
Using a Personal Device to Strengthen Password

Authentication from an Untrusted Computer?

Mohammad Mannan and P. C. van Oorschot

School of Computer Science
Carleton University, Ottawa, Canada

Abstract. Keylogging and phishing attacks can extract user identity
and sensitive account information for unauthorized access to users’ fi-
nancial accounts. Most existing or proposed solutions are vulnerable to
session hijacking attacks. We propose a simple approach to counter these
attacks, which cryptographically separates a user’s long-term secret input
from (typically untrusted) client PCs; a client PC performs most com-
putations but has access only to temporary secrets. The user’s long-term
secret (typically short and low-entropy) is input through an independent
personal trusted device such as a cellphone. The personal device pro-
vides a user’s long-term secrets to a client PC only after encrypting the
secrets using a pre-installed, “correct” public key of a remote service (the
intended recipient of the secrets). The proposed protocol (MP-Auth) real-
izes such an approach, and is intended to safeguard passwords from key-
loggers, other malware (including rootkits), phishing attacks and pharm-
ing, as well as to provide transaction security to foil session hijacking. We
report on a prototype implementation of MP-Auth, and provide a com-
parison of web authentication techniques that use an additional factor
of authentication (e.g. a cellphone, PDA or hardware token).

1 Introduction

Passwords enjoy ubiquitous use for online authentication. Although many more
secure (typically also more complex and costly) authentication protocols have
been proposed, the use of passwords for Internet user authentication remains
predominant. Due to the usability and ease of deployment, most financial trans-
actions over the Internet are authenticated through a password. Hence passwords
are a prime target of attackers, for economically-motivated exploits including
those targeting online bank accounts and identity theft.

Online banking – as one example of highly critical Internet services – often
requires only a bank card number (as userid) and password. Users input these
credentials to a bank website to access their accounts. An attacker can easily
collect these long-term secrets by installing a keylogger program on a client
PC, or embedding a JavaScript keylogger [29] on a phishing website. In today’s
Internet environment, software keyloggers are typically installed on a user PC

? Version: March 30, 2007. Contact author: mmannan@scs.carleton.ca.

2

along with common malware and spyware [25]. An increasing number of phishing
sites also install keyloggers on user PCs, even when users do not download or
click any link on those sites [1]. Client security is a big problem, regardless of
the software/hardware platform used, as when plaintext sensitive information is
input to a client PC, such malware has instant access, compromising (reusable)
long-term secrets. We argue that for some common applications, passwords are
too important to input directly to a typical user PC on today’s Internet; and that
the user PC should no longer be trusted with such plaintext long-term secrets,
which are intended to be used for user authentication to a remote server.

To safeguard a long-term password, we build on the following simple idea:
use a hand-held personal device, e.g., a cellphone or PDA to encrypt the pass-
word (combined with a server generated random challenge) under the public
key of an intended server, and relay through a (possibly untrusted) PC only the
encrypted result in order to login to the server website. This simple challenge-
response effectively turns a user’s long-term password into a one-time password
in such a way that long-term passwords are not revealed to phishing websites,
or keyloggers on the untrusted PC.

The resulting protocol, called MP-Auth (short for M obile Password Authenti-
cation), is proposed primarily to protect a user’s long-term password input
through an untrusted (or rather, untrustworthy) client PC. For usability and
other reasons, the client PC is used for the resulting interaction with the web-
site, and performs most computations (e.g. session encryption, HTML rendering
etc.) but has access only to temporary secrets. The capabilities we require from
a mobile device include encryption, alpha-numeric keypad, short-range network
connection (wire-line or Bluetooth), and a small display. Although we highlight
the use of a cellphone, the protocol can be implemented using any similar “trust-
worthy” device (e.g. PDAs or smart phones), i.e., one free of malware. There are
known attacks against mobile devices [11], but the trustworthiness of such de-
vices is currently more easily maintained than a PC, in part because they contain
far less software; see Section 3.2 for further discussion of mobile device security.
The use of a mobile device in MP-Auth is intended to protect user passwords
from easily being recorded and forwarded to malicious parties, e.g., by keyloggers
installed on untrustworthy commodity PCs.

Another simple attack to collect user passwords is phishing. Although phish-
ing attacks have been known for at least 10 years (see [10]), few, if any, anti-
phishing solutions exist today that are complete and deployable. In MP-Auth, we
encrypt a password with the “correct” public key of a web server (e.g. a bank),
so that the password is not revealed to any phishing websites. MP-Auth is in-
tended to protect passwords from keyloggers as well as various forms of phishing
(including deceptive malware, DNS-based attacks or pharming, as well as false
bookmarks). New malware attacks (bank-stealing Trojans or session-hijacking,
e.g. Win32.Grams [5]; see also CERT [22]) attempt to perform fraudulent trans-
actions in real-time after a user has logged in, instead of collecting userids and
passwords for later use. Most existing or proposed solution techniques are suscep-
tible to these new attacks, e.g., Phoolproof [27] (presented in FC’06), and two-

3

factor authentication such as a password and a passcode generator token (e.g.
SecurID). MP-Auth protects against session hijacking, by providing transaction
integrity through a transaction confirmation step. Unlike standard two-factor
techniques, MP-Auth does not store any secret on the mobile device.

Much of the related work in the literature concerns the trustworthiness of
public computers, e.g., in Internet cafés and airport lounges. Home computers
are generally assumed to be trusted. Solutions are primarily designed to deal
with the problem of untrusted computers in public settings. In reality, most
user PCs are not safe anywhere; an improperly patched computer – home or
public – generally survives only minutes1 when connected to the Internet. There
are also now many anti-phishing proposals (e.g. [29], [36]), and software “tools”
designed to detect spoofed websites (e.g. eBay toolbar, SpoofGuard, Spoofstick,
Netcraft toolbar). However, most of these are susceptible to keylogging attacks.2

On the other hand, several authentication schemes which use a trusted personal
device, generally prevent keyloggers, but do not help against phishing or session
hijacking attacks. In contrast, the goal of MP-Auth is to protect passwords from
both keyloggers and phishing sites, and provide transaction security.

Our Contributions. We propose MP-Auth, a protocol for online authenti-
cation using a personal device such as a cellphone in conjunction with a PC.
The protocol provides the following benefits without requiring a trusted proxy
(e.g. [7]), or storing a long-term secret on a cellphone (e.g. Phoolproof [27]).

1. Keylogging Protection. A client PC does not have access to long-term
user secrets. Consequently keyloggers (software or hardware) on the PC can-
not access critical passwords.

2. Phishing Protection. Even if a user is directed to a spoofed website, the
website will be unable to decrypt a user password. Highly targeted phishing
attacks (spear phishing) are also ineffective against MP-Auth.

3. Pharming Protection. In the unlikely event of domain name hijack-
ing [14], MP-Auth does not reveal a user’s long-term password to attackers.
It also protects passwords when the DNS cache of a client PC is poisoned.

4. Transaction Integrity. With the transaction confirmation step (see Sec-
tion 2) in MP-Auth, a user can detect any unauthorized transaction during
a login session, even when an attacker has complete control over the user
PC (through e.g. SubVirt [16] or Blue Pill [30]).

5. Applicability to ATMs. MP-Auth is suitable for use in ATMs, if an
interface is provided to connect a cellphone, e.g., a wire-line or Bluetooth
interface. This can be a step towards ending several types of ATM fraud (see
Bond [4] for a list of ATM fraud cases).

We analyzed MP-Auth using AVISPA [2]; no attacks were found. We have also
implemented a prototype of MP-Auth for performance testing.

1 The average time between attacks is reported to be 5 minutes as of March 26, 2007;
see at http://isc.sans.org/survivaltime.html.

2 PwdHash [29] can protect passwords from JavaScript keyloggers, but not software
keyloggers on client PCs.

4

Organization. The MP-Auth protocol, threat model and operational assump-
tions are discussed in Section 2. A brief analysis of MP-Auth messages, and
circumstances under which MP-Auth fails to provide protection are outlined in
Section 3. Discussion on usability and deployment issues related to MP-Auth
are provided in Section 4. Section 5 summarizes our MP-Auth prototype imple-
mentation. Related work is discussed in Section 6. Section 7 concludes.

2 MP-Auth: A Protocol for Online Authentication

We now describe the MP-Auth protocol, including threat model assumptions.

Threat Model and Operational Assumptions. The primary goals of MP-
Auth are to protect user passwords from malware and phishing websites, and
to provide transaction integrity. We assume that a bank’s “correct” public key
is available to users (see below for discussion on public key installation). We
assume that mobile devices are malware-free. A browser on a PC uses a bank’s
SSL certificate to establish an SSL connection with the bank website (as per
common current practice). The browser may be duped to go to a spoofed web-
site, or have a wrong SSL certificate of the bank or the verifying certificating
authority. The protocol does not protect user privacy (of other than the user’s
password) from an untrusted PC; the PC can record all transactions, generate
custom user profiles etc. Visual information displayed to a user on a PC screen is
also not authenticated by MP-Auth, i.e., a malicious PC can display misleading
information to a user without being (instantly) detected. Denial-of-service (DoS)
attacks are not addressed.

Protocol Steps in MP-Auth. For notation see Table 1. Before the protocol
begins, we assume that user U ’s cellphone M is connected to B (via wire-line or
Bluetooth). The protocol steps are described below (see also Fig. 1).

U, M, B, S User, a cellphone, a browser on the user PC, and the server, respectively.
IDS, IDU Server ID and user ID, respectively. IDU is unique in the server domain.
P Long-term (pre-established) password shared between U and S.
RS Random number generated by S.
{data}K Symmetric (secret-key) encryption of data using key K.
{data}ES

Asymmetric (public-key) encryption of data using S’s public key ES.
X, Y Concatenation of X and Y .
KBS Symmetric encryption key shared between B and S (e.g. an SSL key).
f(·) A cryptographically secure hash function.
v(·) A visualization function that maps any arbitrary binary string into easy-

to-read words [12].

Table 1. Notation used in MP-Auth

1. U launches a browser B on the untrusted PC, and visits the bank website S.
2. B and S establish an SSL session; let KBS be the established SSL secret key.
3. S generates a random nonce RS , and sends the following message to B.

B ← S : {IDS , RS}KBS
(2.1)

5

Untrusted Client

Browser (B)

Cellphone (M)

User (U)

Server (S)

1
2. SSL tunnel

4
6

5 8

3

7

9

Fig. 1. MP-Auth protocol steps

4. B decrypts message (2.1) and forwards it to M .

M ← B : IDS , RS (2.2)

We describe an additional step called session ID verification (see below) in
cases where protecting the integrity of RS is useful.

5. M prompts the user to input the userid and password for S. A userid (e.g.
bank card number) may be stored on the cellphone for convenience; the
password should not be stored or auto-remembered.

6. M generates a random secret nonce RM and encrypts RM using ES . M

calculates the session key KMS and sends message (2.4) to B (here, the
userid IDU is, e.g., a bank card number).

KMS = f(RS , RM) (2.3)

M → B : {RM}
ES

, {f(RS), IDU , P}KMS
(2.4)

7. B (via SSL) encrypts message (2.4) with KBS , and forwards the result to S.
8. From message (2.4), after SSL decryption, S decrypts RM using its corre-

sponding private key, calculates the session key KMS (as in equation (2.3)),
decrypts the rest of message (2.4), and verifies P , IDU and RS . Upon suc-
cessful verification, S grants access to B on behalf of U . S sends the following
message for M to B (indicating login success).

B ← S : {{f(RM)}KMS
}KBS

(2.5)

9. B forwards {f(RM)}KMS
to M . M decrypts to recover f(RM) and verifies

its local copy of RM . Then M displays success or failure to U .

Transaction Integrity Confirmation. In MP-Auth, M and S establish a
session key KMS known only to them; malware on a user PC has no access to
KMS . Attackers may modify or insert transactions through the untrusted PC.

6

To detect and prevent such transactions, MP-Auth requires explicit transaction
confirmation by U (through M). The following messages are exchanged (after
step 9) for confirmation of a transaction with summary details T (RS1 is a server
generated random nonce, used to prevent replay).

M oo

{T, RS1}KMS

B oo

{{T, RS1}KMS
}KBS

S (2.6)

M
{f(T, RS1)}KMS

// B
{{f(T, RS1)}KMS

}KBS
// S (2.7)

M displays T to U in a human-readable way (e.g. “Pay $10 to Vendor V from
the Checking account”), and asks for confirmation (yes/no). When the user
confirms T , the confirmation message (2.7) is sent from M to S (via B). From
message (2.7), S retrieves f(T, RS1), and verifies with its local copy of T and RS1.
Upon successful verification, T is committed. Instead of initiating a confirmation
step after each transaction, transactions may be confirmed in batches (e.g. four
transactions at a time); then, T will represent a batch of transactions in the
above message flows.

In an environment where a client machine is less likely to have malware,
e.g., an ATM, transaction confirmation may not be needed, if the session ID
verification step (see below) is implemented. Also, some transactions may not
require confirmation. For example, setting up an online bill payment for a phone
company should require user confirmation, but when paying a monthly bill to
that account, the confirmation step can be omitted. Fund transfers between user
accounts without transaction confirmation may pose no significant risks to users.
A bank may configure the set of sensitive transactions that will always require
the confirmation step (a user may also add to that set).

Session ID Verification. To detect modification to RS (when being forwarded
to M), we add a session ID verification step after step 4. Both B and M compute
a session ID sid = v(RS). B and M display sid to U . U proceeds only if both
session IDs are the same. To minimize user errors, M shows a list of session IDs
(one derived from RS and others chosen randomly), and asks U to select the
correct sid corresponding to the one displayed on B.

We assume that users will be able to distinguish differences in sid, especially
when sid is easily human-verifiable, e.g., plain English words, distinct images.
Note that malware on a PC can display any arbitrary sequence of words or
images. Hence the session ID verification step may only help for ATMs (where
we assume an attacker may install a false keyboard panel and card reader on an
otherwise trustworthy ATM). When a user accesses an online bank website from
a PC, the transaction confirmation step must be implemented; omitting session
ID verification in such a case may allow attackers (view-only) access to the user
account, but the attackers cannot perform any (meaningful) transaction. (Note
that for only viewing a user’s transactions, attackers can deploy simple malware
on the user PC to capture images of web pages containing the transactions.)

Password Setup/Renewal. In order to secure passwords from keyloggers dur-
ing password renewal, we require that the password is entered through the cell-

7

phone keypad. We assume that the initial password is set up via a trustworthy
out-of-band method (e.g. regular phone, postal mail), and U attempts a password
renewal after successfully logged into S (i.e. KMS has been established between
M and S). The following message is forwarded from M to S (via B) during
password renewal (Pold and Pnew are the old and new passwords respectively).

M
X , where X = {IDU , Pold, Pnew}KMS

// B
{X}KBS

// S (2.8)

Public Key Installation. One of the greatest practical challenges of deploying

public key systems is the distribution and maintenance (e.g. revocation, update)
of public keys. MP-Auth requires a service provider’s public key to be distributed
(and updated when needed) and installed into users’ cellphones. The distribution
process may vary depending on service providers; we recommend that it not
be primarily Internet-based. Considering banking as an example, we visualize
the following key installation methods (but note that we have not user-tested
these for usability): (i) at a bank branch, preferably during an account setup, (ii)
through in-branch ATM interfaces (hopefully free of “fake” ATMs), (iii) through
a cellphone service (authenticated download) as data file transfer.

A challenge-response protocol or integrity cross-checks (using a different
channel, e.g., see [34]) should be used to verify the public key installed on a
cellphone, in addition to the above procedures. For example, the bank may pub-
lish its public key on the bank website, and users can cross-check the received
public key (e.g. comparing visual hashes [28]).

Requirements and Drawbacks of MP-Auth. MP-Auth requires users pos-
sess a malware-free (see Section 3.2) personal device. Public keys of each target
website (e.g. bank) must be installed on the personal device. (We assume that
there are only a few financially critical websites that a typical user deals with.)
The correctness, i.e., integrity of installed public keys must also be maintained.
A communication channel between a personal device and PC is needed, in such
a way that malware on the PC cannot infect the personal device.3 For ATMs,
users must compare easy-to-read words [12] or easily distinguishable images [28]
generated from random binary strings.

3 Security and Attack Analysis

In this section, we provide a brief informal security analysis of MP-Auth. We
motivate a number of design choices in MP-Auth messages and their security
implications. We also list successful but less likely attacks against MP-Auth.

As a confidence building step, we have tested MP-Auth using the AVISPA
(Automated Validation of Internet Security Protocols and Applications) [2] anal-
ysis tool, and found no attacks. AVISPA is positioned as an industrial-strength
technology for the analysis of large-scale Internet security-sensitive protocols and
applications. AVISPA test code for MP-Auth is available [17]. We have not at
this point carried out other formal analyses or security proofs for MP-Auth.
3 The first crossover virus was reported [23] in February 2006.

8

3.1 Partial Message Analysis and Motivation

Here we provide motivation for various protocol messages and message parts. In
message (2.1), S sends a fresh RS to B, and B forwards IDS , RS to M . IDS is
included in message (2.2) so that M can choose the corresponding public key ES .
When U starts a session with S, a nearby attacker may start a parallel session
from a different PC, and grab M ’s response message (2.4) (off-the-air, from the
Bluetooth connection) to login as U . However, as S generates a new RS for
each login session (i.e. U and the attacker receive different RS from S), sending
message (2.4) to S by any entity other than B would cause a login failure.

The session key KMS shared between M and S, is known only to them. Both
M and S influence the value of KMS (see equation (2.3)), and thus a sufficiently
random KMS is expected if either of the parties is honest (as well as capable of
generating secure random numbers); i.e., if a malicious party modifies RS to be
0 (or other values), KMS will still be essentially a random key when M chooses
RM randomly. To retrieve P from message (2.4), an attacker apparently must
guess KMS (i.e. RM) or S’s private key. If both these quantities are sufficiently
large (e.g. 160-bit RM and 1024-bit RSA key ES) and random, an offline dictio-
nary attack on P becomes computationally infeasible. We encrypt only a small
random quantity (e.g. 160-bit) by ES , which should always fit into one block of a
public key cryptosystem (including elliptic curve). Thus MP-Auth requires only
one public key encryption. Browser B does not have access to KMS although
B helps M and S establish this key. With the transaction integrity confirma-
tion step, all (important) transactions must be confirmed from M using KMS ;
therefore, any unauthorized (or modified) transaction by attackers will fail as
attackers do not have access to KMS .

3.2 Attacks Against MP-Auth

Although MP-Auth apparently protects user passwords from malware installed
on a PC or phishing websites, here we discuss some other possible attacks against
MP-Auth which, if successful, may expose a user’s plaintext password.

a) Mobile Malware. We have stated the requirement that the personal (mo-
bile) device be trusted. An attack could be launched if attackers can compromise
mobile devices, e.g., by installing a (secret) keylogger. Malware in mobile net-
works is increasing as high-end cellphones (smart phones) contain millions of
lines of code. For example, a Sept. 2006 study [11] reported that the number of
existing malware for mobile devices is nearly 162 (in comparison, there are more
than 100, 000 viruses in the PC world4). Worms such as Cabir [8] are designed to
spread in smart phones by exploiting vulnerabilities in embedded operating sys-
tems. Regular cellphones which are capable of running J2ME MIDlets have also
been targeted, e.g., by the RedBrowser Trojan [9]. However, currently cellphones
remain far more trustworthy than PCs, thus motivating our proposal.

In the future, as mobile devices increasingly contain much more software,
the requirement of trustworthy cellphones becomes more problematic, and their
use for sensitive purposes such as online banking makes them a more attractive

4 http://www.cknow.com/vtutor/NumberofViruses.html

9

target. Limited functionality devices (with less software, implying more trust-
worthy) may then provide an option for use with MP-Auth. Even if MP-Auth is
implemented in such a special-purpose (or lower functionality) device, the device
can hold several public keys for different services; in contrast, users may require
a separate passcode generator for each service they want to access securely in
standard two-factor authentication proposals. Another possibility of restricting
mobile malware may be the use of micro-kernels [13], formally verifiable OS ker-
nels [33], protections against virtual-machine based rootkits (VMBRs) [16], or
a virtualized Trusted Platform Module (vTPM) [31] on cellphones to restore a
trustworthy application environment. The Trusted Computing Group’s (TCG’s)
Mobile Phone Work Group (MPWG) is currently developing specifications [24]
for securing mobile phones. Anti-virus software (e.g. Trend Micro [32]) for mobile
platforms may also help maintain trustworthiness of cellphones. Malware target-
ing mobile phones is still limited, and leveraging the experience of working to
secure traditional PC platforms may help us achieve a relatively secure mobile
computing environment. However, considering the current state of mobile phone
security, MP-Auth would perform better on devices whose software upgrade is
tightly controlled (e.g. only allowing applications which are digitally signed by
a trustworthy vendor).

b) Common-Password Attacks. Users often use the same password for differ-
ent websites. To exploit such behavior, in a common-password attack, attackers
may break into a low-security website to retrieve userid/password pairs, and then
try those in financially critical websites, e.g., for online banking. MP-Auth itself
does not address the common-password problem (but see e.g., PwdHash [29]).

c) Social Engineering. Some forms of social engineering remain a challenge to
MP-Auth (and apparently, other authentication schemes using a mobile device).
For example, malware might prompt a user to enter the password directly into an
untrusted PC, even though MP-Auth requires users to enter passwords only into
a cellphone. In a “mixed” phishing attack,5 emails are sent instructing users to
call a phone number which delivers, by automated voice response, a message that
mimics the target bank’s own system, and asks callers for account number and
PIN. User habit or user instruction may provide limited protection against these.

4 Usability and Deployment

In this section, we discuss usability and deployment issues related to MP-Auth.
Usability is a great concern for any protocol supposed to be used by general
users, e.g., for Internet banking and ATM transactions. In MP-Auth, users must
connect a cellphone to a client PC. This step is more user-friendly when the con-
nection is wireless, e.g., Bluetooth, than wire-line. Then the user browses to a
bank website, and enters into the cellphone the userid and password for the site
(step 5 in MP-Auth, see Section 2). In ATMs, the password is entered if session
ID verification is successful. We also assume that typing a userid and password
on a cellphone keypad is acceptable in terms of usability, as many users are

5 http://www.cloudmark.com/press/releases/?release=2006-04-25-2

10

accustomed to type SMS messages or have been trained by BlackBerry/Treo ex-
perience. However, verification of session ID and transactions may be challenging
to some users. We have not conducted any user study to this end.

During authentication the cryptographic operations a cellphone is required
to perform in MP-Auth include: one public key encryption, one symmetric en-
cryption and one decryption, one random number generation, and three crypto-
graphic hash operations. The most expensive is the one public key encryption,
which is a relatively cheap RSA encryption with short public exponent in our
application; see Section 5 for concrete results. We now discuss other usability
and deployment aspects which may favor MP-Auth (see also Section 6).

1. As it appears from the current trend in online banking (see [18]), users are
increasingly required to use two-factor authentication (e.g. with a separate
device such as a SecurID passcode generator) for login. Hence using an ex-
isting mobile device for online banking relieves users from carrying an extra
device. Also, a user might otherwise require multiple hardware tokens for
accessing different online accounts (from different banks).

2. The usability of four login techniques has been studied by Wu et al. [35] –
two that send a one-time password as an SMS message, visually checking the
session names displayed on the phone and untrusted PC, and choosing the
correct session ID from a list of choices on the cellphone. Typing a one-time
password is least preferred, yet in most two-factor authentication methods in
practice, users must do so. In contrast, MP-Auth requires users to enter only
long-term passwords. MP-Auth may also require users to compare session
IDs by choosing from a list, which is reported to be more secure (the least
spoofable of all) and easier than typing a one-time password [35].

3. MP-Auth offers cost efficiency for banks – avoiding the cost of providing
users with hardware tokens (as well as the token maintenance cost). The
software modification at the server-end is relatively minor; available SSL
infrastructure is used with only three extra messages (between a browser
and server) beyond SSL. MP-Auth is also compatible with the common SSL
setup, i.e., a server and a client authenticate each other using a third-party-
signed certificate and a user password respectively.

4. Several authentication schemes involving a mobile device store long-term
secrets on the device. Losing such a device may pose substantial risk to
users. In contrast, losing a user’s cellphone is inconsequential to MP-Auth
assuming no secret (e.g. no “remembered password”) is stored on the phone.

5. Public key distribution and renewal challenges usability in any PKI. Key
updating is also troublesome for banks. However, key renewal is an infrequent
event; we assume that users and banks can cope with this process once every
two to three years. If key updates are performed through the mobile network
or selected ATMs (e.g. within branch premises), the burden of key renewal
is largely distributed. For comparison, hardware tokens (e.g. SecurID) must
be replaced approximately every two to five years.

The above suggests that compared to available two-factor authentication meth-
ods, MP-Auth may be as usable or better. However, we hesitate to make strong
statements without usability tests (c.f. [6]).

11

5 Implementation and Performance

Fig. 2. MP-Auth login

We developed a prototype of the main authentication
and session key establishment parts of MP-Auth to
evaluate its performance. Our prototype consists of a
web server, a Firefox Extension, a desktop client, and
a MIDlet on the cellphone. We set up a test web server
(bank), and used PHP OpenSSL functions and mcrypt

module for the server-side cryptographic operations.
The Firefox Extension communicates between the web
server and desktop client. The desktop client forwards
messages to and from the cellphone over Bluetooth.
We did not have to modify the web server or Fire-
fox browser for MP-Auth besides adding PHP scripts
to the login page (note that Phoolproof [27] requires
browser modifications). We used the BlueZ Bluetooth
protocol stack for Linux, and Rococosoft’s Impronto
Developer Kit for Java. We developed a MIDlet – a Java
application for Java 2 Micro Edition (J2ME), based on
the Mobile Information Device Profile (MIDP) specifi-
cation – for a Nokia E62 phone. For cryptographic operations on the MIDlet,
we used the Bouncy Castle Lightweight Crypto API.

Avg. Time (s) [Min, Max] (s)
MP-Auth 0.62 [0.34, 2.28]

Regular SSL 0.08 [0.06, 0.22]

Table 2. Performance comparison between
MP-Auth and regular SSL login

To measure login performance,
we used MP-Auth for over 200
successful logins, and recorded the
required time (excluding the user
input time, i.e. userid and pass-
word). We carried out similar
tests for regular SSL logins. The
results are summarized in Table 2.
We use RSA 1024-bit and AES-128

(CBC) for public and symmetric key encryption respectively. SHA-1 (160-bit) is
used as hash function, and /dev/urandom and SecureRandom (Java) are used as
sources of randomness. Although regular SSL login is almost eight times faster
than MP-Auth, on average, it takes less than a second for MP-Auth login. We
believe that this added delay would be acceptable, given that entering a userid
and password takes substantial additional time.

6 Related Work

The most common types of existing online authentication techniques include
password-only authentication, two-factor authentication, and transaction secu-
rity mechanisms (e.g. secret SMS to a user’s cellphone). Several solutions using
a trusted device have been proposed, e.g., Phoolproof [27], BitE [20], camera-
based authentication [7]. Due to page limits, our comparison of MP-Auth with
related work is limited here; for more extensive discussion, see [18].

In contrast to two-factor authentication methods, by design MP-Auth does
not provide attackers any window of opportunity when authentication messages

12

(i.e. collected regular and one-time passwords of a user) can be replayed to lo-
gin as the legitimate user and perform transactions on the user’s behalf. The
key observation is that, through a simple challenge-response, message (2.4) in
MP-Auth (Section 2) effectively turns a user’s long-term static password into
a one-time password in such a way that long-term passwords are not revealed
to phishing websites, or keyloggers on an untrusted PC. In contrast to transac-
tion security mechanisms, MP-Auth protects both large and small transactions.
Also, MP-Auth does not require text or voice communications airtime for web
authentication or transaction security. (See also Section 4 for more comparison
on usability and deployment issues.)

Balfanz and Felten [3] introduced the splitting trust paradigm to split an
application between a small trusted device and an untrusted computer. Our
work is based on such a paradigm where we provide the long-term password
input through widely available cellphones, and use the untrusted computer for
computationally intensive processing and display.

Parno et al. [27] proposed Phoolproof, a cellphone-based technique to pro-
tect users against phishing with less reliance on users making secure decisions.
With the help of a pre-shared secret – established using an out-of-band channel,
e.g., postal mail – a user sets up an account at the intended service’s website.
The user’s cellphone generates a key pair {KU , K−1

U
}, and sends the public key

to the server. The user’s private key and server certificate are stored on a cell-
phone for logins afterward. During login, a user provides userid and password
to a website on a browser (as usual), while in the background, the browser
and server authenticate (using SSL mutual authentication) through the pre-
established client/server public keys in an SSL session (the browser receives the
client public key from the cellphone).

Phoolproof assumes that users can correctly identify websites at which they
want to set up an account. Users must revoke public/private key pairs in case
of lost or malfunctioning cellphones, or a replacement of older cellphone mod-
els. Expecting non-technical users (e.g. typical bank customers) to understand
concepts of creation and revocation of public keys may not be practical. In MP-
Auth, users do not have to revoke any key or inform their banks when they lose,
break or change their cellphones.

It is also assumed in Phoolproof that the (Bluetooth) channel between a
browser and cellphone is secure. Seeing-is-believing (SiB) [21] techniques are
proposed to secure local Bluetooth channels, requiring users to take snapshots
using a camera-phone, apparently increasing complexity to users. In MP-Auth,
we do not rely on the assumption that the local channel (between the cellphone
and PC) is secure. Although MP-Auth may require users to visually verify a
session ID to secure the local Bluetooth connection (for ATMs, when transaction
integrity confirmation is omitted), users are not required to have a camera-phone
or to take any picture. Also, Phoolproof does not aim to protect against session
hijacking attacks.

Comparing MP-Auth with Existing Literature. Table 3 summarizes a
comparison of MP-Auth with several anti-phishing proposals from the litera-

13

ture. An (7) means a special requirement is needed. An empty box indicates the
stated protection is not provided (first three columns) and the stated require-
ment is not needed (last four columns). A (—) represents non-applicability. (All
Xand no 7 would be optimal.) For example, Phoolproof [27] provides protec-
tion against phishing and keylogging, but it is vulnerable to session hijacking; it
requires a malware-free mobile and stores long-term secrets on the mobile, but
does not require a trusted proxy or trusted PC OS. We acknowledge that al-
though this table may provide useful high-level overview, this does not depict an
apple-to-apple comparison. Several solutions listed here require a trusted proxy,
thus introduce an extra deployment burden, and present an attractive target to
determined attackers (providing access to many user accounts). Also, fraudsters
may increasingly target mobile devices if long-term secrets are stored on them.

Protection against Requirement

Session-
hijacking

Phishing Key-
logging

Trusted
proxy

On-
device
secret

Trusted
PC OS

Malware-
free
mobile

MP-Auth X X X 7

Phoolproof [27] X X 7 7

BitE [20] X 7 7 7

SpyBlock [15] X X X — 7

Three-party [26] — — X 7 7

Camera-based [7] X X X 7 7 7

Web-Auth [35] X X 7 7 7

Guardian [19] X 7 7

Table 3. Comparing MP-Auth with existing literature. For details, see [18].

7 Concluding Remarks

We have proposed MP-Auth, a protocol for web authentication which is resilient
to keyloggers (and other malware including rootkits), phishing websites, and ses-
sion hijacking. Recently, many small-scale, little-known malware instances have
been observed that install malicious software launching keylogging and phishing
attacks; these are in contrast to large-scale, high-profile worms like Slammer.
One reason for this trend might be the fact that attackers are increasingly tar-
geting online financial transactions.6 Furthermore, such attacks are fairly easy
to launch; for example, attackers can gain access to a user’s bank account sim-
ply by installing (remotely) a keylogger on a user PC and collecting the user’s
banking access information (userid and password). MP-Auth is designed to pre-
vent such attacks. MP-Auth primarily focuses on online banking but can be
used for general web authentication systems as well as at ATMs. Our require-
ment for a trustworthy personal device (i.e. free of malware) is important, and
becomes more challenging over time, but as discussed in Section 3.2, may well re-
main viable. In our MP-Auth implementation, cryptographic computations and
Bluetooth communications took less than a second for login (excluding the user

6 According to a July 2006 report [1], 93.5% of all phishing sites target online financial
services, e.g., online banking and credit card transactions.

14

input time), which we believe is an acceptable delay. Despite a main objective
of preventing phishing and keylogging attacks, MP-Auth as presented remains
one-factor authentication; thus an attacker who nonetheless learns a user pass-
word can impersonate that user. Consequently, the server side of MP-Auth must
be trusted to be secure against both from insider attack and break-in.

Users often input reusable critical identity information to a PC other than
userid/password, e.g., a passport number, social security number, driver’s licence
number, or credit card number. Such identity credentials are short, making them
feasible to enter from a cellphone keypad. In addition to protecting a user’s
userid/password, MP-Auth may easily be extended to protect other identity
credentials from the reach of online attackers, and thereby might be of use to
reduce online identity theft. We believe that the very simple approach on which
MP-Auth is based – using a cellphone or similar device to asymmetrically encrypt
passwords and one-time challenges – is of independent interest for use in many
other applications, e.g., traditional telephone banking directly from a cellphone,
where currently PINs are commonly transmitted in-band without encryption.

We reiterate that although based on a very simple idea, MP-Auth has yet
to be user-tested for usability; this (together with [18]) is an architecture and
state-of-the-art paper. We encourage the security community to pursue alter-
nate proposals for password-based online authentication which simultaneously
address phishing, keylogging and session hijacking rootkits.

Acknowledgements

We thank anonymous reviewers for their constructive comments, Bryan Parno for al-
lowing us access to his Phoolproof [27] implementation, and Masud Khan for provid-
ing a Nokia E62 smartphone. The first author is supported in part by an NSERC
CGS. The second author is Canada Research Chair in Network and Software Security,
and is supported in part by an NSERC Discovery Grant, and the Canada Research
Chairs Program.

References

1. Anti-Phishing Working Group. Phishing Activity Trends Report, July, 2006.
2. Armando et al. The AVISPA tool for the automated validation of Internet security

protocols and applications. In Computer Aided Verification (CAV), volume 3576
of LNCS, 2005. Project website, http://www.avispa-project.org.

3. D. Balfanz and E. Felten. Hand-held computers can be better smart cards. In
USENIX Security, 1999.

4. M. Bond. Phantom withdrawals: On-line resources for victims of ATM fraud.
http://www.phantomwithdrawals.com.

5. CA Virus Information Center. Win32.Grams.I, Feb. 2005.
6. S. Chiasson, P. van Oorschot, and R. Biddle. A usability study and critique of two

password managers. In USENIX Security, 2006.
7. Clarke et al. The untrusted computer problem and camera-based authentication.

In Pervasive Computing, volume 2414 of LNCS, 2002.
8. F-Secure. F-Secure virus descriptions: Cabir, June 2004.
9. F-Secure. F-Secure trojan information pages: Redbrowser.A, Mar. 2006.

10. E. W. Felten, D. Balfanz, D. Dean, and D. S. Wallach. Web spoofing: An Internet
con game. In National Information Systems Security Conference, Oct. 1997.

15

11. A. Gostev and A. Shevchenko. Kaspersky security bulletin, January - June 2006:
Malicious programs for mobile devices, Sept. 2006. http://www.viruslist.com.

12. N. Haller. The S/KEY one-time password system. RFC 1760, Feb. 1995.
13. G. Heiser. Secure embedded systems need microkernels. ;login:, Dec. 2005.
14. ICANN Security and Stability Advisory Committee. Domain name hijacking: In-

cidents, threats, risks, and remedial actions, July 2005. http://www.icann.org.
15. C. Jackson, D. Boneh, and J. Mitchell. Spyware resistant web authentication using

virtual machines. Online manuscript. http://crypto.stanford.edu/spyblock.
16. King et al. SubVirt: Implementing malware with virtual machines. In IEEE

Symposium on Security and Privacy, May 2006.
17. M. Mannan and P. C. van Oorschot. AVISPA test code for Mobile Password

Authentication (MP-Auth). http://www.scs.carleton.ca/~mmannan/mpauth.
18. M. Mannan and P. C. van Oorschot. Using a personal device to strengthen pass-

word authentication from an untrusted computer (revised march 2007). Technical
Report TR-07-11. http://www.scs.carleton.ca/research/tech_reports/.

19. N. B. Margolin, M. K. Wright, and B. N. Levine. Guardian: A framework for
privacy control in untrusted environments, June 2004. Technical Report 04-37
(University of Massachusetts, Amherst).

20. J. M. McCune, A. Perrig, and M. K. Reiter. Bump in the Ether: A framework for
securing sensitive user input. In USENIX Annual Technical Conference, 2006.

21. McCune et al. Seeing-is-believing: Using camera phones for human-verifiable au-
thentication. In IEEE Symposium on Security and Privacy, 2005.

22. J. Milletary. Technical trends in phishing attacks. US-CERT, Reading room article,
http://www.us-cert.gov/reading_room/phishing_trends0511.pdf.

23. Mobile Antivirus Researchers Association. Analyzing the crossover virus: The first
PC to Windows handheld cross-infector, 2006. http://www.informit.com.

24. Mobile Phone Work Group (MPWG). TCG mobile trusted module specification,
Sept. 2006. Draft, version 0.9.

25. A. Moshchuk, T. Bragin, S. D. Gribble, and H. Levy. A crawler-based study of
spyware in the web. In Network and Distributed System Security (NDSS), 2006.

26. A. Oprea, D. Balfanz, G. Durfee, and D. Smetters. Securing a remote terminal
application with a mobile trusted device. In ACSAC, 2004.

27. B. Parno, C. Kuo, and A. Perrig. Phoolproof phishing prevention. In Financial
Cryptography and Data Security (FC), volume 4107 of LNCS, 2006.

28. A. Perrig and D. Song. Hash visualization: A new technique to improve real-world
security. In Cryptographic Techniques and E-Commerce (CrypTEC), July 1999.

29. B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. Mitchell. Stronger password
authentication using browser extensions. In USENIX Security, 2005.

30. J. Rutkowska. Introducing Blue Pill, 2006. Presented at SyScan, http://

theinvisiblethings.blogspot.com/2006/06/introducing-blue-pill.html.
31. R. C. Stefan Berger, K. A. Goldman, R. Perez, R. Sailer, and L. van Doorn. vTPM:

Virtualizing the trusted platform module. In USENIX Security, 2006.
32. Trend Micro. Mobile security. http://www.trendmicro.com/en/products/

mobile/tmms/evaluate/overview.htm.
33. H. Tuch, G. Klein, and G. Heiser. OS verification — now! In Hot Topics in

Operating Systems, June 2005.
34. P. C. van Oorschot. Message authentication by integrity with public corroboration.

In New Security Paradigms Workshop, (NSPW), Sept. 2005.
35. M. Wu, S. Garfinkel, and R. Miller. Secure web authentication with mobile phones.

In DIMACS Workshop on Usable Privacy and Security Systems, July 2004.
36. Z. E. Ye, S. Smith, and D. Anthony. Trusted paths for browsers. ACM Transactions

on Information and System Security (TISSEC), 8(2), 2005.

