
On Instant Messaging Worms, Analysis and
Countermeasures

Mohammad Mannan, Paul C. van Oorschot
School of Computer Science, Carleton University

Ottawa, Ontario, Canada

{mmannan, paulv}@scs.carleton.ca

ABSTRACT
We provide a collection of minor results on the area of In-
stant Messaging (IM) worms, which has received relatively
little attention in the formal literature. We review selected
IM worms and summarize their main characteristics, moti-
vating a brief overview of the network formed by IM contact
lists, and a discussion of theoretical consequences of worms
in such networks. Existing methods to restrict an IM worm
epidemic are analyzed in terms of usability and effectiveness,
leading to the suggestion of two minor variations to limit
IM worm propagation. We believe these variations are more
user-friendly and effective than existing published methods.
We also provide brief results of a three and a half year user
study of IM text messaging and file transfer frequency in a
moderate-size public IM network – the largest such study to
date – which is of independent interest, but also supports in
part the preceding claim regarding user-friendliness.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Security
and protection; D.4.6 [Operating Systems]: Security and
Protection—Invasive software

General Terms
Security

Keywords
Instant Messaging worms, scale-free networks

1. INTRODUCTION AND BACKGROUND
Instant Messaging (IM) worms are worms that spread in IM
networks, by exploiting features and vulnerabilities of IM
clients and protocols.1 We use a broad definition of worms
following Kienzle and Elder [16]: “A worm is malicious code

1For background on Instant Messaging, see Appendix A.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WORM’05, November 11, 2005, Fairfax, Virginia, USA.
Copyright 2005 ACM 1-59593-229-1/05/0011 ...$5.00.

(standalone or file-infecting) that propagates over a network,
with or without human assistance”.

It is well-known that IM worms are on the rise. The first
IM worm made news in August 2001 (see e.g. [58]). Since
then, IM networks have slowly become increasingly attrac-
tive breeding grounds for spreading worms. As of March
2005, IM worms are being reported so often (see e.g. [52])
that major public IM vendors (including Microsoft, AOL
and Yahoo!) have formed an IM Threat Center [14] to track
the latest IM and peer-to-peer (P2P) worms and vulnerabil-
ities. A malware evolution analysis [10] for the first quarter
of 2005 reports that email worms are on the decline due to
improved anti-virus products; in contrast, IM worms are be-
coming more prevalent. Most IM worms propagate by gen-
erating automated file transfer requests or sending malicious
URLs using valid IM user IDs (a compromised user’s IM user
ID). Phishing scams using deceitful URLs are also increasing
in IM networks (see e.g. [3, 28]). Currently available anti-
virus products are inadequate to address most threats from
IM worms (see e.g. [19]), mainly because anti-virus protec-
tions for IM currently guard against only known (or other-
wise detectable) malware in file transfers, and cannot protect
against malicious URL messages (i.e. URLs embedded in IM
text messages). While monitoring email traffic is straight-
forward, the use of non-standard proprietary IM protocols
makes IM traffic monitoring at the (corporate) gateway dif-
ficult. Hence, techniques developed to defend against email
worms are less effective against IM worms [19].

Due to the prevalence of scanning- and email-worms, se-
curity researchers have employed large efforts to understand
and restrict the propagation of those worms [43, 40, 36].
Although the war is far from being won, improved defen-
sive techniques are making it increasingly difficult for worm
writers. On the other hand, there appears to be very little
published research detailing efforts to understand and con-
tain the spread of IM worms. This largely motivates the
present paper.

Scope. Most IM worms spread through popular public IM
services such as MSN Messenger (Windows Messenger in
Windows XP) [20], Yahoo! Messenger (YIM) [63], AOL In-
stant Messenger (AIM) [2], and ICQ [13]. Our discussion
on IM worms here is mainly in the context of large public
IM networks. Worms that spread via Internet Relay Chat
(IRC) (see [32, 15]) are beyond the scope of this paper.

Related Work. An overview of significant threats to IM,
and a brief discussion on IM worms are available in our
earlier work [19] (see also [17]). Symantec among others,
regularly provides reports (e.g. [12, 11]) on IM protocols,

worms, threats and firewall issues. Available studies (e.g.
[42, 62]) provide evidence that IM contacts form a scale-free
network (see Section 4 for details). Smith [42] outlines de-
fensive measures against IM worms. Williamson and Parry
[62] introduced the virus throttling mechanism for IM to con-
tain IM worms. For discussion of these proposed techniques
see Section 5.1.

IM worms are quite different than regular scanning and
email worms (e.g. see [62]). Scanning worms generally spread
by generating random IP addresses and seeking to infect
those machines. Many of these infection attempts fail as
the targeted IP address may be invalid, or the host may not
be vulnerable to the attack. In contrast, IM worms generally
spread using online contact lists of the compromised hosts,
and connect to target machines via the IM server. Thus the
connection attempts are rarely unsuccessful or blocked by
firewalls. Hence IM worms can bypass network-based scan-
ning worm detection mechanisms which rely on the number
of failed connection attempts (e.g. [59]). As another exam-
ple, the DNS-based scanning worm detector proposed by
Whyte et al. [60] would likely fail to detect an IM worm
outbreak, because an IM worm’s attack payload will most
likely be forwarded through the IM server, using the target’s
user ID instead of a target IP address. Important differences
between IM- and email-worms are discussed in Section 3.

Overview. In Section 2, we provide an overview of selected
IM worms and vulnerabilities, and summarize major replica-
tion mechanisms for IM worms. Distinguishing features that
make IM networks susceptible to fast-propagating worms are
discussed in Section 3. We briefly discuss theoretical char-
acteristics of IM networks to understand worms’ behavior
in such networks in Section 4. A critical review of exist-
ing mechanisms to address IM worms (e.g. virus-throttling
for IM [62]) is provided in Section 5.1. We propose two
new techniques to restrict the spread of IM worms in Sec-
tion 5.2. In Section 5.3, we provide the results of a three
and a half years user study of IM text messaging and file
transfer frequency in a moderate-size public IM network –
the largest such study to date – which is of independent in-
terest, but also supports in part the usability claim of our
proposed new techniques. Finally, in Section 6, we provide
concluding remarks.

2. GENERALIZATIONS BASED ON
ANALYSIS OF SELECTED IM WORMS
AND VULNERABILITIES

In this section, we briefly consider a few illustrative IM
worms, and note their main characteristics. Further details
on these worms are available on many security web sites
(e.g. [10, 44, 55]), or via search engines (e.g. Google). Then
we list a few IM clients’ vulnerabilities (exploitable IM fea-
tures or implementation bugs) which could be exploited to
create more destructive and faster spreading IM worms. We
then summarize the most common propagation mechanisms
of IM worms. A chronological history of IM worms and vul-
nerabilities is beyond the scope of the present paper; see IM
threat tracking web sites (e.g. [14, 9]).

Examples of IM Worms.
1. The Choke (June 2001) worm [48] hooks to MSN Mes-

senger, and when a user initiates an IM conversation
with an infected host, the worm sends a text mes-

sage along with an invitation to download a file (which
turns out to be the worm-file) from the infected host.

2. The SoFunny (July 2001) worm [51] spreads as a file at-
tachment using AIM. It steals AIM login information,
and emails the user ID and password to a designated
address. It runs as a service process in Windows sys-
tems to hide from the Windows Task Manager.

3. The JS Menger (Feb. 2002) worm [54] appears as a
message in MSN Messenger with the URL of a web
site hosting the worm code. It exploits a vulnerability
in the Microsoft Internet Explorer (IE) browser.

4. Different variants of the Bropia/Kelvir (Jan. – Feb.
2005) worms attempt to spread to all online contacts
as a file using MSN Messenger. Bropia-M [47] dis-
ables several system processes in a compromised host,
including Windows System Configuration Utility, Reg-
istry Editor and Task Manager. Bropia-F [57] disables
debugging tools in an infected host, and installs a vari-
ant of the Agobot/Spybot worm [56], opening a back-
door on the host. The Agobot worm propagates by
exploiting many known vulnerabilities e.g., SQL server
buffer overflow, IIS (Internet Information Services) or
WebDAV (Web-based Distributed Authoring and Ver-
sioning) vulnerabilities, and can be used to log keystro-
kes and relay spam. In addition to propagating a copy
of the Spybot worm, Kelvir.HI ([49], see also [27])
checks a compromised host’s Windows registry setting
for language preference, and forwards a text message
in that language (although it is limited to 10 different
languages) and a malicious URL to all online contacts.

5. Several Serflog variants (Mar. 2005, e.g. Serflog.A
[50]) spread via MSN Messenger (as a URL) or P2P
file-sharing networks (e.g. eMule [34]). It terminates
anti-virus and other well-known system and security
processes, and modifies the system’s HOSTS file to
block access to well-known security web sites.

Most IM worms install backdoor programs to further ex-
ploit infected hosts. However, to date such worms generally
have not carried any damaging payload other than the repli-
cation engine. Social engineering techniques are typically
used to convince users to accept a worm file transfer or visit
a malicious URL link.

Examples of Client Vulnerabilities.
Numerous vulnerabilities have been uncovered in popular
IM clients. These are drawing the attention of IM ser-
vice providers and security communities who recognize that
worm writers could easily exploit these vulnerabilities to
write more damaging IM worms.

As an example, buffer overflows were discovered (and sub-
sequently fixed) in the past in AIM and YIM clients (see e.g.
[11, 45, 29]). In a recent (May 2005) buffer overflow attack
on YIM, attackers could delete files from an infected host
[31]. The ICQ sound scheme file location vulnerability [41]
could be exploited to place malicious content on a user’s ma-
chine. This could allow attackers to run a malicious script
in the compromised machine exploiting a known IE vulner-
ability. The Bizex worm [46] exploited this vulnerability to
spread in the ICQ network.

While most known client vulnerabilities require user ac-
tions to exploit a host, the recent (Feb. 2005) MSN Messen-
ger PNG (Portable Network Graphics) vulnerability (see e.g.
[24]) could have been exploited to spread a worm without
any additional user-interaction. MSN Messenger uses the
PNG format to enable the “Display Picture” feature (which
shows a small picture of a contact in a chat window). The
picture data is sent to a user whenever the user wants to
send text messages to a contact even though the recipient’s
image may not be displayed in the sender’s chat window
(depending on the sender’s IM client settings). Therefore,
disabling this feature in an MSN Messenger client could not
prevent the exploitation. Microsoft fixed this vulnerability
and forced users to update the IM client; users who did not
upgrade were unable to log in to the MSN Messenger service.

Similar to the PNG vulnerability, the MSN Messenger
GIF image processing vulnerability (April 2005) could lead
to remote code execution [25]. This vulnerability can be ex-
ploited by sending a maliciously crafted emoticon (i.e. emo-
tional icons in text messages) or display picture to an online
MSN Messenger client. Microsoft subsequently updated the
IM client software to fix this bug.

IM Worm Replication Mechanisms.
From the above discussion, the following are evidently among
the most popular mechanisms for propagation of IM worms.

1. Malicious file transfer (requires user-action).

2. Malicious URL in a text message (requires user-action).

3. Exploitation of implementation bugs in IM clients (may
or may not require user-action).

4. Exploitation of vulnerabilities in operating systems or
commonly used software applications (may or may not
require user-action).

It follows that mechanisms for limiting the spread of IM
worms (see Section 5) should take into account these vectors.

3. DISTINGUISHING FEATURES OF IM
NETWORKS

We now list four major reasons that IM networks are par-
ticularly vulnerable to a worm attack. Although most repli-
cation strategies of IM worms are apparently common in
email worms, here we discuss important differences in the
execution of those strategies.

A) Popular and Connected.
Public IM networks connect millions of users. According
to Microsoft, MSN Messenger had 130 million customers
as of July 2004 [23]. As more users continue to move to
high-speed Internet connections, more remain online for ex-
tended periods of time [6]. Therefore, the set of online IM
users forms a larger and larger network as time passes with
one consequence being that the number of potential victims
possibly outnumbers any known worm-outbreaks to date.
In contrast, although email is a very popular Internet ap-
plication, email clients do not generally form a network of
“connected” users to the same extent as IM clients.

B) Instant Hit-List.
IM contact lists enable users to track the presence status of
their contacts. To a worm, an online contact list provides
an instant hit-list [43] – a list of users vulnerable (with a
very high probability) to the worm from an infected host.
Most IM users are connected through a homogeneous plat-
form (i.e. the same operating system and IM client), which
increases the success ratio of the hit-list. For example, on-
line users in the contact list of an MSN Messenger client
are mostly connected in the MSN IM service using the de-
fault MSN Messenger client on Windows. Users can access
the MSN IM service from Mac (using the MSN Messenger
for Mac [21]) or Linux (using e.g. aMSN [33]) machines. In
present reality, however, the number of users accessing the
MSN IM service using clients other than the MSN Messenger
in Windows is negligible.

To achieve a very rapid initial rate of infection (i.e. getting
off the ground), a hit-list of vulnerable machines is required
[43]. A worm writer could build a hit-list by scanning the
whole Internet for vulnerable hosts before releasing a worm
in the wild. By the time the worm hits the Internet, how-
ever, the hit-list may be stale, at least in part; some ma-
chines from the hit-list might be turned off, or some might
be patched against the targeted vulnerability. In contrast,
an online IM contact list offers a worm a reliable instant
hit-list “for free” (i.e. without spending any time to build
it). Note that most email clients provide an “address book”
which does not reveal any online status of the users in that
address book; an email address book is, at best, similar to
an offline contact list of IM clients.

A simulation performed by Symantec [12] (with relatively
conservative assumptions, e.g. considering only three unique
contacts per user) shows that 500,000 machines can be in-
fected with an IM worm in approximately 30 seconds. At
least in theory, IM worms could out-perform email- and
scanning-worms (in terms of total infection), which are typ-
ically limited by their ability to find vulnerable hosts across
the entire Internet. IM worms would most likely be spread
through server-mediated TCP connections (as IM connec-
tions are mostly TCP), and would thereby be limited by the
network latency. Nevertheless, due to the inherent availabil-
ity of a highly accurate hit-list, IM worms can spread among
a large number of machines at a high rate.

C) Reduced User-Interaction Time.
Despite numerous security measures, email remains one of
today’s most effective worm propagation vectors [16]. This is
despite the fact that an email worm, sent as an attachment,
is not assured of reaching an intended destination address
(e.g. the target email address may be invalid) or of imme-
diate user-action (e.g. the target user may check email only
occasionally). In contrast, as noted above, an IM worm gets
a largely accurate instant hit-list from an infected user’s on-
line contact list. A file transfer request or a URL sent to
an online contact results, with high probability, in an in-
stant user-action (despite some online IM users being away
from their machine). Thus, reduced user-interaction time
for propagation of worms is expected in IM networks.

D) Increasing IM Integration in Popular
Applications.
IM features are being integrated with many popular applica-
tions to meet the desire of IM users to share ideas and infor-

mation instantly. For example, the MSN Messenger contact
list is accessible from the Microsoft Outlook Express email
client; Microsoft’s Live Communication Server (LCS) [22]
integrates MSN, AIM and YIM public IM services with Mi-
crosoft Office programs to enhance real-time collaboration
in an enterprise. Greater integration increases usability, al-
though the chance of IM-integrated applications being used
by many users unknowingly or unwillingly increases as well.
A security vulnerability in an IM protocol or client can ex-
ploit applications integrating IM features, and vice versa.

Although IM is just another Internet based application,
the distinguishing features as listed above make IM networks
particularly vulnerable to a fast-spreading worm.

4. TOPOLOGY OF THE NETWORK
FORMED BY IM CONTACTS

We now provide an overview of the network of IM contacts.
Understanding the topology of such complex networks is
necessary to obtain a better understanding of the rapidity
of the spread of a worm in an IM network. This may, as
well, help in devising novel ways to prevent or contain such
an epidemic.

Paul Erdös and Alfréd Rényi introduced the ER (Erdös-
Rényi) Random Graph Model in 1959 to analyze complex
networks which are evident in communications and life sci-
ences. ER networks (also known as random networks) are
formed by nodes with randomly placed links, with most
nodes having an approximately equal number of links. In
the late 1990s, however, empirical network data (e.g. from
the World Wide Web [1]) suggested that a common property
of many complex real-world networks is that node linkages
follow the power-law distribution2 instead of the Poisson
distribution of random networks. Barabási and Bonabeau
[5] coined the term scale free (SF) to model the topology of
such complex networks. The SF model originates (see [4])
from the following two mechanisms: networks grow contin-
uously by the addition of new nodes, and new nodes attach
preferentially to more highly connected nodes. This model
accommodates the existence of hubs or clusters (i.e. a few
nodes with a very high number of links, while most nodes
have a few connections only) in real networks. SF architec-
tures (e.g. WWW, Internet routers) are found to be highly
resistant to accidental (i.e. random) failures, though very
vulnerable to targeted attacks. Also, all viruses, even those
that are weakly contagious, will spread and persist in a SF
system. Consequently, once introduced, computer viruses
are very difficult to completely remove from the Internet
(see [35, 5]).

A general observation in human social structures is that
some friends of a given person are typically friends them-
selves. Contacts in a user’s IM contact list also exhibit this
feature; i.e. if user A has users B, C, D in her contact list,
B will have C and/or D in his contact list with a high prob-
ability. Smith [42] analyzed the topology of the network
formed by IM contacts, and found the network to follow
the SF model. He studied a Jabber IM network of 50,158
nodes (young adult users) with nearly 500,000 links (con-
tacts). The diameter of the network was only 4.35; i.e. any

2i.e. the probability that any node of the network is con-
nected to k other nodes is proportional to k−γ , where γ
ranges between 2 and 3.

two users in the network studied were separated by only 4
to 5 users on average.

While IM networks may exhibit the SF model’s properties
in reality, the following aspect of IM worms may complicate
such a model. From any infected user, a worm’s spread
may not be limited by the number of online contacts of that
user; an IM worm may successfully guess IM contacts, at
least for large public IM services. For example, in AIM
a user ID consists of (case-insensitive) alphabetic characters
and digits, and the maximum allowed length is 16; thus AIM
theoretically supports approximately 3616 different user IDs,
so randomly guessing a user ID correctly would appear to
have a very low probability. In reality, however, only a small
(typically predictable) fraction of the user ID space is used.
For example, any dictionary word or common name guessed
as a user ID has a significantly higher than random chance
of being an actual user ID. The large number of users in
public IM networks makes such guessing of correct user IDs
easier. Also, a large number of online user IDs can easily
be obtained, for example, through the chat-room feature
(e.g. YIM chat-rooms). In fact, each node can potentially
become a hub, thereby dramatically increasing the number
of hubs in the SF model. This may result in the failure of
virus halting measures designed for SF networks (e.g. [7])
that aim to restore a finite epidemic threshold by patching
most of the hubs in an infected network.

5. MEASURES FOR LIMITING IM WORM
EPIDEMICS

In this section, we review proposals from the existing litera-
ture to limit IM worm outbreaks. We also propose two new
techniques to effectively restrict worms in IM networks. The
findings from a new large-scale user study on file transfer and
text messaging usage on IM networks are also summarized.

5.1 Existing Techniques and Remarks Thereon
An overview of existing techniques, as well as comment on
their shortcomings, is given below.

A) Temporary Server Shutdown.
All IM connections go through or are initiated by an IM
server. A typical (but effective) solution that takes ad-
vantage of this centralized structure to stop an IM worm-
outbreak is the following [12]: shutdown the IM server, man-
ually analyze the worm and build a client patch; then force
update when users attempt to login as the IM server comes
alive again. For example, in April 2005, Reuters Messaging
was shut down for several hours to stop an IM worm spread
(e.g. [30]). Obviously, this is not a user-friendly solution.
Moreover, as it has already been observed, IM worms may
enable the propagation of other worms exploiting known
(and generally ubiquitous) vulnerabilities in infected sys-
tems, and spread via traditional mechanisms such as email
attachment. Therefore, shutting down the IM server may
not effectively contain an IM worm epidemic.

As all IM connections are server-mediated, IM servers also
appear to open up interesting detection and filtering ap-
proaches (assuming that the server has access to the plain-
text of messages). For example, a server can track frequently
transferred messages with identical content, such as identi-
cal URL messages. However, attackers could easily defeat
such an approach by randomly padding identical messages.

Again, file-data are transferred P2P in many cases (see Ap-
pendix A), leaving no clue for the server to act on. On the
other hand, server filtering may be considered to be more
attack-resistant than client filtering, because a typical user
may not have sound software protection mechanisms at the
client-end. Therefore, it is apparent that an IM worm detec-
tion and filtering technique should consider both the server
and clients.

B) Temporarily Disabling the Most-Connected
Users.
Exploiting the scale-free nature of IM contacts, Smith [42]
proposed the following measure to contain a worm outbreak:
disconnect the most-connected users (determined by the size
of contact lists), which may effectively increase the network’s
diameter, and thereby slow down the spread and allow time
to build and apply a patch. It has been shown by Smith,
however, that disabling the top 10% connected users in the
IM network still would leave 90% of the remaining network
connected although the network’s diameter has increased
almost twofold. Note that Smith’s study derives users’ con-
nectivity from the total number of contacts, not from the
number of online contacts (which may vary significantly); of
course, an IM server can easily also track the most-connected
online users.

C) Virus Throttling for IM.
To limit the propagation of fast worms, Williamson [61] in-
troduced a general throttling mechanism based on the obser-
vation that worm-spreading network traffic is significantly
different than normal traffic on many Internet protocols (e.g.
TCP/IP, email). Generally, IM users interact with a slowly
varying subset of contacts while IM worms send messages to
all the online contacts in a user’s contact list. The idea be-
hind virus throttling for IM, as proposed by Williamson and
Parry [62], is to limit the rate at which users can interact
with their contacts in a way that impedes a worm-spread
(even for unknown, zero-day worms) without noticeable im-
pacts on IM users.

The Throttling Mechanism. In essence, the throttling
mechanism for IM is as follows. A short recent history list or
working set of contacts for each user is maintained. This is
the list of contacts that a user has recently interacted with.
The mechanism attempts to ensure no more than one mes-
sage is sent to a new contact (a user from the contact list
who is not in the working set) per time period; see Figure 1.
Every time a user attempts to send a message to a contact,
the recipient’s user ID (‘h’ in Figure 1) is compared with the
working set. If it is in the set, the message is sent imme-
diately; otherwise, the message is placed on a delay queue
for sending later. Alternatively, in a preferred implemen-
tation (as the authors advocated), the message will be sent
instantly while recording a message entry in the delay queue
as well (hence the delay queue does not actually delay mes-
sages here); the later message entries are removed at regular
intervals, and the working set is updated accordingly. If a
client’s delay queue length exceeds a predefined threshold,
an attempted worm-spread is assumed, and all messages (to
new contacts) from that client are blocked, and the user is
asked to confirm the legitimacy of the queued messages. It
is suggested that the mechanism be implemented at the IM
server, because the IM server processes or initiates all user-
messages, and users would not be able to bypass the server.

rate timer

g

f

e

b c da

n = 4

working set

request

h

process

not−new new

add

update

delay

queue

Queue

length

detector

clock

Figure 1: Throttling algorithm for IM [62]

Data Analysis. Williamson and Parry collected IM us-
age data from a Jabber server deployed at Hewlett-Packard.
Contact lists of 710 corporate users and 39,740 messages
from 223 senders in a 72 day period were analyzed. Set-
ting a working set size to five resulted in less than 10% of
messages being placed in the delay queue for most users. Al-
though setting the allowed rate at around one new contact
per minute appears more user-friendly, to restrict a worm-
spread effectively, Williamson and Parry suggested the al-
lowed rate to be one new contact per day. In either case,
some messages will escape before the throttle mechanism is
applied. Also from the collected data, the network formed
by IM contacts was shown to be scale-free. The hubs of this
network (i.e. users with large contact lists) appear to release
the fewest messages before being blocked when the throttle
is applied. This property apparently provides evidence that
the throttling mechanism may effectively restrict IM worms.

Shortcomings. Throttling for IM may help stop IM worms
to some extent, and appears to be one of the few technical
mechanisms proposed to date. Thus it provides an impor-
tant benchmark for comparison. However, we note the fol-
lowing limitations.

1. Allowing only one new contact/day may be too restric-
tive for IM users (home or enterprise). If users need
to confirm the legitimacy of messages often, throttling
may find little acceptance in IM communities.

2. When the delay queue threshold is crossed for a given
user, new messages from that user will be blocked un-
til the user confirms the legitimacy of those messages.
This will cause delay (albeit temporarily) which is not
what IM users expect in an IM environment; the whole
point of using IM is being instant.

3. A user must confirm the legitimacy of messages when
that user’s delay queue threshold is exceeded. A worm
may be able to do that on behalf of the user, and
thereby compromise the throttling mechanism.

4. The size of IM usage data analyzed by Williamson and
Parry is quite small, and appears to be unrepresenta-
tive of active IM usage. For example, their study’s

average of less than 2.5 messages per user per day ap-
pears to largely fall short of the number of messages in
real IM practice (our study in Section 5.3 shows that in
a mid-size public IM network, on average a user sends
334 text-messages per day). Also, the network of IM
contacts formed by only 710 users does not likely rep-
resent the characteristics of a public IM network with
millions of users.

5. Throttling does not deal with group-chat or chat-room
situations, where a user sends a message to multiple
recipients concurrently.

6. Implementing the throttling mechanism, as suggested,
requires per-online-user state memory at the server
(e.g. working set, delay queue).

7. As the working set is stored in the server, a worm ap-
parently cannot access the working set from a client
machine. However, as an advanced attack, a worm
might wait (e.g. a few minutes or hours) in a client
machine to monitor (plaintext) user communications
(e.g. messages sent to contacts), and build the work-
ing set for that user. Theoretically, the worm could
spread to all contacts in the working set, as well as
to other contacts before the delay queue threshold is
crossed, without being throttled. The suggested pa-
rameters for the working set (e.g. five) and the delay
queue (e.g. two), albeit small, may still be sufficiently
large to allow a worm epidemic (recall the Symantec
simulation in Section 3 – a worm could spread quite
fast using only three unique contacts per user).

We have discussed several limitations of available tech-
niques designed to limit IM worm-outbreaks. We briefly pro-
pose containment strategies in the next subsection to avoid
most of these shortcomings.

5.2 New Proposals
In this section, we briefly suggest two mechanisms to further
reduce the propagation of IM worms, and to do so in a more
user friendly manner. While these mechanisms may appear
to be straight-forward, we record them nonetheless, as an
early contribution to the scant literature in this research
area.

Our discussion in Section 2 suggests that file transfer and
URLs in text messages are two major vectors for malware
propagation in IM networks. It is apparent that, if we can
restrict automatically generated file transfer requests and
text messages with malicious URLs, the propagation of IM
worms can be significantly delayed. In essence, our new pro-
posals aim to control these two vectors. We assume that all
IM text messages and file transfer requests (not necessar-
ily the file data) are relayed through the IM server – which
is generally true in current public IM connections (see Ap-
pendix A).

In Section 5.1, we listed limitations of the virus-throttling
mechanism for IM. We believe that such a mechanism can
do little while working on top of an insecure IM protocol.
Similarly, a secure IM protocol3 alone is unlikely to eliminate

3By “secure” we mean a protocol intending to provide con-
fidentiality, authentication and integrity to client-server and
client-client communications; the IM client itself may still
have vulnerabilities.

the possibility of IM worms because IM worms may take
advantage of implementation bugs of a “secure” IM client.
A two-step method – a throttling mechanism as well as a
secure IM protocol, e.g., Off-The-Record messaging (OTR)
[6] – appears to us to be more effective against IM worms.
(Note that, if a secure IM protocol needs to offer APIs to
the application programmer, e.g., for better integration and
custom application design, those APIs must be exposed in
a secure manner.) Here we propose two techniques derived
from the throttling mechanism (similar to it in spirit), and
which we recommend be deployed with OTR or a similarly-
featured protocol so that IM connections (to the server or a
contact) are not easily compromised or spoofed.

1. Only use a throttling mechanism to limit file transfers
and messages containing URLs. We believe this will be
as effective as the proposal of Williamson and Parry
[62] in most cases with less impact on users, due to
the general observation that IM users send file trans-
fer requests (e.g. see Section 5.3) or text messages with
URLs only occasionally. In other words, we propose
that the throttling mechanism be applied only to file
transfer requests and URL messages, instead of on all
new connection requests. Now normal text messages
(the most frequently used feature of IM) will not be
delayed, and there is no threshold at which users must
confirm the legitimacy of text messages. Instead, URL
messages and file transfer requests may be delayed, and
in the case of file transfer the usability impact is fur-
ther minimized due to the fact that a file transfer is
generally not instant (even for a small size file). When
sending a file transfer request or URL message to mul-
tiple users at a time (e.g. in a group-chat), the sender
needs to confirm the authenticity of the request to the
server or a selected recipient.

2. Challenge senders of a file transfer request or URL
message with a (e.g. visual) CAPTCHA (Completely
Automated Public Turing test to tell Computers and
Humans Apart) [53] generated by the IM server or the
recipient’s client. This will not affect usability much,
if as noted above, these features are used infrequently.
CAPTCHA tests are computer generated, easy for hu-
mans to solve but difficult for machines, and the prob-
ability of guessing the answer correctly is low. Answer-
ing a CAPTCHA correctly increases the chance of the
sender being a human user, rather than an IM worm
trying to automatically propagate using the sender’s
user ID. IM users are no stranger to these tests as
while registering for an IM account, all major public
IM vendors challenge users with CAPTCHA tests to
stop automated account acquisition by software bots
(e.g. by spammers).

To expand the latter technique, we note the following.
Some users may send more files than others. Challenging
such users for each file transfer with a CAPTCHA is less
user-friendly than desired, and may be avoided by using se-
cure cookies in a manner similar to Pinkas and Sander [37].
Assume that user A wants to send a file to user B, and both
are logged in to the same IM server S. When A sends her
file transfer request to B through S, S challenges A using a
CAPTCHA. If A successfully responds to the challenge, then
S forwards A’s request to send the file to B; S also sends

a secure cookie (i.e. data encrypted symmetrically under a
key known only to the server) to A, and A stores that cookie
to the local system. The cookie will expire after a certain
interval, e.g., one hour. If A sends more files to B, or any
other user before the expiry of the cookie, S will not chal-
lenge B. If A wants to send a file to multiple recipients at
a time (e.g. while in a group chat), A will be challenged by
S only once.

To reduce the load of generating a large number of CAP-
TCHAs by the IM server, the recipient’s IM client can be
used instead to generate the challenge CAPTCHA sent to
the originator, as user machines (e.g. personal computers)
are generally under-utilized.

5.3 User Study on Per-User Frequency of IM
Text Messaging and File Transfer

Here we summarize our findings for text messaging and
file transfer statistics in an IM service, from a new IM user
study which we believe should be of independent interest.
Usability issues related to our proposals (of Section 5.2) are
also examined. Although it is generally believed that the
number of file transfer (FT) requests in an IM network is far
less than the number of text-messages (TM), we found no
real data supporting this belief in the literature. Therefore
we carried out an independent study to quantify the file
transfer usage in a reasonable-size IM network.

We used (with permission) data collected from the Eye-
ball Chat [8] service for a period of three and a half years
(Sept. 2001 to April 2005). The data used contained only
collective statistics that do not violate the privacy of Eye-
ball’s users. While the primary focus of this service is to
enable live video conversation over the Internet, it never-
theless supports text messaging and file transfer. In total,
17.84 million FT requests and 3.2 billion TMs were tracked.
The average number of FT, TM and online users over 15-
minute periods is given in Table 1. The number of online
users in the table is the average of the maximum and mini-
mum online users in the 15-minute intervals. Table 2 shows
that the ratio of FT to IM is quite low (i.e. one FT per 181
TM, on average). Also, per 24-hour period, an online user in
this dataset sent 334 text-messages, and 1.84 file transfers
on average. In a specific time interval, it would be inter-
esting to present additional statistics, e.g., how many users
sent one or more files, the maximum number of files sent
by a user, etc. However, due to the lack of server statistics
available to us from Eyeball on those items, we are unable
to do so at present.

Feature Avg. Number
File Transfer (FT) 143
Text Message (TM) 25953

Online Users 7459

Table 1: Average file transfer, text messages, and
online users over 15-minute intervals

Ratio Value
FT/TM 0.0055
FT/user/day 1.84
TM/user/day 334.03

Table 2: Comparison of file transfer (FT) and text
message (TM) usage

From this it is apparent that IM users (at least in this
dataset) infrequently transfer files, although it is a useful
feature of IM. Hence throttling file transfers or challenging
the initiator (sender) of a file transfer with a CAPTCHA
would appear to be practical.

Our proposed mechanisms may be applied to limit au-
tomatic URL propagation as well. However, the usability
impacts for CAPTCHA-protected URL messages are not
known, because of the unavailability of such usage data.

6. CONCLUDING REMARKS
Although IM worms are still in their infancy (approximately
5 years old, as of June 2005), they are increasingly common
and potent. We have discussed characteristics of a few IM
worms and IM networks, and the implications with respect
to IM worm epidemics. As one of our proposals involves the
use of a CAPTCHA for improved defense against IM worms,
the security of such tests must be taken into account, as
another ongoing arms race is that between the designers,
and attackers, of CAPTCHAs (e.g. [26]).

Our proposed techniques provide protection against what
we consider to be the two most significant IM worm propaga-
tion vectors – malicious file transfers and URL messages. In
contrast, throttling for IM [62] tries to minimize the number
of IM worm connections which implies the following: a worm
can establish a certain number (albeit small) of connections
unchecked. Also, we believe our techniques are more user-
friendly than the throttling mechanism [62]. We require a
user to be challenged only when sending a URL message
or a file transfer request, which are evidently less frequent
events. In contrast, the throttling mechanism requires a user
to verify each connection attempt after a certain threshold
is crossed. However, throttling connections is more effective
than our techniques when connection establishment implic-
itly transfers user-configurable file data (e.g. MSN “Display
Picture” file) automatically. This is because we aim to check
worm-generated automated file transfer requests rather than
connection attempts. However, in general, we recommend
that such implicit file transfer functionality should be disal-
lowed as an IM feature to avoid easy exploitations.

We emphasize that when considering security enhance-
ments to IM, usability issues should be a paramount con-
cern, because most IM users are casual, and expect instant
communication when using IM. Our proposed techniques
as presented are preliminary, and we expect may require
enhancements and critical review. A primary motivation
of our work is to further academic research into defenses
against IM worms, with the intention of stimulating secu-
rity improvements in IM systems in the longer term.

Acknowledgements
We thank anonymous reviewers, as well as Matthew William-
son, for their constructive comments which helped us im-
prove the quality of this paper, and all members of Car-
leton’s Digital Security Group for their enthusiastic discus-
sions on this topic, especially Dave Whyte. We also thank
Eyeball Networks for access to their server statistics. The
second author is Canada Research Chair in Network and
Software Security, and is supported in part by an NSERC
Discovery Grant, the Canada Research Chairs Program, and
MITACS.

7. REFERENCES

[1] R. Albert, H. Jeong, and A.-L. Barabási. Diameter of
the World Wide Web. Nature, 401:130–131, 1999.

[2] America Online, Inc. AOL Instant Messenger.
http://www.aim.com/ [Accessed: Mar. 22, 2005].

[3] Anti-Phishing Working Group. Phishing activity
trends report, Feb. 2005. http://www.antiphishing.
org/APWG Phishing Activity Report Feb05.pdf

[Accessed: Mar. 31, 2005].

[4] A.-L. Barabási and R. Albert. Emergence of scaling in
random networks. Science, 286:509–512, 1999.

[5] A.-L. Barabási and E. Bonabeau. Scale-free networks.
Scientific American, 288:60–69, 2003.

[6] N. Borisov, I. Goldberg, and E. Brewer. Off-the-record
communication, or, why not to use PGP. In
Proceedings of the 2004 ACM Workshop on Privacy in
the Electronic Society, WPES ’04, pages 77–84. ACM
Press, 2004.

[7] Z. Dezsö and A.-L. Barabási. Halting viruses in
scale-free networks. Physical Review E, 65(5), May
2002.

[8] Eyeball Networks Inc. Eyeball Chat – Free video
Instant Messenger. http://www.eyeballchat.com
[Accessed: June 15, 2005].

[9] FaceTime. IMPact Center – IM & P2P Threats.
http://www.facetime.com/impactcenter/default.aspx

[Accessed: Aug. 17, 2005].

[10] A. Gostev. Malware evolution: January - March 2005.
Kaspersky Lab. http://www.viruslist.com/en/analysis
[Accessed: Apr. 27, 2005].

[11] N. Hindocha. Threats to Instant Messaging, 2003.
Symantec Security Response.
http://securityresponse.symantec.com/avcenter/

reference/threats.to.instant.messaging.pdf

[Accessed: Dec. 7, 2003].

[12] N. Hindocha and E. Chien. Malicious threats and
vulnerabilities in Instant Messaging. In Virus Bulletin
Conference, vb2003, Sept. 2003.

[13] ICQ Inc. ICQ Pro 2003b. http://www.icq.com/
[Accessed: Mar. 22, 2005].

[14] IMlogic. IMlogic Threat Center.
http://www.imlogic.com/im threat center/index.asp

[Accessed: Mar. 17, 2005].

[15] C. Kalt. Internet Relay Chat: Architecture, Apr.
2000. RFC 2810, Status: Informational.
http://www.faqs.org/rfcs/rfc2810.html [Accessed:
June 22, 2004].

[16] D. M. Kienzle and M. C. Elder. Recent worms: A
survey and trends. In Proceedings of the 2003 ACM
Workshop on Rapid Malcode, pages 1–10, Washington,
DC, USA, Oct. 2003. ACM Press.

[17] N. Leavitt. Instant Messaging: A new target for
hackers. Computer, 38(7):20–23, July 2005.

[18] M. Mannan. Secure Public Instant Messaging, Aug.
2005. Masters Thesis (Computer Science). http://www.
scs.carleton.ca/∼mmannan/publications/msthesis.pdf

[Accessed: Aug. 21, 2005].

[19] M. Mannan and P. C. van Oorschot. Secure public
Instant Messaging: A survey. In Proceedings of the 2nd
Annual Conference on Privacy, Security and Trust
(PST’04), pages 69–77, Fredericton, NB, Canada,

Oct. 2004. http://www.scs.carleton.ca/∼mmannan/

publications/pst04.pdf [Accessed: June 23, 2005].

[20] Microsoft. MSN Messenger. http://messenger.msn.com/
[Accessed: Mar. 22, 2005].

[21] Microsoft. MSN Messenger for Mac. http://www.
microsoft.com/mac/default.aspx?pid=msnmessenger

[Accessed: May 3, 2005].

[22] Microsoft. Office live communications server.
http://www.microsoft.com/office/livecomm/prodinfo/

default.mspx [Accessed: Mar. 18, 2005].

[23] Microsoft PressPass. Flirting’s moved online! New
research from MSN reveals millions swap IM addresses
with potential dates, July 2004. http://www.microsoft.
com/presspass/press/2004/jul04/07-08FlirtingPR.asp

[Accessed: Mar. 17, 2005].

[24] Microsoft TechNet. Microsoft security bulletin
MS05-009: Vulnerability in PNG processing could
allow remote code execution (890261).
http://www.microsoft.com/technet/security/bulletin/

MS05-009.mspx [Accessed: Mar. 18, 2005].

[25] Microsoft TechNet. Microsoft security bulletin
MS05-022: Vulnerability in MSN Messenger could
lead to remote code execution (896597).
http://www.microsoft.com/technet/security/Bulletin/

MS05-022.mspx [Accessed: June 20, 2005].

[26] G. Mori and J. Malik. Recognizing objects in
adversarial clutter: Breaking a visual CAPTCHA. In
Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition
(CVPR), volume 1, pages 134–141, 2003. UC Berkeley
Computer Vision Group.
http://www.cs.berkeley.edu/∼mori/gimpy/gimpy.html

[Accessed: June 14, 2005].

[27] News.com Staff. IM worm speaks your language, Aug.
2005. News article, http://news.com.com/ [Accessed:
Aug. 24, 2005].

[28] News.com Staff. Phishers target Yahoo Messenger,
Mar. 2005. News article, http://news.com.com/
[Accessed: Mar. 27, 2005].

[29] News.com Staff. Trillian IM flaw exposed, Mar. 2005.
News article, http://news.com.com/ [Accessed: Mar.
25, 2005].

[30] News.com Staff. Worm attack forces Reuters IM
offline, Apr. 2005. News article, http://news.com.com/
[Accessed: Apr. 15, 2005].

[31] News.com Staff. Yahoo fills in Messenger hole, May
2005. News article, http://news.com.com/ [Accessed:
June 17, 2005].

[32] J. Oikarinen and D. Reed. Internet Relay Chat
protocol, May 1993. RFC 1459, Status: Experimental.
http://www.faqs.org/rfcs/rfc1459.html [Accessed:
June 10, 2004].

[33] Open Source. aMSN : Alvaro’s Messenger.
http://amsn.sourceforge.net/index.php [Accessed:
May 3, 2005].

[34] Open Source. eMule Project.
http://www.emule-project.net/ [Accessed: Aug. 21,
2005].

[35] R. Pastor-Satorras and A. Vespignani. Epidemic
spreading in scale-free networks. Physical Review
Letters, 86(14):3200–3203, 2001.

[36] V. Paxson, editor. Proceedings of the 2004 ACM
Workshop on Rapid Malcode (WORM’04),
Washington, DC, USA, Oct. 2004. ACM Press.

[37] B. Pinkas and T. Sander. Securing passwords against
dictionary attacks. In Proceedings of the 9th ACM
Conference on Computer and Communications
Security, pages 161–170, Washington, DC, USA, 2002.
ACM Press.

[38] P. Saint-Andre. Extensible messaging and presence
protocol (XMPP): Core, Oct. 2004. RFC 3920, Status:
Standards Track. http://www.ietf.org/rfc/rfc3920.txt
[Accessed: Mar. 2, 2005].

[39] P. Saint-Andre. Extensible messaging and presence
protocol (XMPP): Instant Messaging and presence,
Oct. 2004. RFC 3921, Status: Standards Track.
http://www.ietf.org/rfc/rfc3921.txt [Accessed: Mar.
3, 2005].

[40] S. Savage, editor. Proceedings of the 2003 ACM
Workshop on Rapid Malcode (WORM’03),
Washington, DC, USA, Oct. 2003. ACM Press.

[41] Secunia. ICQ predictable file location weakness, Feb.
2004. Secunia Advisory SA10970,
http://secunia.com/advisories/10970/ [Accessed: June
17, 2005].

[42] R. D. Smith. Instant Messaging as a scale-free
network, June 2005. cond-mat/0206378,
http://arxiv.org/abs/cond-mat/0206378 [Accessed:
June 20, 2005].

[43] S. Staniford, V. Paxson, and N. Weaver. How to 0wn
the Internet in your spare time. In Proceedings of the
11th USENIX Security Symposium, pages 149–167.
USENIX Association, 2002.

[44] Symantec. Search and latest virus threats page.
http://www.symantec.com/avcenter/vinfodb.html

[Accessed: Mar. 18, 2005].

[45] Symantec. Securing Instant Messaging.
http://securityresponse.symantec.com/avcenter/

reference/secure.instant.messaging.pdf [Accessed:
June 27, 2004].

[46] Symantec. W32.Bizex.Worm.
http://securityresponse.symantec.com/avcenter/venc/

data/w32.bizex.worm.html [Accessed: June 21, 2005].

[47] Symantec. W32.Bropia.M. http://securityresponse.
symantec.com/avcenter/venc/data/w32.bropia.m.html

[Accessed: June 21, 2005].

[48] Symantec. W32.Choke.Worm.
http://securityresponse.symantec.com/avcenter/venc/

data/w32.choke.worm.html [Accessed: June 21, 2005].

[49] Symantec. W32.Kelvir.HI. http://securityresponse.
symantec.com/avcenter/venc/data/w32.kelvir.hi.html

[Accessed: Aug. 25, 2005].

[50] Symantec. W32.Serflog.A. http://securityresponse.
symantec.com/avcenter/venc/data/w32.serflog.a.html

[Accessed: June 21, 2005].

[51] Symantec. W95.SoFunny.Worm@m.
http://securityresponse.symantec.com/avcenter/venc/

data/w95.sofunny.worm@m.html [Accessed: June 21,
2005].

[52] TechWeb.com Staff. IM threats growing 50% per
month, Mar. 2005. TechWeb.com news article,
http://informationweek.com [Accessed: Mar. 25, 2005].

[53] The CAPTCHA Project. Telling humans and
computer apart (automatically).
http://www.captcha.net/ [Accessed: Mar. 19, 2005].

[54] Trend Micro. JS MENGER.GEN.
http://www.trendmicro.com/vinfo/virusencyclo/

default5.asp?VName=JS MENGER.GEN [Accessed: June 21,
2005].

[55] Trend Micro. Virus encyclopedia.
http://www.trendmicro.com/vinfo/virusencyclo/

[Accessed: Mar. 18, 2005].

[56] Trend Micro. WORM AGOBOT.AJC.
http://www.trendmicro.com/vinfo/virusencyclo/

default5.asp?VName=WORM AGOBOT.AJC [Accessed: June
21, 2005].

[57] Trend Micro. WORM BROPIA.F.
http://www.trendmicro.com/vinfo/virusencyclo/

default5.asp?VName=WORM BROPIA.F [Accessed: June 21,
2005].

[58] USA Today Staff. IM viruses opening a new can of
worms, Aug. 2001. News article,
http://www.usatoday.com [Accessed: Mar. 17, 2005].

[59] N. Weaver, S. Staniford, and V. Paxson. Very fast
containment of scanning worms. In Proceedings of the
13th USENIX Security Symposium, pages 29–44, Aug.
2004.

[60] D. Whyte, E. Kranakis, and P. C. van Oorschot.
DNS-based detection of scanning worms in an
enterprise network. In In Proceedings of the Network
and Distributed System Security Symposium (NDSS),
Feb. 2005.

[61] M. Williamson. Throttling viruses: Restricting
propagation to defeat malicious mobile code. In
Proceedings of the 18th Annual Computer Security
Applications Conference (ACSAC), pages 61–68, Dec.
2002.

[62] M. Williamson and A. Parry. Virus throttling for
Instant Messaging. In Virus Bulletin Conference,
vb2004, Sept. 2004.

[63] Yahoo! Inc. Yahoo! Messenger.
http://messenger.yahoo.com/ [Accessed: Mar. 22,
2005].

APPENDIX

A. BACKGROUND ON INSTANT
MESSAGING (IM)

For convenience, we provide here introductory background
on IM, largely extracted from [18].

IM is an Internet based application which facilitates com-
munications, typically between two end-user clients, with
the aid of a server. Most IM communications are client-
server based. Messages among users are also typically re-
layed through the server (mainly to avoid firewall issues).
However, server-mediated P2P communications also occur
in some situations (e.g. audio/video chat, file transfer); i.e.,
connection setup messages are relayed through the server,
but payload is transferred directly, e.g., a file transfer re-
quest and response messages are relayed through the server
but the file data is sent P2P.

While an IM server appears to be a single entity to a
client, it may be a group of servers controlled by a single IM
service provider (e.g. AOL), or a collection of servers from

independent IM service providers (e.g. Jabber [38, 39]). If
user A wants to communicate with user B, both must log
into the same IM service. Messages from A to B will be
delivered by the server depending on B’s privacy settings.
For direct communications between A and B, the server
provides the necessary information (e.g. network address)
to each party.

Table 3 summarizes common terminology used in IM.

online user A user successfully logged in to an IM
server.

presence Presence information reveals whether or
not a user is logged in to an IM server.

availability/user
mode

Availability information reveals a user’s
willingness (e.g. “busy”, “do not disturb”)
to send/receive messages, or status (e.g.
“away”, “on the phone”).

contact/buddy
list

The list of user IDs whose presence and
availability a user has currently sub-
scribed to.

block list The list of user IDs explicitly barred from
getting the current user’s presence and
availability information; listed users also
cannot send any messages to the current
user.

allow list The list of user IDs allowed to send mes-
sages to the current user and which can
track the user’s presence and availability
information.

one-to-one
chat

A user sends or receives messages from
another user, generally through the IM
server.

group chat More than two users exchange messages
at a time. Users form a virtual “group”,
generally which is short-lived. Users in a
group chat are usually closely related.

chat room A virtual room, generally consisting of
many users who exchange instant mes-
sages on some closely related topics.

IM user A human user of an IM service.
IM client A (software) program that enables a hu-

man user to use an IM service.
IM server A (software) program that enables IM

clients to access IM features in an IM ser-
vice.

IRC A client-server based multi-user messag-
ing system of large networks. Users meet
on “channels” (rooms/virtual places, usu-
ally with a certain topic of conversation)
for group or personal messaging.

URL message An IM text message containing one or
more URLs.

Table 3: IM-related definitions

