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Abstract

Almost all of the current process scheduling algorithms which are used in modern
operating systems (OS) have their roots in the classical scheduling paradigms which
were developed during the 1970’s. But modern computers have different types of
software loads and user demands. We think it is important to run what the user wants
at the current moment. A user can be a human, sitting in front of a desktop machine, or
it can be another machine sending a request to a server through a network connection.
We think that OS should become intelligent to distinguish between different processes
and allocate resources, including CPU, to those processes which need them most. In
this work, as a first step to make the OS aware of the current state of the system, we
consider process dependencies and interprocess communications. We are developing a
model, which considers the need to satisfy interactive users and other possible remote
users or customers, by making scheduling decisions based on process dependencies
and interprocess communications. Our simple proof of concept implementation and
experiments show the effectiveness of this approach in the real world applications.
Our implementation does not require any change in the software applications nor any
special kind of configuration in the system, Moreover, it does not require any additional
information about CPU needs of applications nor other resource requirements. Our
experiments show significant performance improvement for real world applications.
For example, almost constant average response time for Mysql data base server and
constant frame rate for mplayer under different simulated load values.

1 Introduction

1.1 Motivation

Almost all of the current process scheduling algorithms, which are used in modern operating
systems (OS), have their roots in the classical scheduling paradigms which were developed
during the 1970’s. But today’s computers have different types of software loads and user
demands. It is not important to maximize CPU utilization, as most modern machines, either
desktops or servers, have multiple cores/CPUs and most of the time they have idle CPU
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cycles. It is not important to minimize job turn around time, because most machines are
not running CPU intensive jobs. Most machines have a varying load pattern which depends
on the requests coming from local and/or remote users. Often it may not be important to
maximize system throughput. Typically throughput is defined in terms of non-interactive
jobs submitted to a machine, while most modern tasks have some form of interaction with
users. What is important is to run what the user wants at the current moment. A user can
be a human, sitting in front of a desktop machine, or it can be another machine sending a
request to a server through a network connection. As we are looking at a wider range of users,
we call them customers. In our view, local or remote customers may send different requests
to a system. Due to rapid changes in customer demands and requests, the need for CPU
time among different processes or groups of processes changes rapidly. Some OSs and authors
have framed part of this problem as the user interactivity problem and have addressed it
in several ways, but none of them have presented an easy to use solution [8, 9, 11, 13, 17].
These solutions usually need some form of configuration and/or input from the user, or need
additional information from applications. We will elaborate on this in Section 1.2.

We believe a key change in OS resource management is to make them aware of what
the applications are doing on top of them. In other words, we think OS should become
intelligent to distinguish different processes and allocate resources, including CPU, to those
processes which need them most. We think the processes that need more resources are the
ones which are externally observable at the time of scheduling. If a customer is waiting for
a response from a process, then we say that, this process is externally observable. If this
process is waiting for a service from another process, then the second process is also exter-
nally observable. We believe that as a first step to make OS aware of what is happening
in the system, process dependencies and interprocess communications should be considered.
Unfortunately, commodity OSs do not support process dependency detection or interprocess
communication detection. Although, OS kernel usually has some information about inter-
process communications and process dependencies, they are generally dispersed in various
unrelated kernel data structures, and the kernel does not use those information to make any
process scheduling decisions or any other resource allocation decisions.

In this study we are developing a model which considers the need to satisfy interactive
users and other possible remote users or customers. This model makes scheduling decisions
based on process dependencies and interprocess communications. We want to develop a
scheduling algorithm which tries to minimize a user’s dissatisfaction or unhappiness. We
call this customer appeasement as it is not possible to make every customer satisfied spe-
cially under heavy loads by running all processes fairly. A scheduling policy resulting from
customer appeasement model is not a fair scheduling policy as it tries to find more important
processes and give them more priority. This goal is achieved by a model which tracks process
dependencies and communications using scalar values assigned to processes, customers and
the whole system. Our simple proof of concept implementation and experiments show the
effectiveness of this approach in real world applications. Our implemention does not require
any specific change in the software applications or in the configuration of the system. More-
over it does not require any additional information about CPU needs of applications and
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other resource requirements.

1.2 Related Work

As mentioned in Section 1.1, as far as we know, there are many studies which try to solve
interactive or multimedia applications scheduling problems, but none of them has a broader
view of finding the optimal scheduling solution based on a well defined criteria for all appli-
cations, specially under heavy load.

Most commodity OSs use some heuristics based on process execution/sleeping behavior
to detect interactive processes to increase their priority and reduce their latency. Windows
[13] and FreeBSD [9] use multi-level feedback queue schedulers. In this scheme CPU-bound
processes receive lower priorities and processes blocked waiting for I/O receive higher prior-
ities. The Linux Vanilla or O(1) scheduler [11] (used in kernels before 2.6.23) has a similar
mechanism. Processes with longer sleep times and shorter execution times are identified as
interactive and receive higher priorities. Windows [13] adds more intelligence by differen-
tiating processes waiting on different devices. For example, processes waiting on keyboard
receive higher priority than those waiting on a disk. Etsion et al. and Yan et al. [8, 17]
show that depending only on execution behavior is not adequate to distinguish interactive
processes properly. Ingo Molnar, the designer of Linux CFS scheduler [10, 12] tries to miti-
gate this problem by not depending too much on process execution/sleeping behavior. CFS
scheduler doesn’t change interactive processes’ priority any more, it only inserts them in
front of the run queue every time an interactive process wakes up [10, 12] (also see Section
3.3).

Windows [13] also uses “windows system input focus” as a measure of user interaction
and it increases the priority of a process which has the input focus. Using input focus may
help to improve interactivity performance but has several problems. If a user is running
multiple interactive programs, for example an audio player and a web browser, while he/she
is browsing the web and input focus is on the web browser, the user still wants the audio
player to play the music well. Input focus mechanism also might not be usefull if a user
interacts with the system through the network.

Etsion et al. [8] use process display output production as a means of detecting interactive
and multimedia applications. They schedule processes based on their display output produc-
tion in a way that all processes have a chance to produce display output at the same rate.
That might be usefull for multimedia applications where, for example, all video applications
play at the same frame rate regardless of their window size. This approach only addresses
desktop applications as any network user has no display access. Also, it might be possible
that a compute intensive job creates a huge amount of disply output and receives an increase
in its priority while it actually is not an interactive application.

Some researchers and OSs, allow real time or interactive processes to specify their CPU
requirements and time constraints. For example in Mac OS X [14], a real time process may
ask for a specific CPU requirement. Yang et al. (RedLine) [18] use almost the same principles
and treat interactive processes like real time processes. In RedLine processes can ask for a
specific CPU and other resource requirements. RedLine also has an admission mechanism
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which may not allow the process to execute as an interactive process if the system does not
have enough resources as requested by the process.

Zheng et al. have an implementation called SWAP [19] which recognizes process depen-
dencies but it does not distinguish interactive or any other type of processes which might
need increased priority. It only tracks process dependencies based on system calls and pre-
vent a high priority process being blocked by a low priority process that has locked a resource
needed by the high priority process (priority inversion problem).

Zheng et al. work called RSIO [20] has the most similarities with our work. RSIO
looks at process I/O patterns as a way of detecting interactive processes. It also tries to
identify other processes involved in a user activity and provide a scheduling policy to improve
interactive performance. This policy is based on access patterns to I/O devices. RSIO
needs a configuration file that defines which I/O devices should be monitored to detect
interactive processes. It has also a relatively complicated heuristic mechanism to detect
processes involved in a user interaction.

1.3 Contributions

The work presented in this paper has major differences from all of the previous work.

1. We develop a model (customer appeasement model) with a criteria which tracks process
dependencies and customer requests. This model gives us the ability to compare differ-
ent schedulers analytically, and develop new scheduling policies based on the analytical
results.

2. Our model considers all of the process communications and dependencies in the system
which are indications of a customer request. Other systems e.g. RSIO [20] typically
consider a subset of communications related to a subset of I/O devices.

3. The customer appeasement model objective is to improve the performance of any
externally observable processes specially under heavy background loads, this includes
traditional interactive processes, i.e. desktop and multimedia applications.

4. We have a simple proof of concept implementation which does not need any config-
uration file, or process specification information. It does not require any changes in
the software applications either. It automatically and without any user assistance de-
tects those processes which need more resources as defined in this paper, and increases
their priority. This is in contrast to other work such as Redline [18], RSIO [20] or as
allowed by OS X [14], which require some form of configuration or process resource
specifications from user.

5. Our experimental results show significant performance improvements for both interac-
tive applications and server processes such as Apache web server [1] and Mysql [4] data
base servers. For example, we observed almost constant average Mysql response times,
and almost constant frame rate for mplayer under different (simulated) background
loads.
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6. One of our goals is to make the implementation simple, easily portable to different
Linux kernels and distributions, and easy to use for a novice user. In order to achieve
this, we use SystemTap [6]. SystemTap is a diagnostic tool, but it has made our imple-
mentation a simple script which can be run on any SystemTap equipped distribution
with a compatible kernel without the need to recompile and install a new kernel. Our
script has been tested on kernel versions 2.6.31, 2.6.32, 2.6.35, but should be compatible
with any kernel that has a recent version of CFS scheduler.

The rest of this paper is organized as follows: We describe the customer appeasement
model and its basic definitions in Section 2. In Section 3, we compute the unhappiness values
for two simple scenarios for some of the classical and modern OS schedulers. In Section 4, we
propose an algorithm to use unhappiness values to change process scheduling. In Section 5,
we explain our simplified request based priority elevation technique. We give a more detailed
explanation on the implementation in Section 6. In Section 7, we present our experimental
results, concluding remarks are presented in Section 8.

2 The Customer Appeasement Model

In this section we introduce the customer appeasement model and explain the parameters
and variables in detail.

2.1 Definitions

In the customer appeasement model we use the following terms, notations and definitions:

Process: A process P is any software entity inside the system which can be scheduled to run
on a CPU by the OS. (This definition includes tasks, threads or light weight processes.)

Customer: A customer C is any outside entity which can send requests to processes in the
system. Customers are independent from each other. We may distinguish between
local and remote customers.

Direct Request: A request R is any type of input from a customer to a process. Rk
i→j

denotes the kth request from customer Ci to process Pj.

Indirect Request: A process may receive a request from a customer indirectly. This hap-
pens when a process which has received a direct request from a customer in turn, sends
a service request to another process.

Weight of a request: wk
i is the weight or importance of the request Rk

i→j for the customer
Ci. This may be measured or inferred from customer’s behavior.

Customer weight: W (ci) is the parameter which is used to distinguish between different
customers. It represents weight or importance of customer ci for the system.
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Unhappiness: uk
i→j is an integer value related to the time delay that customer Ci experi-

ences as a result of sending the request Rk
i→j to the process Pj.

2.2 Computation of Unhappiness Value

The amount of unhappiness assigned to a process due to a request, changes according to the
rules explained in this section. The request might have been sent either directly or inderectly
through another process to Pj. In the simplest situation, the unhappiness for process Pj at
any moment is defined as the elapsed time since the moment process Pj receives Rk

i→j minus
the amount of CPU time that Pj has been allocated. When Pj sends a response back to the
customer Ci, then uk

i→j is set to zero. Observe that:

1. The unhappiness value uk
i→j increases as time passes.

2. uk
i→j is decreased by the amount of time that process Pj runs on a CPU processing

request Rk
i→j.

3. When process Pj requests a service from another process Ps and blocks, then uk
i→j is

divided between Pj and Ps as follows:

u∗ki→j = αuk
i→j

uk
i→s = (1− α)uk

i→j (1)

where 0 ≤ α < 0.5 is a system parameter, and it determines the amount of unhappiness
passed to a service process when an indirect request is sent to such a process. Its exact
value should be determined based on experiments during a specific implementation.

4. The new unhappiness value u∗ki→j for Pj does not change while process Pj is blocked
waiting for a service from other processes. But uk

i→s will increase by time and in general
follows the same rules for unhappiness computation.

5. When the service process Ps finishes its processing and returns a response to Pj, effec-
tively unblocking Pj by giving the requested service to it, the value of uk

i→s is passed
back to Pj and is added to its previous unhappiness value. We call this new unhappi-
ness value u∗∗ki→j. At this time the unhappiness value assigned to service process is reset
to zero:

u∗∗ki→j = u∗ki→j + uk
i→s

uk
i→s = 0 (2)
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We can compute the total unhappiness for a request, a customer (U ci) or the whole system
(U). The total unhappiness for a request Rk

i→j is computed as the following summation which
indicates the total unhappiness that customer Ci experiences as a result of sending request
Rk

i→j to process Pj and all other delays that are caused as process Pj waits for services from
other processes.

URk
i = W (ci)w

k
i

N−1∑
j=0

uk
i→j (3)

The total unhappiness for customer Ci is computed using Equation 4. In this equation
R is the total number of requests sent by Ci and N is the total number of processes in the
system:

U ci = W (ci)
N−1∑
j=0

R−1∑
k=0

wk
i u

k
i→j (4)

The system unhappiness due to all requests from all customers is computed using Equa-
tion 5:

U =
M−1∑
i=0

W (ci)
N−1∑
j=0

R−1∑
k=0

wk
i u

k
i→j (5)

The objective of the scheduling algorithm should be to minimize the system’s unhappiness
U at any time.

3 Unhappiness Values in different Scheduling Algo-

rithms

In order to find out how some of the scheduling algorithms perform under the customer
appeasement model, we compute the unhappiness value that they cause for a request sent
by a customer to a system in two specific scenarios. We compute the unhappiness value for
the following schedulers, and simplify final values as much as possible so that the results are
comparable.

3.1 Round-Robin Scheduling

The Round-Robin (RR) Scheduler is a simple preemptive scheduling algorithm which was
used in time sharing systems [15]. It is still used as part of some modern scheduling al-
gorithms, for example it is part of Linux real time (RT) scheduling class. Round-Robin
scheduler gives each process a time slice or time quantum q, if a process releases the CPU
before q is finished, then the scheduler runs the next process in the ready queue. If a process
needs more time and finishes its time quantum, then the scheduler preempts the process,
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inserts the process at the tail of the ready queue, and schedules the next process from the
head of the ready queue. This new running process also receives a time quantum q.

Now we consider a simple case and compute the minimum and a typical unhappiness
values caused by a request in a system with RR scheduler. The minimum and typical
unhappiness values might happen in the best case and a typical case scenarios respectively.
We assume that there are N − 1 running processes in the run queue. We assume that there
is a process Pj in the sleeping state waiting to receive a request. There is only one customer,
and the system parameter α is set to zero (α = 0). This customer sends a request to the
sleeping process Pj and waits for the response. Now the OS wakes up process Pj and inserts
it to the end of the ready queue. Assume that the N − 1 running processes stay running all
the time, and they use all of their time quanta , so Pj waits in the ready queue for q(N − 1)
seconds before it runs on the CPU. If it can finish processing and return a response to the
customer during its first time slice q, then q(N − 1) is the amount of unhappiness during
this transaction. If it can’t return a response to the customer during this time and needs a
total of Z time quanta to finalize this transaction and return a response to the customer,
then the maximum unhappiness will be:

UR = Zq(N − 1)− (Z − 1)q = q(Z(N − 2) + 1) (6)

In practice it is possible that process Pj blocks and waits for services from other processes.
Assume that it waits for a service from process Ps after Z1 time quanta, and Ps needs Z2

time quanta to process Pj’s request and return a response. Pj may also need another Z3 time
quanta to return a response to the customer. We assume that Ps is in the sleeping state prior
to receiving a request from Pj, that means, there are always N running processes, because
when Pj blocks and sleeps, Ps wakes up and is in the running state. Then the amount of
unhappiness experienced by the customer due to the request R will be:

UR = q(Z1(N − 2) + 1) + q(Z2(N − 2) + 1) + q(Z3(N − 2) + 1)

= q((Z1 + Z2 + Z3)(N − 2) + 3) (7)

Here the unhappiness value consists of three terms. The first term is the aggregated
unhappiness caused by delays in the execution of Pj at the time it blocks waiting on Ps. The
second term is the amount of unhappiness caused by delays during the execution of Ps, and
the last term of the unhappiness value reflects the delays of running Pj after it receives the
response from Ps until it sends the final response to the customer. So the best case and a
typical case scenarios with a Round-Robin scheduler results in the following minimum and
typical unhappiness values:

UR
min = q(Z(N − 2) + 1) (8)

UR = q((Z1 + Z2 + Z3)(N − 2) + 3) (9)

Note that the unhappiness value related to running the service process Ps is set to zero
once it sends the response back to Pj.
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3.2 Multilevel Feedback Queues

In this subsection we perform the same analysis for a basic multilevel feedback queue schedul-
ing. Many UNIX OSs such as FreeBSD [9] utilize some form of a multilevel feedback queue
scheduler. Windows also has a multilevel feed back queue scheduler [13]. As another example
the O(1) or Vanilla scheduler in Linux kernels before 2.6.23 is in fact a multilevel feedback
queue with many heuristics involved in moving tasks between diffrent queues and detecting
interactive processes [11].

Assume a basic multilevel feedback queue scheduling algorithm with m queues called Q0

to Qm−1. The processes in each queue can run on the CPU for a multiple of time quantum
q. The amount of time for Qi is computed as 2iq. Each process is first placed in Q0. After
it receives its CPU share in Q0, if it needs more time it is then placed in the next queue
Q1 and so on. Each queue has an absolute priority relative to the next queue, meaning
that processes in Qi+1 do not execute until all processes in Qi receive their CPU share and
Qi becomes empty. So in this algorithm, processes which need more CPU time, lose their
priority as time passes but receive a,larger time quantum when they run on the CPU.

Now assume an interactive process wakes up and receives a request from a customer. Also
assume that there are a total of ai processes in Qi. Assume that the interactive process needs
Zq processing time to finish processing and return a response to the customer, and no other
processes will enter the running queues during this time. This means that the interactive
process is inserted to the end of Q0, receives its CPU time after waiting for other processes in
this queue, then it is pushed to the next queue and so on. Assume Qx is where it receives the
final amount of CPU time that it needs to finish processing the request and return a response
to the customer. The amount of unhappiness that the customer experiences is computed as:

UR = (a0 − 1)q + 2(a1 − 1)q + ... + 2x(ax − 1)q − (q + 2q + ... + 2x−1q)

= q(
x∑

i=0

2i(ai − 1)−
x−1∑
i=0

2i) (10)

In this equation the first summation indicates the amount of delays that the interactive
process encounters waiting in ready queues, and the second summation indicates the amount

of CPU time it has received. We can compute x by solving this equation
x∑

i=0

2i = Z and

then simplifying the minimum unhappiness value as follows:

x = log2(Z + 1)− 1 (11)

UR
min = q(

log2(Z+1)−1∑
i=0

2i(ai − 1)− 2log2(Z+1)−1) (12)

We can also examine a more complicated scenario as in the previous subsection. Assume
that Pj wakes up and receives a request. It then spends Z1 second to partially process this
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request and send a request to a service process Ps. Now Ps needs Z2 seconds to provide
the service to Pj. After Pj receives the service, it needs another Z3 seconds to finalize its
processing and return a request to the customer. Please note that in this scheduler each
time a process wakes up, it is inserted to the end of Q0. We compute unhappiness values
assuming that the system parameter α is set to zero (α = 0) see Section 2:

UR = q(

log2(Z1+1)−1∑
i=0

2i(ai − 1)− 2log2(Z1+1)−1) + q(

log2(Z2+1)−1∑
i=0

2i(ai − 1)− 2log2(Z2+1)−1)

+ q(

log2(Z3+1)−1∑
i=0

2i(ai − 1)− 2log2(Z3+1)−1) (13)

Please note that the total unhappiness value consists of three terms. The first term is
the result of delays during the first part of processing the request by Pj. The second term
is caused when the service process Ps is in the run queue, and the last term is associated
with the waiting when Pj prepares the final response for the customer. This scenario can be
a typical situation while it is possible to have even more complex cases where Pj may need
more services from Ps or other service processes. This leads to higher unhappiness values.

3.3 Linux CFS Scheduler

The Completely Fair Scheduler or CFS for short [10, 12] was introduced in Linux kernel
version 2.6.23. As its developer explains [10, 12], “it is designed to basically model an ideal,
precise multi-tasking CPU on real hardware”.

It allways tries to share the CPU fairly between the current processes in the run queue.
In other words if there are N processes in the run queue, it promises to run each process
with 1

N
of the CPU power. In order to achieve this goal, CFS scheduler keeps track of a

variable called virtual run time (vruntime) for each task. It is a weighted run time for each
task. CFS uses an R-B tree to choose the next task to run on the CPU. It simply chooses
the left most task in the tree which has the lowest vruntime value. If a new process enters
the run queue, CFS manipulates its vruntime value such that the new arriving process goes
to the right of the R-B tree. This is to make sure that it can keep its promised wait time
to the current running processes. CFS also gives an advantage to the sleeping processes. If
a process sleeps less than a threshold time interval then CFS changes its vruntime value
such that it goes to the left most position in the R-B tree when it wakes up. Assuming that
an interactive task is a short sleeper, this will lead to better response times for interactive
tasks. CFS does not have a fixed time slice. At the time it runs the next task it gives the
task a time slice which is computed as follows:

Timeslice = q(N) =
sch lat

N
(14)

In this equation sch lat is a CFS constant value and N is the number of tasks in the run
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queue. CFS stretches this time slice if the number of running tasks increases beyond a system
threshold. q(N) is the basic time slice in CFS if process weights and nice values are ignored.

Another intresting property of CFS scheduler is the way nice values work. Nice values
change the weight of a task, which means that they change the vruntime of a task. If task
weights and nice values are considered then CFS changes the CPU share of each task based
on the following relations:

q(Pj, N) =
wjsch lat∑N

i=1 wi

(15)

wnice0 = 1024

wnicei−1 = 1.25wnicei

wi in equation 15 is the weight of Pj assigned by CFS, and changes directly based on the Pj’s
nice value. For example if there are two tasks A and B running on a single CPU machine
and both have a default nice value of 0 then each receives 50% of the total CPU time. If task
A’s nice value is changed to −1 then it receives 55% of the CPU time and task B receives
45% of the CPU power.

Now we compute the unhappiness values experienced by a customer in a system with
CFS scheduler. Assuming that all running processes have their default nice value of zero,
we have:

q(Pj, N) =
1024 sch lat

1024 N
=

sch lat

N
= q(n) (16)

Assume that there are N − 1 running processes in the run queue and an interactive
task Pj is sleeping. Assume a customer sends request R to Pj. Pj wakes up and enters
the run queue. Now we compute the minimum unhappiness that may be experienced by
the customer. In the best case scenario, it is possible that CFS changes the vruntime of
Pj such that it is placed in the left most leaf of the R-B tree and it then may preempt
the current running process. Please note that now the number of running processes is N .
Assume that Pj needs τ seconds to finish processing the request. If τ ≤ q(N) then Pj can
finish processing the request without interruption and returns a response to the customer
and the total unhappiness value is zero.

UR
min = 0 (17)

Now we assess a typical scenario where τ > q and the interactive task blocks to receive
a service from service task Ps. We assume that the system parameter α = 0, and when
Pj blocks, it transfers all of its unhappiness to Ps. At this time Ps enters the run queue
so the total number of running jobs does not change. Additionally we also assume that no
other task enters or leaves the run queue while the request R is being serviced. So the total
number of running tasks is always N . Assume that Pj needs τ1 seconds for processing the
request R before blocking and requesting service from Ps, and Ps needs τ2 seconds to return
the requested service to Pj, and Pj needs another τ3 seconds to return a response to the
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customer. To simplify the computation we use τ = τ1 + τ2 + τ3. The total unhappiness
experienced by customer due to this request is:

UR = (
τ1

q(N)
− 1)(N − 1)− τ1 + (

τ2

q(N)
− 1)(N − 1)− τ2 + (

τ3

q(N)
− 1)(N − 1)− τ3

= (N − 1)(
1

q(N)
(τ1 + τ2 + τ3)− 3)− (τ1 + τ2 + τ3)

= (N − 1)(
1

q(N)
τ − 3)− τ (18)

4 Scheduling Based on Unhappiness Values

Up to this point, we have developed a model which can give us an indication of how an
OS performs regarding the requests it receives from different customers. Interstingly, the
way we have defined unhappiness, and compute its value, and the way it is inherited by
processes, highlights the dependency between processes which are responsible for a particular
request. We can look at this as a way of coloring a process dependency subgraph which is
involved in responding to a particular request, and finding the process which creates the most
unhappiness value at the current time. The objective is to minimize system unhappiness. The
very first idea to achieve this is to find the request which creates the maximum aggregated
unhappiness and allocate the CPU to the processes responsible for serving that request. In
theory we can achieve this by performing the following steps.

1. We assume that, there are two queues in the system. One for unhappy processes which
is called Q0 and the second queue for regular processes which is called Q1.

2. All processes with nonzero unhappiness values are placed in Q0 and processes with
zero unhappiness values are placed in Q1.

3. Q0 has an absolute higher priority than Q1, so there should be no processes in Q0

before processes in Q1 can be executed.

4. In order to determine which process to execute next from Q0, the scheduler first com-
putes the unhappiness values for all pending requests in the system.

5. Based on the requests’ unhappiness values computed in the previous step, the scheduler
chooses the request with the highest unhappiness value.

6. The scheduler then, checks all processes responsible for that request. In other words
it checks the dependency subgraph of the processes that are servicing that particular
request and chooses the process with the highest unhappiness value to run on the CPU.

7. Processes in Q1 are executed based on a regular system scheduling algorithm for ex-
ample Linux CFS scheduling algorithm.

8. When a new process is created it should be given a nonzero unhappiness value so that
it has a chance to start faster, then if it does not serve requests, it is moved to Q1.
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5 Request Based Priority Elevation for CFS

Unfortunately, implementing the simplest version of the proposed algorithm in Section 4
requires that the scheduler detects all requests to all processes, and also requires detecting
responses from processes to customers. At present detecting a response from a process to
a particular request seems to be impossible without process cooperation. As a result of
facing these difficulties, and in order to create a proof of concept implementation, we decide
to take a simplified approach. We begun by observing a typical Linux desktop which was
also configured as a small web server. This system had a Linux kernel version 2.6.31 and
hence it uses CFS scheduler. We used SystemTap [6] and strace [5] to trace system calls
and interprocess communications. We observed that most of the requests from a desktop
user is passed to processes through UNIX sockets. Desktop components also mostly use
UNIX sockets to communicate with each other [2, 3]. Requests from remote customers also
enter the system through network sockets. Based on these observations we propose a simple
priority elevation technique in Linux kernels with CFS scheduler to approximately minimize
system unhappiness as defined in Section 2.

1. Assume that each process receives the incoming requests through a non-zero socket
read.

2. Since a pending request increases system unhappiness, whenever a process receives a
request (non-zero socket read), scheduler should increase its priority or CPU share.

3. The process should be able to maintain it’s elevated priority until it sends a response
to the customer. But, as we can’t detect the exact time when it sends a response back
to the customer, scheduler decays the elevated priority in time.

4. In order to minimize interaction with regular system scheduling, we change the amount
of priority elevation and decaying speed based on the system load. As the system load
increases, an eligible process receives higher priority and retains this higher priority for
a longer time. This is based on the fact that when a Linux OS with CFS scheduler has
a higher load, each process receives a smaller share of the CPU time [10, 12]. So, in
order for a given process that receives a request to be able to respod to the request as
if there is little or no load on the system, it should receive a larger share of CPU time
relative to other processes. By increasing its priority more aggressively under heavier
loads, we allocate more CPU time to such a process, as a result, it has a better chance
to finish its computation and return a respond to the request in a shorter time interval.

In the rest of this paper we refer to this method by its abbreviation CFS/RBPE.

5.1 Unhappiness Values for CFS/RBPE

In this subsection we compute theoretical unhappiness values for the priority elevation tech-
nique as we did for other schedulers in Section 3. Again we consider two scenarios under this
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scheme and compute the amount of unhappiness observed by the customer. The assump-
tions are mostly the same as what we assume in Section 3.3. There are N − 1 tasks in the
run queue of a single processor machine. Task Pj is an interactive job which is sleeping. A
customer sends a request R to Pj. It wakes up and is inserted in the run queue. Assume
that priority elevation mechanism detects the request and uses negative nice value −nice,
such that −15 ≤ −nice < 0 to increase Pj’s priority. Assume that elevated priority decays
with a speed of 1 nice level per each d seconds. Pj needs τ seconds to finish computation
and return a response to the customer, and d < τ . As we explained in Section 3.3, each
negative nice level increases the task’s weight to 1.25 times its previous value. So if there
are N tasks including Pj in the run queue and Pj has a negative nice value −nice then the
following relations hold:

q(Pj, N) =
1.25nice sch lat

N − 1 + 1.25nice

q(Pi6=j) =
sch lat

N − 1 + 1.25nice
(19)

Assume τ 6 1.25nice sch lat
N−1+1.25nice then as CFS enqueues an interactive task into the left of R-

B tree, it is possible that Pj finishes computation and returns a response to the customer
within this time period. This means that, it is possible that the customer observes zero
unhappiness.

UR
min = 0 (20)

Now, let us consider a typical scenario where τ > 1.25nice sch lat
N−1+1.25nice = q and Pj also needs

a service from process Ps. We also assume that Pj first requires τ1 ≈ Z1q seconds before it
blocks for service from Ps. Ps requires τ2 ≈ Z2q to provide service to Pj, and eventually Pj

requires another τ3 ≈ Z3q to return a response to the customer. Also assume that d 6 q,
so Pj and Ps nice levels increase almost every time it is rescheduled after it is set to −nice
by the scheduler. For simplicity we also assume that Z1, Z2, Z3 6 nice + 1. Based on these
assumptions the amount of unhappiness observed by customer is:

UR = (

Z1−2∑
i=0

(N − 1)sch lat

N − 1 + 1.25(nice−i)
−

Z1−1∑
i=1

1.25(nice−i)

N − 1 + 1.25(nice−i)
)

+ (

Z2−2∑
i=0

(N − 1)sch lat

N − 1 + 1.25(nice−i)
−

Z2−1∑
i=1

1.25(nice−i)

N − 1 + 1.25(nice−i)
)

+ (

Z3−2∑
i=0

(N − 1)sch lat

N − 1 + 1.25(nice−i)
−

Z3−1∑
i=1

1.25(nice−i)

N − 1 + 1.25(nice−i)
) (21)

Assuming the total time needed to return a response to the customer is τ , then we have
τ = τ1 + τ2 + τ3. Note that the CPU time that Pj and Ps receive is approximately the total
execution time that they need to return a response to the customer request, so:

τ =

Z1−1∑
i=1

1.25(nice−i)

N − 1 + 1.25(nice−i)
+

Z2−1∑
i=1

1.25(nice−i)

N − 1 + 1.25(nice−i)
+

Z3−1∑
i=1

1.25(nice−i)

N − 1 + 1.25(nice−i)
(22)
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And we can write UR as the following:

UR =

Z1−2∑
i=0

(N − 1)sch lat

N − 1 + 1.25(nice−i)
+

Z2−2∑
i=0

(N − 1)sch lat

N − 1 + 1.25(nice−i)
+

Z3−2∑
i=0

(N − 1)sch lat

N − 1 + 1.25(nice−i)
− τ

(23)
Please note that the above calculations are based on the assumption that all communi-

cations/requests between processes are performed using network or UNIX sockets. Based on
our observation this is a valid assumption for most Linux desktop applications/components.
Another fact is that most transactions need more than just one read operation. For example
a simple click on a link in a web browser causes many UNIX socket read system calls both
in the web browser and the X server before a new page is displayed on the screen. This in
effect causes the active processes in the transaction (in this case web browser and X server) to
receive the −nice value multiple times. It means that in practice, they have higher priority
for a longer period of time than what we compute here.

5.2 CFS vs CFS/RBPE

In this subsection we compare and discuss unhappiness computations for CFS scheduler and
CFS with RBPE. As we see in sections 3.3 and 5.1 the minimum unhappiness values for the
best scenarios in both cases are zero. So at the very minimum we can see that in theory our
proposed RBPE scheme does not make the situation worse. We can note that there are two
conditions for the best case scenarios with the resulting zero unhappiness. These conditions
are:

τ 6
sch lat

N
For CFS. (24)

τ 6
1.25nice sch lat

N − 1 + 1.25nice
For CFS/RBPE. (25)

As 1.25nice

N−1+1.25nice > 1
N

clearly under CFS/RBPE, Pj has more time to respond to the request
before it is preempted than under CFS. So, there is higher possibility under CFS/RBPE that
a request being responded without encountering any unhappiness.

For typical scenarios in both cases again we have:

UR = (N − 1)(
τ

sch lat
− 3)− τ For CFSand (26)

UR = (N − 1)sch lat(

Z1−2∑
i=0

1

N − 1 + 1.25(nice−i)
+

Z2−2∑
i=0

1

N − 1 + 1.25(nice−i)

+

Z3−2∑
i=0

1

N − 1 + 1.25(nice−i)
)− τ For CFS/RBPE (27)

In the CFS/RBPE case, as a result of higher priority for Pj and Ps, other tasks have less
CPU time, so the resulting UR value is less than that of CFS case.
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6 Implementation

While we were using SystemTap [6] to observe process/OS interactions and behaviors, we
found it extremely powerful to write simple scripts which can be used with different kernel
versions without almost any modification. So, in order to implement a simple Request Based
Priority Elevation (RBPE) mechanism as a proof of concept for our customer appeasement,
we decided to use SystemTap in its Guru mode. When used in this mode, SystemTap
enables parsing of expert-level constructs like embedded C. So it basically enables us to
write C code and insert it into the kernel as a kernel module, effectively modifying a running
kernel without directly modifying kernel source code or recompiling it.

We use systemTap to create a list of process (PIDs) that recently have called a socket
related receive/read system call with nonzero return value. Assuming this call means that
the associated process has received either a direct or indirect request from a customer, we
increase its priority. The exact negative nice value used to increase the process priority
depends on the system load. The higher the system load the lower the negative nice value.
The applied negative nice value along with a time stamp is saved in a list with the associated
process PID. We call this list elevated priority process list (EPPL). There is a time delay after
that we increase the negative nice value of the processes which are in the EPPL, effectively
reducing their priority. The exact value of this time delay also depends on the system load.
During our process behavior observation period, we noticed that, the majority of processes
waiting for an input, use the poll system call periodically. We changed the poll system call
and use it as a point to check the current system status and update the state of the processes
which are in the elevated priority list. Each time a poll is called, we check EPPL and increase
the nice value by one for each process that has passed its delay time. We then enter the
new nice value with a new time stamp into the elevated process list. For each process in the
list, this action will continue until the nice value becomes zero, at that point the process is
deleted from the list. We adjust the values of initial nice values and delay time, based on the
system load during poll system calls. If system load is very low, the RBPE mechanism does
not interfere with the regular CFS scheduling decisions, but, as the system load inceases it
interferes aggressively, as mentioned earlier. Table 6 shows the initial nice vales and delay
times at different system loads in the current version (0.5) of our script.

In our implementation we discriminate local and remote users by giving higher priority
to processes receiving requests through UNIX sockets relative to those processes receiving
requests through network sockets. This is implemented by using two initial negative nice
values. One with a lower value for processes that use local UNIX sockets and one with
higher value for processes that use network sockets to receive requests. All of these values
are presented in Table 6.

Although this method of implementation might have a higher overhead, but as we see in
Section 7, it has very promising results for real world applications.
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avenrun[0] ≤ -nice1 (UNIX sockets) -nice2 (Network sockets) Time Delay (ms)
1600 0 0 0
3000 -1 0 200
5000 -2 -1 300
8000 -4 -2 400
12000 -6 -3 500
16000 -7 -4 600

> 16000 -15 -5 600

Table 1: RBPE script, nice and time delay values. avenrun[0] is a kernel variable which
represents system’s 1 minute load.

7 Experiments

To test our CFS/RBPE technique, we performed multiple tests. As we intend to show that
our scheduling paradigm does not focus on interactive applications, we have performed server
based performance tests as well as regular interactivity/multimedia tests. Server based tests
include Apache web server [1] performance test and Mysql data base server [4] performance
tests. We choose these two servers as they are very popular. In fact many Linux based
servers use Apache, Mysql and PHP to support different weblog, wiki or multimedia hosting
services.

7.1 Hardware/Software Set up

All tests are performed on an IBM (R) IntelliStation M Pro with Intel P4 2.8GHz CPU and
1GB of RAM running Fedora 12 with Kernel 2.6.32.

In order to simulate different background system loads we compile Linux kernel and use
different -j values with the make command to initiate different parallel compilations.

7.2 Apache Web Server Response Test

As a first test to measure server based application performance we measure the response
time of Apache web server under different system loads. The web server hosts a directory
structure of files. We use a second machine and wget command to download the complete
directory structure from the web server. We use shell time command to measure wall clock
download times under different simulated load conditions. For each simulated load value
we repeat the experiment 3 times and compute the average download time for that system
load. As we see in Figure 7.2, both CFS and CFS/RBPE have the same response time for -j
values up to 2 after that point CFS/RBPE has consistently lower response times. When -j
value equal to 30 is used Apache web server is almost 1.5 times slower when it is run under
CFS than under CFS/RBPE.
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Figure 1: Download times in Seconds from an Apache web server under different simulated
load values.

7.3 SysBench Mysql Data Base Test

As a second server based software, we test Mysql response times under different background
load conditions. We use Stench [16] to evaluate and compare Mysql data base performance
under Linux CFS [10, 12] and CFS/RBPE scheduling policy. Stench is a multi-threaded
benchmark tool which can evaluate OS parameters important for a system running on a
data base server under heavy load. We use Stench default parameters for its OLTP complex
configuration. During each experiment Stench executes many read and write transactions on
the Mysql data base server, and then gives the average transaction time. Each experiment
runs for 120 to 250 seconds under different simulated load conditions. We change experiment
times in order to have around 3000 transactions per each experiment. The reason is that,
when system load increases the total number of transactions in a fixed time interval decreases.
So we increase the experiment time to have almost equal number of transactions for each
experiment. This gives us a better average transaction time in all experiments. Figure 7.3
shows the average transaction time in milliseconds under different simulated load conditions.
Load conditions were simulated by running a Linux kernel compilation job with different -j
options to the make command as in the previous test in Section 7.2.

As we see in Figure 7.3, the average Mysql tarnsaction time under CFS/RBPE increases
first as -j value increases to 1 (meaning from no load to one parallel kernel compilation)
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Figure 2: It shows the average transaction times in milliseconds under different simulated
load conditions. The X values are -j values passed to the make command to specify number
of parallel compilations to initiate.

but, then it decreases when parallel compilation increased to two and three. This is because
RBPE does not interfere with the usual CFS scheduling when system load is low. When
the system load increases RBPE is involved and as we see in Figure 7.3, it boosts Mysql
performance so that its average transaction time is almost constant near 40 milliseconds.
In contrast, under CFS scheduling, Mysql average transaction time increases as system load
increases. When we use a -j value of 12, the average transaction time reaches 85 milliseconds
which is more than two times that of CFS/RBPE.

The results of the experiments in this section and the previous section indicate that
the proposed scheduling paradigm in this paper is not a method to just boost desktop
interactive applications response time. This mechanism can boost the performance of any
request/response based transaction in the system.

7.4 Interactivity/Multimedia Test

In order to test and compare the performance of interactive/multimedia applications under
CFS and CFS/RBPE schedulers, we use mplayer in benchmark mode. In this mode mplayer
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Figure 3: This figure compares the frame rate drop when mplayer is playing an mpeg movie
clip and a simulated background load was increasing.

prints out the number of dropped frames and average frame rate after it finishes playing a
multimedia file. We use a short mpeg clip of size 352 x 288 pixels, which runs for about
150 seconds. The clip frame rate is 25 frames per second. Again we simulate the system
load with parallel compilation of Linux kernel and use make -j with different values for -j to
control the number of parallel makes.

For each -j value the experiment is repeated three times and the average value of dropped
frames is depicted in Figure 7.4. As we see in this graph under CFS/RBPE the frame drop is
almost zero for all load values up to -j 12. Under CFS the number of frame drops significantly
increases after -j 4.

We also depict the average frame rate of mplayer for CFS and CFS/RBPE under different
simulated load levels. As we see in Figure 7.4, mplayer frame rate drops to almost 8 frame
per second under CFS when 12 parallel compilation is running, while at the same load level
CFS with RBPE shows almost no frame rate reduction.

This experiment shows the effectiveness of CFS/RBPE on a typical multimedia or stream-
ing application. As Figures 7.4 and 7.4 indicate, basically the movie is not viewable when
-j value reaches 5 on our system with CFS scheduling. In contrast a viewer can still enjoy
watching a movie on the same system if CFS/RBPE scheduling is used even if make -j with
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Figure 4: Demonstrates frame rate change due to system load under CFS scheduler and
CFS/RBPE.

value of 12 is used for compiling a linux kernel at the same time.

8 Concluding Remarks

In this work we introduce a new policy for CPU scheduling. This policy is based on tracking
requests sent by customers to different processes and their response to the requests. We
assume that a computer system should allocate its resources such that the customers do not
experience excessive delays. We have defined a model which can be used to analyze and
compare different scheduling algorithms based on this assumption. This model considers
delays resulted from processes dependencies. When a requests arrives at the system, one or
more processes are responsible to execute the request and return a response to the customer.
We detect the request and the processes which are responding to the request by tracking
interprocess communications. We have a minimal implementation on top of Linux CFS
scheduler [10, 12] as a proof of concept which increases the priority of the processes involved
in a response to a customer request. Our experiments show that this mechanism is not only
effective for improving interactive/desktop applications performance under heavy system

21



load, it is also effective for improving server applications under heavy background load.
Experiments with Apache web server and Mysql data base server in Sections 7.2 and 7.3,
show significant performance boost for these server applications under heavy background
load. A server background load may be the result of disk indexing, data base indexing, log
rotation, log analysis, etc.

One of our goals is to make the implementation simple, easily portable to different Linux
kernels and distributions, and easy to use for a novice user. In order to achieve this, we
use SystemTap [6]. SystemTap has made our implementation a simple script which can be
run on any SystemTap equipped distribution with a compatible kernel without the need to
recompile and install a new kernel. There has been a debate and disagreement among kernel
development community on whether to support SystemTap or not [7]. If the support for
SystemTap is dropped by its main developers then as far as we know there is no alternative
for a fast and easy to use implementation as we have done in this work.

Some of the possible future works are:

1. Integration of the implementation with the Linux kernel instead of using SystemTap.

2. Extending the proposed CPU scheduling paradigm to disk scheduling in the sense that
higher priority process also get higher priority disk access.

3. Studing the effects of adding other interprocess communications like pipes to the im-
plementation.

4. Adding other mechanisms to detect arrival of a request to the system.

5. Finding ways to give different weights to different requests from a specific customer.

6. Studing the usage of proposed mechanism in managing resources used by different
virtual machines on one real machine.
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