message that mimics the target bank’s own system, and asks callers for account number and PIN.
Fraudsters may also exploit transaction integrity confirmation using similar payee names, e.g., Be11 Canada instead
of Bell Canada. User habit or user instruction may provide limited protection against these.

4 http://www.cknow.com/vtutor/NumberofViruses.html
5 EMV is a standard for interoperation of chip cards, designed by Europay, MasterCard and Visa. EMV CAP (Chip Authenti-

cator Program) is a two-factor authentication system for bank customers with chip cards where a card is used to generate a
one-time password; see https://emvcap.com. A chip card is inserted into a small CAP reader, and using the PIN associated
with the card, a user can generate one-time passwords, respond to a server’s challenge and MAC over transaction data. A
CAP reader includes a small display, keypad and a low-end processor.

6 www.symbiansigned.com
7 http://www.cloudmark.com/press/releases/?release=2006-04-25-2
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d) Private Key Disclosure. It would be disastrous if the private key of a bank is compromised. This would require,
e.g., that the bank generate and distribute a new public key. However, this threat also exists for currently deployed
SSL (server site) certificates, and root keys present in current browsers. If a user has multiple bank accounts that
use MP-Auth, compromising one of those bank private keys may expose passwords for other accounts. The attack8

may work in the following way. Assume a user has accounts in banks S1 and S2 with server IDs IDS1 and IDS2,
and the private key for S1 has been compromised. The user goes to S2’s website for online banking. Malware in the
user’s PC forwards IDS1 to the cellphone while displaying S2’s website on the PC. If the user inputs the userid and
password for her S2 account without carefully checking the displayed server ID on her cellphone, the attacker can
now access the user’s password for S2 (using S1’s private key). Displaying a distinct image of the requesting server
on the cellphone may reduce such risks.

e) Shoulder Surfing Attacks. A nearby attacker may observe (shoulder surf ) while a user enters a password to a
mobile device. Video recorders or cellphones with a video recording feature can also easily record user passwords/PINs
in a public location, e.g., in an ATM booth. MP-Auth does not stop such attackers. Methods resilient against shoulder
surfing have been proposed (e.g. [55], [44]), and may be integrated with MP-Auth, although their practical viability
remains an open question.

f) Online Password Guessing. Since MP-Auth assumes passwords as the only shared secret between a user and a
server, online password guessing attacks can be launched against MP-Auth. Current techniques, e.g., locking online
access to an account after a certain number of failed attempts, can be used to restrict such attacks.

4 Usability and Deployment

In this section, we discuss usability and deployment issues related to MP-Auth. Usability is a great concern for
any protocol supposed to be used by general users, e.g., for Internet banking and ATM transactions. In MP-Auth,
users must connect a cellphone to a client PC. This step is more user-friendly when the connection is wireless, e.g.,
Bluetooth, than wire-line. Then the user browses to a bank website, and enters into the cellphone the userid and
password for the site (step 5 in MP-Auth, see Section 2). In ATMs, the password is entered if session ID verification
is successful. We also assume that typing a userid and password on a cellphone keypad is acceptable in terms of
usability, as many users are accustomed to type SMS messages or have been trained by BlackBerry/Treo experience.
However, verification of session ID and transactions may be challenging to some users. We have not conducted any
user study to this end.

During authentication the cryptographic operations a cellphone is required to perform in MP-Auth include: one
public key encryption, one symmetric encryption and one decryption, one random number generation, and three
cryptographic hash operations. The most expensive is the one public key encryption, which is a relatively cheap RSA
encryption with short public exponent in our application; see Section 5 for concrete results.

For authentication in MP-Auth, a bank server performs the following operations: one private key decryption,
one symmetric key encryption and one decryption, three cryptographic hash operations, and one random number
generation. The private key decryption will mostly contribute to the increment of the server’s computational cost.
Verification of one-time passcodes generated by hardware tokens or SMS passcodes (as deployed in many two-factor
authentication schemes) also incurs extra processing and infrastructure costs. However, currently we are unable to
compare the costs of MP-Auth with that of existing two-factor techniques due to unavailability of such data.

Banks may also hesitate in distributing software programs for a user’s PC and mobile device as required by
MP-Auth, apparently due to software maintenance issues. Standardization of such software APIs might enable
interoperable independent tools development, and thus reduce maintenance burdens. If a specialized device like the
EMV CAP reader is used for MP-Auth, banks may pre-package all require software on the device and relieve users
from installing anything on a personal device. However, users and banks may still need to deal with software for
communications between a PC and personal device.

We now discuss other usability and deployment aspects which may favor MP-Auth (see also Section 6).

1. As it appears from the current trend in online banking (see Section 6.1), users are increasingly required to use
two-factor authentication (e.g. with a separate device such as a SecurID passcode generator) for login. Hence
using an existing mobile device for online banking relieves users from carrying an extra device. Also, a user
might otherwise require multiple hardware tokens (e.g. SecurID, Chip and PIN card) for accessing different
online accounts (from different banks).

8 An anonymous FC 2007 referee pointed us this attack.
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2. The usability of four login techniques has been studied by Wu et al. [57] – two that send a one-time password as
an SMS message, visually checking the session names displayed on the phone and untrusted PC, and choosing
the correct session ID from a list of choices on the cellphone. Typing a one-time password is least preferred, yet
in most two-factor authentication methods in practice, users must do so. In contrast, MP-Auth requires users to
enter only long-term passwords. MP-Auth may also require users to compare session IDs by choosing from a list,
which is reported to be more secure (the least spoofable of all) and easier than typing a one-time password [57].

3. MP-Auth offers cost efficiency for banks – avoiding the cost of providing users with hardware tokens (as well
as the token maintenance cost). The software modification at the server-end is relatively minor; available SSL
infrastructure is used with only three extra messages (between a browser and server) beyond SSL. MP-Auth is
also compatible with the common SSL setup, i.e., a server and a client authenticate each other using a third-
party-signed certificate and a user password respectively.

4. Several authentication schemes involving a mobile device store long-term secrets on the device. Losing such a
device may pose substantial risk to users. In contrast, losing a user’s cellphone is inconsequential to MP-Auth
assuming no secret (e.g. no “remembered password”) is stored on the phone.

5. Public key distribution and renewal challenges usability in any PKI. Key updating is also troublesome for banks.
However, key renewal is an infrequent event; we assume that users and banks can cope with this process once
every two to three years. If key updates are performed through the mobile network or selected ATMs (e.g.
within branch premises), the burden of key renewal is largely distributed. For comparison, hardware tokens (e.g.
SecurID) must be replaced approximately every two to five years.

6. One usability problem of MP-Auth is that users must deal with two devices (a trusted device and a PC) for
online banking. Since usability of smartphones is increasing with the adoption of a full QWERTY keyboard and a
relatively large (e.g. 320 x 240 pixel) colour screen, it would be better if MP-Auth could be used directly from
such a device (i.e. without requiring a PC). However, we do not recommend such an integration as it may be
vulnerable to phishing attacks when a phishing website mimics MP-Auth’s user-interface for password input.

Fig. 3. MP-Auth login

Although we have not tested MP-Auth for usability, the above suggests that com-
pared to available two-factor authentication methods (see Section 6.1), MP-Auth
may be as usable or better. However, we hesitate to make strong statements without
usability tests (c.f. [9]).

5 Implementation and Performance

We developed a prototype of the main authentication and session key establishment
parts of MP-Auth to evaluate its performance. Our prototype consists of a web
server, a Firefox Extension, a desktop client, and a MIDlet on the cellphone. We set
up a test web server (bank), and used PHP OpenSSL functions and mcrypt module
for the server-side cryptographic operations. The Firefox Extension communicates
between the web server and desktop client. The desktop client forwards messages to
and from the cellphone over Bluetooth. We did not have to modify the web server
or Firefox browser for MP-Auth besides adding PHP scripts to the login page (note
that Phoolproof [40] requires browser modifications). We used the BlueZ Bluetooth
protocol stack for Linux, and Rococosoft’s Impronto Developer Kit for Java. We
developed a MIDlet – a Java application for Java 2 Micro Edition (J2ME), based
on the Mobile Information Device Profile (MIDP) specification – for a Nokia E62
phone. See Fig. 3. For cryptographic operations on the MIDlet, we used the Bouncy
Castle Lightweight Crypto API.

To measure login performance, we used MP-Auth for over 200 successful logins,
and recorded the required login time, i.e., the time to complete steps 1 through 9 in
MP-Auth (see Section 2; excluding userid and password input in step 5). We carried out similar tests for regular SSL
logins. The results are summarized in Table 2. Table 3 summarizes other implementation details. Although regular
SSL login is almost eight times faster than MP-Auth, on average, it takes less than a second for MP-Auth login.
We believe that this added delay would be acceptable, given that entering a userid and password takes substantial
additional time.
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Avg. Time (s) [Min, Max] (s)

MP-Auth 0.62 [0.34, 2.28]

Regular SSL 0.08 [0.06, 0.22]

Table 2. Performance comparison between MP-Auth and
regular SSL login excluding user input time

Public key encryption RSA 1024-bit

Symmetric encryption AES-128 (CBC)

Hash function SHA-1 (160-bit)

Source of randomness /dev/urandom,
SecureRandom

Table 3. Cryptosystems and parameters for MP-Auth

6 Survey of Related Work

In this section, we summarize and provide extended discussion of related online authentication methods used in
practice or proposed in the literature, and compare MP-Auth with these techniques.

6.1 Online Authentication Methods

We first discuss several online authentication methods commonly used (or proposed for use) by banks, and briefly
discuss their security.

a) Password-only Authentication. Most bank websites authenticate customers using only a password over an
SSL connection. This is susceptible to keyloggers and phishing. Banks’ reliance on SSL certificates does not stop
attackers. Attackers have used certificates – both self-signed, and real third-party signed certificates for sound-alike

domains, e.g., visa-secure.com – to display the SSL lock on phishing websites. In 2005, over 450 phishing websites
were reported to deploy SSL [37].

In a cross-site/cross-frame scripting attack, vulnerable website software is exploited to display malicious (phishing)
contents within the website, making such attacks almost transparent to users. Past vulnerable websites include
Charter One Bank, MasterCard, Barclays and Natwest [60]. In a March 2006 phishing attack, attackers broke into
web servers of three Florida-based banks, and redirected the banks’ customers to phishing websites.9 In another high-
profile phishing attack, attackers manipulated a U.S. government website to forward users to phishing websites.10

Reliance on SSL itself also leads to problems. For example, only one in 300 customers of a New Zealand bank [37]
chose to abandon the SSL session upon a browser warning indicating an expired SSL site certificate; the bank
accidentally allowed a certificate to expire for a period of 12 hours. A user study by Dhamija et al. [11] also notes
that standard (visual) security indicators on websites are ineffective for a significant portion of users; over 90%
participants were fooled by phishing websites in the study.

As front-end (client-side) phishing solutions are failing in many instances, some banks are putting more resources
at back-end fraud detection to counter phishing threats. For example, HSBC in Brazil uses the PhishingNet11 back-
end solution from The 41st Parameter. PhishingNet uses user machine identification, and monitors online account
activities, without requiring any user registration or software downloads. Such a solution is almost transparent to end-
users, and may help detect fraudulent transactions. The RSA Adaptive Authentication for Web12 also provides similar
back-end fraud detection capabilities. However, in case of session hijacking attacks when fraudulent transactions are
performed from a user’s own machine, back-end solutions may not help much.

The above suggests password-only web authentication over SSL is inadequate in today’s Internet environment.
This is motivating financial organizations towards two-factor authentication methods.

b) Two-factor Authentication. Traditionally, authentication schemes have relied on one or more of three factors:
something a user knows (e.g. a password), something a user has (e.g. a bank card), and something a user is (e.g.
biometric characteristics). Properly designed authentication schemes that depend on more than one factor are more
reliable than single-factor schemes. Note that the authentication scheme used in ATMs through a bank card and
PIN is two-factor; but, an online banking authentication scheme that requires a user’s bank card number (not
necessarily the card itself) and a password is single-factor, i.e., both are something known. As a step toward multi-
factor authentication, banks are providing users with devices like one-time password generators, to use along with
passwords for online banking, thus making the authentication scheme rely on two independent factors. Examples of
two-factor authentication in practice are given below.
9 http://news.netcraft.com/archives/2006/03/27/phishers_hack_bank_sites_redirect_customers.html

10 http://www.eweek.com/article2/0,1895,1894746,00.asp
11 http://www.the41.com/site/solutions_phishing.html
12 http://www.rsa.com/node.aspx?id=3018
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1. Several European banks attempt to secure online banking through e.g., passcode generators.13

2. U.S. federal regulators have provided guidelines for banks to implement two-factor authentication by the end of
2006 for online banking [15].

3. The Association of Payment and Clearing Systems (APACS) in the U.K. is developing a standard14 for online and
telephone banking authentication. Most major U.K. banks and credit-card companies are members of APACS.
The standard provides users a device to generate one-time passwords using a chip card and PIN. The one-time
password is used along with a user’s regular password.

Two-factor web authentication methods may make the collection of passwords less useful to attackers and thus
help restrict phishing attacks. However, these methods raise deployment and usability issues, e.g., cost of the token,
requirement to carry the token. Also malware on a client PC can record the device-generated secret (which a user
inputs directly to a browser), and log on to the bank website before the actual user. This is recognized as a classic
man-in-the-middle (MITM) attack [46].

In an interesting real attack [49] against a one-time password scheme implemented by a Finnish bank, the bank
provided users a scratch sheet containing a certain number of one-time passwords. By setting up several phishing
sites, attackers persuaded users to give out a sequence of one-time passwords in addition to their regular passwords.
This attack is made more difficult if one-time passwords expire after a short while (e.g. 30 to 60 seconds in SecurID);
then the collected one-time passwords must be used within a brief period of time from a user’s login attempt. A
recent (July 2006) phishing attack [38], attackers collected userid, password, as well as one-time password (OTP)
generated by time-based passcode generators from Citibank customers, and launched a real-time MITM attack against
compromised accounts. Also, such time-based passcode generators, e.g., SecurID, typically have time synchronization
problems between a client device and the server [58]. Other security issues of such devices (e.g. [56], [36], [6], [41])
are not directly relevant to our discussion; we assume that any weaknesses could be repaired by superior algorithms
or implementations overtime, albeit with the usual practical challenges, e.g., backwards compatibility.

Note that, even when a one-time password is used along with a user’s (long-term) regular password, gathering
long-term passwords may be still be of offline use to an attacker. For example, if flaws are found in a one-time key
generator algorithm (e.g., differential adaptive chosen plaintext attack [6]) by which attackers can generate one-time
keys without getting hold of the hardware token, keylogging attacks to collect user passwords appear very useful.

Instead of gathering passwords, attackers can simply steal money from user accounts in real-time, immediately
after a user completes authentication [31]. Therefore, transaction security, as possible in MP-Auth, becomes critical
to restrict such attacks.

c) Transaction Security and Complimentary Mechanisms. To protect important transactions, and make users
better able to detect break-ins to their accounts, some banks have deployed security techniques which are generally
complementary to authentication schemes. Examples include:

1. Two New Zealand banks require online users to enter a secret from a cellphone (sent as an SMS message to the
phone) for transfers over $2500 from one account to another [50].

2. Customers of the Commonwealth Bank of Australia15 must answer (pre-established) identification questions
when performing sensitive transactions. Email alerts are sent to users to confirm when users’ personal details
have been changed, or modifications to user accounts are made.

3. Bank of America uses SiteKey16 to strengthen online authentication. If a user PC is recognized by the bank,
a secret pre-shared SiteKey picture is displayed; upon successful verification of the SiteKey picture, the user
enters her password. A confirmation question is asked if the user PC is not recognized, and the SiteKey picture
is displayed when the user answers the question correctly. The SiteKey picture provides evidence that the user
is entering her password to the correct website.

4. Users can view a real-time transaction summary of the current session on the CIBC (Canada) online banking
website. Also, the date and time of a user’s last login are displayed on the website.

In principle, the above mechanisms (as well as MP-Auth’s transaction integrity confirmation) are similar to integrity
cross-checks by a second channel [53]. These appear to be effective only against high-impact online frauds. Attackers
may be able to defeat some of these techniques; e.g., if a bank requires SMS verification on large transactions,

13 A list of bank websites that use SSL login and/or two-factor authentication is available at https://www.securewebbank.

com/loginssluse.html.
14 http://www.chipandpin.co.uk/
15 http://www.commbank.com.au/Netbank/faq/security.asp
16 http://www.bankofamerica.com/privacy/passmark/
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attackers can commit several relatively small transactions (e.g. $10 instead of $1000) to avoid the verification step.
Also, SMS verification requires access to cellphone networks which is a problem when a phone network is not available
(e.g. while traveling). Typing-in (one-time) SMS passcodes into a cellphone may pose usability problems (in fact, it
was the least preferred method as found in a small usability survey [57]).

d) Using a Cellphone Alone for Important Internet Services. Some [19] believe cellphones have the potential
to replace commodity PCs entirely. One proposed solution to keyloggers is to perform all critical work through a
cellphone browser, or through a PDA. However, a combination of the following usability and security issues may
restrict such proposals being widely deployed.

1. The display area of a cellphone/PDA is much smaller than a PC, limiting usability for web browsing.
2. Users may still reveal passwords to phishing sites controlled by malicious parties (through e.g., domain name

hijacking [23]). Thus even a trusted browser in a trusted device may not stop phishing attacks; i.e., such a setup
may allow a ‘secure’ pipe directly to phishing sites.

3. In many parts of the world, airtime costs money. So Internet browsing through a mobile network remains, at
least presently, far more expensive than wire-line Internet connections.

e) Comparing MP-Auth with Existing Online Authentication Methods. In contrast to two-factor authen-
tication methods, by design MP-Auth does not provide attackers any window of opportunity when authentication
messages (i.e. collected regular and one-time passwords of a user) can be replayed to login as the legitimate user
and perform transactions on the user’s behalf. The key observation is that, through a simple challenge-response,
message (2.4) in MP-Auth (Section 2) effectively turns a user’s long-term static password into a one-time password
in such a way that long-term passwords are not revealed to phishing websites, or keyloggers on an untrusted PC.
In contrast to transaction security mechanisms, MP-Auth protects both large and small transactions. Also, MP-
Auth does not require text or voice communications airtime for web authentication or transaction security. (See also
Section 4 for more comparison on usability and deployment issues.)

6.2 Academic Work

Here we summarize selected academic work on authentication from an untrusted PC using a mobile device. We also
compare MP-Auth to these proposals in terms of technical merits and usability.

a) Splitting Trust Paradigm. Abadi et al. [1] envisioned an ideal smart-card (with an independent keyboard,
display, processor) as early as 1990, and designed protocols using such a device to safeguard a user’s long-term
secrets from a potentially malicious computer. In 1999, Balfanz and Felten [4] proposed a scheme to deliver smart
card functionality through a PalmPilot. They introduced the splitting trust paradigm to split an application between
a small (in size and processing power) trusted device and an untrusted computer. Our work is based on such a
paradigm where we provide the long-term password input through widely available cellphones, and use the untrusted
computer for computationally intensive processing and display. However, we do not use any user-level PKI.

b) Phoolproof Phishing Prevention. Parno, Kuo and Perrig [40] proposed a cellphone-based technique to protect
users against phishing with less reliance on users making secure decisions. With the help of a pre-shared secret –
established using an out-of-band channel, e.g., postal mail – a user sets up an account at the intended service’s
website. The user’s cellphone generates a key pair {KU , K−1

U
}, and sends the public key to the server. The user’s

private key and server certificate are stored on a cellphone for logins afterward. During login (see Fig. 4), a user
provides userid and password to a website on a browser (as usual), while in the background, the browser and server
authenticate (using SSL mutual authentication) through the pre-established client/server public keys in an SSL
session; the browser receives the client public key from the cellphone. (See also the Personal Transaction Protocol
(PTP) [33] for a similar approach from leading mobile phone manufacturers.)

In Figure 4, DHS , DHC represent the Diffie-Hellman public key parameters for the server and client browser
respectively, and h is a secure hash of all previous SSL handshake messages of the current session. As noted [40],
attackers may hijack account setup or (user) public key re-establishment. Phoolproof assumes that users can cor-
rectly identify websites at which they want to set up an account. Public key creation in Phoolproof happens in
the background and is almost transparent to users. However, users must revoke public/private key pairs in case of
lost or malfunctioning cellphones, or a replacement of older cellphone models. Expecting non-technical users (e.g.
typical bank customers) to understand concepts of revocation and renewal of public keys may not be practical. In
MP-Auth, users do not have to revoke or create any public key or inform their banks when they lose, break or change
their cellphones.

It is also assumed in Phoolproof that the (Bluetooth) channel between a browser and cellphone is secure. Seeing-
is-believing (SiB) [30] techniques are proposed to secure local Bluetooth channels, requiring users to take snapshots
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Fig. 4. Phoolproof login process.

using a camera-phone, apparently increasing complexity to users. If malware on a PC can replace h (when the
browser attempts to send h to the cellphone) with an h value from an attacker, the attacker can login as the user
(recall Parallel Session Attacks in Section 3.2). In MP-Auth, we do not rely on the assumption that the local channel
(between the cellphone and PC) is secure. Although MP-Auth may require users to visually verify a session ID to
secure the local Bluetooth connection (for ATMs, when transaction integrity confirmation is omitted), users are not
required to have a camera-phone or to take any picture. Also, Phoolproof does not provide protection against session
hijacking attacks, which MP-Auth achieves at the (human interaction) cost of transaction integrity confirmation.

c) Bump in the Ether. Bump in the Ether (BitE) [29] proxies sensitive user input to a particular application via a
trusted mobile device, bypassing the Linux X-windowing system. BitE assumes the OS kernel is trustworthy, and the
mobile device is cryptographically paired with the kernel. BitE can protect user input against user-space malware.
However, BitE does not protect user inputs from a phishing website, or compromised (e.g. Trojaned) user applications.
BitE also stores cryptographic keys to the mobile device, which are subject to compromise to users if the device is
lost or left unattended. In contrast to MP-Auth, BitE also does not provide protection against session hijacking.
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Fig. 5. SpyBlock setup

d) SpyBlock. Jackson, Boneh and Mitchell
propose SpyBlock [24] to provide spyware-

resistant web authentication using a virtual
machine monitor (VMM). The SpyBlock au-
thentication agent runs on a host OS (as-
sumed to be trusted), and user applications
including a web browser with a SpyBlock
browser helper run inside a guest VM (as-
sumed to be untrusted) on the trusted host
OS. See Figure 5.

A user authenticates to a website with the
help of the SpyBlock authentication agent.
The site password is given only to the authen-
tication agent which supports several authentication techniques, e.g., password hashing, strong password authenti-
cation, transaction integrity confirmation. The authentication agent provides a trusted path to the user through a
pre-shared secret picture.

Although SpyBlock does not require an additional hardware device (e.g. a cellphone), a VMM must be installed
on top of a host OS; the current reality is that most users do not use any VMM. Also, users must know when they
are communicating with the authentication agent; user interface design in such a setting appears quite challenging.
Another assumption in SpyBlock is that the host OS is trusted. In reality, maintaining trustworthiness of any current
consumer OS is very difficult (which is in part why secure web authentication is so complex).

e) Three-party Secure Remote Terminal Protocol. Oprea et al. [39] proposed a three-party protocol (see
Fig. 6) to provide secure access to a home computer from an untrusted public terminal. A trusted device (PDA) is
used to delegate temporary credentials of a user to an untrusted public computer, without revealing any long-term
secret to the untrusted terminal. Two SSL connections are established in the protocol: one from the trusted PDA and
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another from the untrusted terminal to the home PC using a modified Virtual Network Computing (VNC) system.
The PDA authenticates normally (using a password) to the home PC, and forwards temporary secret keys to the
untrusted terminal. A user can control how much information from the home PC is displayed to the untrusted PC.
Control messages to the home VNC, e.g., mouse and keyboard events, are only sent from the PDA.

Home PC

SSL tunnel

direct

connection

(temp keys)

SSL tunnel

Untrusted PC

Trusted PDA

keyboard

and mouse

events

Fig. 6. Three-party VNC protocol

Although this protocol safeguards user passwords, it does so
when users access a PC (or application) that they control, e.g.,
a home PC. MP-Auth is aimed to protect user passwords in a
more general Internet setting, i.e., when users access a hosted
service (e.g. an online banking website). In the VNC protocol,
the trusted device must have SSL capabilities, and is required
to maintain a separate SSL channel from the PDA to the home
PC; MP-Auth requires neither of these.

f) Camera-based Authentication. Clarke et al. [10] pro-
posed a technique using camera-phones for authenticating vi-
sual information (forwarded by a trusted service) in an un-
trusted PC. This method verifies message authenticity and in-
tegrity for an entire user session; i.e., it authenticates contents
displayed on a PC screen for every web page or only critical pages in a user session. A small area on the bottom of
a PC screen is used to transmit security parameters (e.g. a nonce, a one-time password, a MAC) as an image, with
a strip of random-looking data. Figure 7 outlines the proposed protocol.

Trusted device

(camera phone)
Trusted proxy

Remote server

Untrusted PC

User

Fig. 7. Camera-based authentication

To access a service from the Internet through an untrusted
PC, this scheme requires a trusted proxy. A user’s long-term
keys are stored on the camera-phone, protected by a PIN or
biometric measurement. With a stolen phone, an attacker may
successfully impersonate the user or retrieve the stored long-
term keys from the phone. Camera-based authentication also
creates a much different user experience: users are expected
to take snapshots and visually verify (cross-check) images in
terms of colors and shades. A calibration phase may also be
required to construct a mapping between PC screen pixels and
camera pixels (in one implementation, reported to take about
10 seconds). It attempts to authenticate contents of a visual
display, which is apparently useful in a sense that we can verify
what is displayed on the screen. The transaction confirmation
step in MP-Auth provides effectively similar protection for online banking, without issues such as screen snapshot
capture or pixel calibration.
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Fig. 8. Web authentication with a cellphone

g) Secure Web Authentication with Cellphones. Fig-
ure 8 shows the secure web authentication proposed by Wu
et al. [57]. User credentials (userid, password, mobile number
etc.) are stored on a trusted proxy server. The protocol involves
the following steps (see Fig. 8 for symbol definitions).

1. U launches a web browser at K, and goes to T ’s site.
2. U types her userid and K sends it to T .
3. T chooses a random session name, and sends it to K.
4. T sends this session name to M as an SMS message.
5. U checks the displayed session name at K.
6. U verifies the session name at M .
7. If session names match, the user accepts the session.
8. If U accepts the session, then T uses U ’s stored credentials

to login to R, and works as a web proxy.

This protocol pursues similar goals to MP-Auth, but re-
quires a trusted proxy, which if compromised, may readily expose user credentials to attackers. A well-behaved proxy
may also be tricked to access a service on behalf of a user. Hence the proxy may become a prime target of attacks.
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Also, losing the cellphone is problematic, as anyone can access the trusted proxy using the phone, at least temporarily.
Delegate [25] is another similar trusted proxy based solution for secure website access from an untrusted PC that
also provides protection against session hijacking.

h) Guardian: A Framework for Privacy Control. The Guardian [28] framework has been designed with an
elaborate threat model in mind. Its focus is to protect privacy of a mobile user,17 including securing long-term
user passwords and protecting sensitive information, e.g., personal data from being recorded (to prevent identity
profiling). Guardian works as a personal firewall but placed on a trusted PDA. In effect, the PDA acts as a portable

privacy proxy. See Fig. 9.
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SSL
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Direct I/O

when required

Untrusted PC
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Fig. 9. Guardian setup

Guardian keeps passwords and other privacy sensitive
information out of the reach of keyloggers and other mal-
ware installed on an untrusted PC. However, phishing
attacks still may succeed. Guardian attempts to man-
age a large set of sensitive user details, e.g., PKI cer-
tificates, SSL connections, and cookies as well as real-
time content filtering. Thus its implementation appears to
be complex, and requires intelligent processing from the
PDA. Although MP-Auth does not protect user privacy,
it provides protection against both keyloggers and phish-
ing (for online banking), and is apparently much simpler
than Guardian.

i) Comparing MP-Auth with Existing Literature.
Table 4 summarizes a comparison of MP-Auth with sev-
eral anti-phishing proposals from the literature. An (7)
means a special requirement is needed. An empty box indicates the stated protection is not provided (first three
columns) and the stated requirement is not needed (last four columns). A (—) represents non-applicability. (All
Xand no 7 would be optimal.) For example, Phoolproof [40] provides protection against phishing and keylogging,
but it is vulnerable to session hijacking; it requires a malware-free mobile and stores long-term secrets on the mobile,
but does not require a trusted proxy or trusted PC OS. We acknowledge that although this table may provide useful
high-level overview, this does not depict an apple-to-apple comparison. Several solutions listed here require a trusted
proxy, thus introduce an extra deployment burden, and present an attractive target to determined attackers (provid-
ing access to many user accounts). Also, fraudsters may increasingly target mobile devices if long-term secrets are
stored on them.

Protection against Requirement

Session-
hijacking

Phishing Key-logging Trusted
proxy

On-device
secret

Trusted PC
OS

Malware-
free mobile

MP-Auth X X X 7

Phoolproof [40] X X 7 7

BitE [29] X 7 7 7

SpyBlock [24] X X X — 7

Three-party [39] — — X 7 7

Camera-based [10] X X X 7 7 7

Web-Auth [57] X X 7 7 7

Guardian [28] X 7 7

Table 4. Comparing MP-Auth with existing literature.

7 Concluding Remarks

We have proposed MP-Auth, a protocol for web authentication which is resilient to keyloggers (and other malware
including rootkits), phishing websites, and session hijacking. Recently, many small-scale, little-known malware in-
stances have been observed that install malicious software launching keylogging and phishing attacks; these are in
contrast to large-scale, high-profile worms like Slammer. One reason for this trend might be the fact that attackers

17 A user who uses several different public terminals to access critical online services, e.g., banking.
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are increasingly targeting online financial transactions.18 Furthermore, such attacks are fairly easy to launch; for
example, attackers can gain access to a user’s bank account simply by installing (remotely) a keylogger on a user PC
and collecting the user’s banking access information (userid and password). MP-Auth is designed to prevent such
attacks. MP-Auth primarily focuses on online banking but can be used for general web authentication systems as
well as at ATMs. Our requirement for a trustworthy personal device (i.e. free of malware) is important, and becomes
more challenging over time, but as discussed in Section 3.3, may well remain viable. In our MP-Auth implementation,
cryptographic computations and Bluetooth communications took less than a second for login (excluding the user
input time), which we believe to be an acceptable delay. Despite a main objective of preventing phishing and key-
logging attacks, MP-Auth as presented remains one-factor authentication; thus an attacker who nonetheless learns
a user password can impersonate that user. Consequently, the server side of MP-Auth must be trusted to be secure
against both from insider attack and break-in.

Users often input reusable critical identity information to a PC other than userid/password, e.g., a passport
number, social security number, driver’s licence number, or credit card number. Such identity credentials are short,
making them feasible to enter from a cellphone keypad. In addition to protecting a user’s userid/password, MP-Auth
may easily be extended to protect other identity credentials from the reach of online attackers, and thereby might be
of use to reduce online identity theft. We believe that the very simple approach on which MP-Auth is based – using a
cellphone or similar device to asymmetrically encrypt passwords and one-time challenges – is of independent interest
for use in many other applications, e.g., traditional telephone banking directly from a cellphone, where currently
PINs are commonly transmitted in-band without encryption.

We reiterate that although based on a very simple idea, MP-Auth has yet to be user-tested for usability;
this is an architecture and state-of-the-art paper. We encourage the security community to pursue alternate pro-
posals for password-based online authentication which simultaneously address phishing, keylogging and session
hijacking rootkits.
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A AVISPA Test Code

Protocol: MP-Auth

As noted in Section 3, we include here results on our AVISPA [3] analysis of an idealized version (see below) of the MP-Auth
protocol from Section 2.

Protocol Purpose

Authentication and key exchange between a mobile device M and a remote server S. More specifically, goals are (see Section 2,
Table 1 for notation):

– M and S achieve mutual authentication (using P and ES)
– M and S establish a secret (symmetric) session key for later use in encryption

How We Tested Using AVISPA

We used AVISPA Web interface available at http://www.avispa-project.org/web-interface/. We copied the HLPSL code
(below) to the Web interface, and ran the relevant tests. Applicable tests to MP-Auth are: On the Fly Model Checker (OFMC),
Constraint Logic-based Attack Searcher (CL-AtSe), and SAT-based Model Checker (SATMC). The Tree Automata based on
Automatic Approximations for Analysis of Security Protocols (TA4SP) results are omitted from the AVISPA output below as
the TA4SP back-end was not supported for our setup.

Idealization of MP-Auth

In MP-Auth, the browser B acts like a relaying party between M and S during the authentication and key exchange phase.
Therefore B was removed from our idealized HLPSL model (and thus also, the SSL encryption between B and S). Also, the
human user U was merged with M , as U only provides the password P to M . Hence the idealized MP-Auth is a two-party
protocol, which is much simpler to analyze for AVISPA back-end protocol analyzers. As we have omitted party B, session ID
verification is not required. The transaction integrity confirmation messages use KMS established in the authentication phase.
The confirmation messages have not been included in our model; we assume the secrecy of KMS implicitly protects those
messages. The idealized version of MP-Auth is given below.

M <- S: Rs

M -> S: {Rm}_Es, {f(Rs), M, P}_Kms, where Kms = f(Rs, Rm)

M <- S: {f(Rm)}_Kms
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Results of the AVISPA Tests

No attacks have been reported by AVISPA on the idealized protocol. Results from the AVISPA back-end protocol analyzers
are given below.

OFMC.

% OFMC

% Version of 2006/02/13

SUMMARY

SAFE

DETAILS

BOUNDED_NUMBER_OF_SESSIONS

PROTOCOL

/home/avispa/web-interface-computation/./tempdir/workfileP2NEkh.if

GOAL

as_specified

BACKEND

OFMC

COMMENTS

STATISTICS

parseTime: 0.00s

searchTime: 2.58s

visitedNodes: 798 nodes

depth: 10 plies

CL-AtSe.

SUMMARY

SAFE

DETAILS

BOUNDED_NUMBER_OF_SESSIONS

TYPED_MODEL

PROTOCOL

/home/avispa/web-interface-computation/./tempdir/workfileP2NEkh.if

GOAL

As Specified

BACKEND

CL-AtSe

STATISTICS

Analysed : 5548 states

Reachable : 3529 states

Translation: 0.01 seconds

Computation: 0.14 seconds

SATMC.

SUMMARY

SAFE

DETAILS

STRONGLY_TYPED_MODEL

BOUNDED_NUMBER_OF_SESSIONS

BOUNDED_SEARCH_DEPTH

BOUNDED_MESSAGE_DEPTH

PROTOCOL

workfileP2NEkh.if

GOAL

%% see the HLPSL specification..

BACKEND

SATMC

COMMENTS

STATISTICS
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attackFound false boolean

upperBoundReached true boolean

graphLeveledOff 4 steps

satSolver zchaff solver

maxStepsNumber 11 steps

stepsNumber 5 steps

atomsNumber 1196 atoms

clausesNumber 5705 clauses

encodingTime 1.12 seconds

solvingTime 0.1 seconds

if2sateCompilationTime 0.21 seconds

ATTACK TRACE

%% no attacks have been found..

HLPSL Specification

role mobile (M, S: agent,

Es: public_key,

F, KeyGen: hash_func,

P: text,

SND, RCV: channel (dy)) played_by M def=

local State : nat,

Rm, Rs: text,

Kms: message

init State := 1

transition

2. State = 1 /\ RCV(Rs’) =|>

State’:= 3 /\ Rm’ := new()

/\ Kms’:= KeyGen(Rs’.Rm’)

/\ SND({Rm’}_Es.{F(Rs’).M.P}_Kms’)

/\ witness(M,S,rm,Rm’)

/\ secret(Kms’, sec_kms1, {M,S})

3. State = 3 /\ RCV({F(Rm)}_Kms) =|>

State’:= 5 /\ request(M,S,rs,Rs)

end role

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

role server(S: agent,

Es: public_key,

F, KeyGen: hash_func,

Agents: (agent.text) set,

SND, RCV: channel (dy)) played_by S def=

local State : nat,

Rm, Rs, P: text,

Kms: message,

M: agent

init State := 0

transition

1. State = 0 /\ RCV(start) =|>

State’:= 2 /\ Rs’ := new()

/\ SND(Rs’)
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2. State = 2 /\ RCV({Rm’}_Es.{F(Rs).M’.P’}_KeyGen(Rs.Rm’))

/\ in(M’.P’, Agents) =|>

State’:= 4 /\ Kms’ := KeyGen(Rs.Rm’)

/\ SND({F(Rm’)}_Kms’)

/\ secret(Kms’, sec_kms2, {M’,S})

/\ request(S,M’,rm,Rm’)

/\ witness(S,M’,rs,Rs)

end role

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

role session(M, S: agent,

Es: public_key,

F, KeyGen: hash_func,

P: text,

Agents: (agent.text) set) def=

local SS, RS, SM, RM: channel (dy)

composition

mobile (M,S,Es,F,KeyGen,P,SM,RM)

/\ server (S,Es,F,KeyGen,Agents,SS,RS)

end role

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

role environment() def=

local Agents: (agent.text) set

const m, s: agent,

es: public_key,

f, keygen: hash_func,

rm, rs, sec_kms1, sec_kms2 : protocol_id,

pm, pi: text

init Agents := {m.pm, i.pi}

intruder_knowledge = {m,s,f,keygen,pi,es,rs}

composition

session(m,s,es,f,keygen,pm,Agents)

/\ session(m,s,es,f,keygen,pm,Agents)

/\ session(i,s,es,f,keygen,pi,Agents)

end role

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

goal

secrecy_of sec_kms1, sec_kms2

authentication_on rm

authentication_on rs

end goal

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

environment()


