
Image-Guided Fracture

David Mould

Department of Computer Science
University of Saskatchewan

Abstract
We present an image filter that transforms an input line

drawing into an image of a fractured surface, where the
cracks echo the input drawing. The basis of our algorithm
is the Voronoi diagram of a weighted graph, where the
distance between nodes is path cost in the graph. Modi-
fying the edge costs gives us control over the placement
of region boundaries; we interpret region boundaries as
cracks. The rendering of our crack maps into final images
is accomplished either by image analogies or by modula-
tion of an uncracked texture.

Key words: Non-photorealistic rendering, fracture, tex-
ture synthesis

1 Introduction

Non-photorealistic rendering typically aims to reproduce
a traditional artistic style or medium, and the styles and
media reproducible on the computer have proliferated. A
parallel thread of research has aimed at sculpting nat-
ural phenomena into specific shapes and images. For
example, the target-driven smoke of Fattal and Lischin-
ski [1] allowed users to specify a target shape to be
crafted of smoke. Though not usually identified as non-
photorealistic rendering, this second thread of research
has much in common with NPR. It seeks to provide al-
ternative media which artists can employ to create new
images, and it has the twin goals of, first, producing a rec-
ognizable representative of the phenomenon in question,
and second, being controllable enough that an artist’s vi-
sion can be realized. We share these goals.

Fracture is a specific natural phenomenon which has
seen attention from the graphics research community.
Much work on fracture has concentrated on fragmenta-
tion of three-dimensional objects. However, for many
cracks commonly seen in everyday life (such as cracks on
pavement and on sidewalks), the cracked object appears
reasonably intact; the crack is chiefly perceptible as a sur-
face phenomenon. Because cracks are sharp edges, they
are suitable for communicating simple line art images,
provided that cracks can be placed at the proper locations.

In this paper, we present research which aims to syn-
thesize easily controllable crack patterns. We use the

well-known Voronoi diagram as the basis of our algo-
rithm; we can guide crack placement by modifying the
distance metric in specific ways. Our crack patterns are
created in image space, and we expect that the usual way
to incorporate them into a synthetic scene would be to
apply them as textures.

We call the methodimage-guidedbecause we use user-
specified images to guide the placement of cracks: the
input image will be rendered using cracks. Ideally, the
image should be a line drawing or similar; text qualifies.
The cracks populating the output image are likely to lie
along the lines. Our main contribution is the algorithm
which places the cracks.

The remainder of this paper is organized as follows.
We have a description of related work in NPR and in
fracture simulation. We describe our crack generation
algorithm in detail: first the use of the discrete Voronoi
diagram, then the modifications to edge weights which
enable control over region boundaries. We suggest two
methods for rendering – image analogies and intensity
modulation – and show several examples of the result-
ing images. Finally, we discuss the results and give some
ideas for future improvements.

2 Background

Numerous researchers have undertaken physical simula-
tion to model cracking. Approaches include mass-spring
systems, finite element models, and continuum mechan-
ics. There has also been some work on generating crack-
like images without recourse to simulation; in particu-
lar, the batik work by Wyvill, van Overveld, and Carpen-
dale [16] is similar in spirit to our own, being concerned
both with realistic-appearing cracks and with bringing
cracks into the realm of non-photorealistic rendering.

We will first mention some of the results arising from
the physical simulation side. Terzopoulos et al. [14]
model elastic deformation with mass-spring systems, and
this work was a precursor to the later work by Terzopou-
los and Fleischer [13] which extended the approach to
plastic deformation and fracture: when a spring stretches
beyond its elastic limit, it breaks. Norton et al. [9] and
Mazarak et al. [6] take similar approaches, attaching vox-



els together with springs which break when the local pres-
sure or force exceeds a designated yield limit. The model
of Norton et al. is used to produce an animation of a
teapot being smashed, while that of Mazarak et al. is used
to generate 3-D debris from explosions. Hirota, Tanoue,
and Kaneko [4, 5] also use a mass-spring system; their
work produces images and animations of crack patterns.
Federl [2] explores the use of both mass-spring systems
and finite element approaches to synthesize fracture pat-
terns on growing surfaces. M̈uller and Gross [7] give a
powerful real-time method for simulating elasticity, plas-
ticity, and fracture, which obtains an enormous increase
in speed by using a multiresolution simulation.

Brittle fracture was investigated by Neff and Fiume [8]
and by O’Brien and Hodgins [10]. In these cases, the re-
searchers treat the situation where an object fails spectac-
ularly and catastrophically, being reduced to fragments.

The physical models tended to be slow and difficult to
control. Although most of the physically-based methods
could be made faster by reducing resolution, unpleasant
aliasing occurs when the resolution is too far reduced,
since cracks appear at the element boundaries. Müller
and Gross’s multiresolution simulation is fast; however,
their system still does not address the issue of control over
crack placement.

We have situated our work with non-photorealistic ren-
dering. Cracks have been treated in an NPR context be-
fore: the batik project of Wyvill et al. [16]. These au-
thors avoid physical models, preferring to use the dis-
tance transform; their approach is most similar to our
own. They had good success at modeling cracks in wax,
imitating the appearance of traditional batik crafting. Our
approach addresses a different problem than theirs, in that
we seek to secure detailed control over the placement of
individual cracks.

Voronoi diagrams have been used for pattern synthe-
sis previously, notably by Worley [15] who postulated
a general texture synthesis primitive based on the nth-
order Voronoi diagram. Although Worley did not ex-
plicitly address the use of his primitive for cracks, it
is clear from the examples he provided that crack pat-
terns can be generated using his technique. Voronoi di-
agrams were also suggested by Raghavachary [12] as a
lightweight way of producing realistic-looking cracks.
In Raghavachary’s method, Voronoi sites are scattered
across the polygons of an input mesh, and the Voronoi
diagram computed. Cracks are produced either by inter-
preting all Voronoi boundaries as cracks, or by explic-
itly tracking the progress of a crack through the network
– choosing a new edge to proceed along when a vertex
is reached, and terminating the crack when it reaches a
mesh boundary or a previously existing crack.

Figure 1: Pavement images. Top left, real pavement; top
right, synthetic pavement. Bottom, the conference title as
pavement cracks.

Our method uses a modified form of the Voronoi dia-
gram, where instead of partitioning a plane we partition
nodes in a graph, and our distance metric is path cost
within the graph. The graph’s edges are weighted, and
the edge weights afford us some control over the region
shapes. We attempt to produce realistic crack patterns,
and have met with reasonable success here, though we
have not exceeded the successes of previous researchers.
What we have done as well, though, is to give control
over the crack placements sufficient to allow an arbitrary
line image to appear in the cracks, which to our knowl-
edge no one has previously done. We give a preview of
our results in Fig. 1, showing the two goals: realistic-
seeming cracks and image-guided cracks.

3 Basic fracture algorithm

The basis of our algorithm is the well-known Voronoi di-
agram. In our case, we use path distance through a graph
rather than the more usual Euclidean distance.

We give a formal definition of Voronoi diagrams, fol-
lowing O’Rourke [11]. Choose a collection of points
P = {p1, p2, ..., pn} on the plane; call the pointsP the
sites. Then, partition the plane into regions based on
which site is closest:

V(pi) = {x : d(pi ,x)≤ d(p j ,x),∀ j 6= i},



whered(x,y) gives the distance between pointx and point
y. In our case, the distance in question is the cost of the
shortest path through a graph. We interpret the bound-
aries between regions as cracks.

Our graph is a regular 4-connected lattice where each
node is a texture pixel. We have a set of noise values{N}
such that each nodei has a corresponding valueNi . The
cost of an edge linking nodesi and j is

ei j = α max(Ni ,Nj)+ β (1)

for some constantsα,β . In practice, almost any positive,
nonzeroα andβ will suffice. The larger the ratioα/β ,
the more random the crack network becomes – that is,
the effect of using nonzeroα is to cause the cracks to
deviate from straight lines. In this paper, we consistently
usedα/β = 6. The noise values are in the range{0,1}.
See Fig. 2 for a depiction of the Voronoi diagram and our
derived crack pattern after adding noise.

We achieve local control by making local adjustments
to the edge weights, according to the information con-
tained in a user-specified imageI , the same size as the
output crack texture:

ei j = α max(Ni ,Nj)+ β + γ max(Ii , I j), (2)

where γ is the guide parameter, governing the weight
given to the image. The image is most visible withγ con-
siderably larger thanα +β , sayγ/(α +β ) = 4; however,
lower values forγ will provide some guidance as well.
Just as with the noise values, the image values range over
{0,1}.

We explain the use ofγ and equation 2 in establishing
control over crack placement in section 4. First, however,
we give a brief description of our implementation of the
Voronoi computation.

3.1 Implementation notes
We use breadth-first search to compute Voronoi regions.
At every step of the algorithm, we have a “frontier”: a
set of nodes not yet in any Voronoi region, but adjacent
to a node in some region. Each node in the frontier has
an associated path cost: the smallest distance to a site
among paths considered so far. We take the node from
the frontier with the smallest path cost; call this nodes.
We adds to the appropriate region, and potentially add
its neighbours to the frontier. For each neighbour ofsnot
already in the region, sayr, we compute a new distance
d(r), which isd(s) plus the cost of the edge connecting
s andr. If the new distance is smaller than the distance
previously associated withr, or if r was not yet in the
frontier, we addr to the frontier along with its new cost
d(r).

The algorithm begins with a frontier consisting of the
sites, all at distance zero, and continues until the frontier

Figure 2: Comparison between the regular Voronoi dia-
gram and the noise-Voronoi diagram.

Figure 3: Basic cracking algorithm. Right, scattered
sites; left, multiresolution site placement.

is empty. When the algorithm terminates, all nodes in the
graph will have been assigned to a region.

By implementing the frontier as a heap, we limit the
insertions and deletions to O(logm), for m nodes in the
heap. Usuallym� n for n nodes in the graph; certainly
m is no larger thann. Each node can be inserted into and
removed from the heap at most once, giving us a com-
plexity of O(nlogn) in the worst case, and more typically
not much larger than O(n). Note thatn is the number of
pixels in the output texture, and we should not expect to
do better than O(n) (we need to touch each pixel at least
once to set its value).

3.2 Crack widths
We also want to have some variation in crack widths: a
given crack should taper along its length. We achieved
this by relating the crack width to its distance from the
generating site; the further the site, the wider the crack.
Enforcing this connection had the beneficial effect of
placing additional emphasis on the cracks within the im-
age edges, since those cracks come from Voronoi bound-
aries in expensive regions of the graph, with correspond-
ingly high path cost.

Real cracking patterns sometimes exhibit multiscale
cracking: earlier, more widely spaced cracks divide re-
gions containing smaller and more closely spaced cracks.
We can straightforwardly obtain multiresolution cracks
within our framework, as follows. We choose a few sites



Figure 4: Some cracked words. Above, the original im-
age and the Voronoi sites and region boundaries; below,
the resulting crack pattern.

and obtain a crack map, use the resulting map to modulate
the weight values, and select a new (larger) set of sites for
a new crack map. The results are shown in Fig. 3, where
the regular crack map is on the left, and a 3-level mul-
tiresolution crack map is on the right.

4 Controlling crack placement

We are able to exercise control over the crack place-
ment chiefly by adjusting the edge costs in the underlying
graph. A second form of control involves changing the lo-
cations of the Voronoi sites. Automatic mechanisms for
placing Voronoi sites to produce images are not available,
although local details can be created by manipulating the
site placements by hand. However, some global effects
can be accomplished by adjusting the distribution of sites
and automatically choosing sites from the distribution.

We typically alter the edge costs according to the val-
ues in an input image – the image-guided cracking of this
paper’s title. We discuss this topic in the following sub-
section. Subsequently, we give some examples of simple
effects made possible by modifying the site distribution.

4.1 Image-guided cracks
We have caused cracks to wander by using a quantity of
additive noise on our edge costs. However, the results of
doing so are not dramatically different from modifying

the straight-line cracks after the fact. The main benefit of
modifying edge costs comes when we do so in a struc-
tured way.

The most general means of modifying edge costs
comes from using an image to do so, as in Equation 2.
We have had most success by using binary images: edges
which lie within the foreground of the image have their
costs increased by some quantity, while edges in the
background of the image do not. Under this edge cost
system, if an area of the graph has high cost, it is likely to
contain Voronoi edges. We next give some intuition as to
why this is so, following our incremental implementation
from section 3.1.

The graph edges in the image foreground have in-
creased cost. Therefore, the cost of crossing a foreground
area becomes prohibitive, so that a region entering from
one side is not likely to complete the crossing before an-
other region’s expansion reaches it from the other side.
When the two Voronoi regions do meet, it is in the middle
of the costly foreground area, and the resulting boundary
is interpreted as a crack.

Fig. 4 shows the Voronoi sites and region boundaries as
an overlay on the input image; the region boundaries can
be seen to preferentially occur within the image edges.
That is, the cracks approximately follow the edges in the
input image where possible, and otherwise wander in the
usual cracking style. The guided edges sometimes fol-
low paths which are not physically plausible; in partic-
ular, the curved paths along the S, D, and O characters
are unlikely. The ability of physically-based methods to
generate such paths is limited, while our method is able
to satisfy the instructions of the user.

4.2 Fracture distribution

Both the number of sites (global density) and their dis-
tribution (local density) affect the final appearance of the
crack pattern. We can create a pattern akin to pavement
cracks by using a few sites distributed entirely randomly
across the image, as shown in Fig. 1. Alternatively, we
can deviate from a uniform distribution in the interest of
other effects. Fig. 5 shows two of the possibilities. An
effect like dehydration cracking of mud is obtained when
the sites are distributed evenly over the image. When the
local density is higher near the center, the cracks are clus-
tered more closely, and the effect suggests that an impact
took place near the image center.

We have not made much use of local density variations
in obtaining our non-photorealistic effects. We typically
used 150-200 sites uniformly distributed over the image.
Nonetheless, purposefully varying the density remains a
possibility for exerting some control over the crack pat-
terns.



Figure 5: Different crack patterns obtained by manipulat-
ing the site distributions.

5 Rendering

Having obtained crack locations, we should make a rea-
sonable texture from them. One method for doing so is to
employ a texture transfer process, such as that supplied
by image analogies. Another method is to modulate an
existing texture based on distance from the crack loca-
tions. The first method provides more visually pleasing
results, but the second is considerably faster. We discuss
both methods in turn.

5.1 Texture transfer
Texture transfer involves extracting the texture from one
image for application to another. In our case, we want to
take the texture from some cracked material so that we
can apply it to the automatically generated crack maps.

We took photographs of cracked materials and marked
each pixel as either crack or non-crack. The output from
our own crack generation process is a binary image, also
specifying each pixel as crack or non-crack. Theimage
analogieswork of Hertzmann et al. [3] provides a mech-
anism for applying the texture of the original photograph
to the structure of the crack map.

Image analogies operates as follows. Given an analogy
A:A’, and an image B, the program attempts to learn a fil-
ter representing the transform A→A’ so that the filter can
be applied to B, producing B’. Our initial pair consists of
the original photograph (A’) and the derived crack map
(A); B is the crack map generated by our method; and the
final desired texture is B’. A specific analogy is shown
in Fig. 6, and produced the pavement cracks previously
shown in Fig. 1. Some additional results from apply-
ing image analogies to our crack generation problem are
shown in Fig. 7, with different cracking patterns done in
stone and ice styles.

5.2 Texture modulation
The textures produced by image analogies are appealing,
but the processes of learning the filter and synthesizing
the texture B’ are slow. More troubling, the image analo-
gies process is sensitive to small changes in the input

Figure 6: Image analogy for pavement cracks. Left to
right: A:A’::B:B’. A’ is a photo of real pavement, A is the
derived crack map, and B is a synthetic arrangement of
cracks.

Figure 7: Textures transferred onto crack paths. Top:
stone texture, with chess pieces. Bottom: ice, with a
frozen smile.

map: thus, for a coherent input sequence, the output se-
quence may lack coherence. This is problematic when
we want to create animations.

In consequence, we implemented a simple alternative
method for obtaining a detailed crack texture: modu-
lating the intensity of an input texture according to the



Figure 8: Cracks rendered by modulating an existing tex-
ture with the crack map.

crack map. Although the results are less attractive than
the analogized textures, there are situations in which the
modulation technique is more appropriate.

The method works as follows. Begin with an input
texture showing the uncracked material, of the same size
as the crack map. Then, for each pixel in the texture,
compute the distance to the nearest crack pixel. Modulate
the intensity by a monotonically increasing function of
distance: for example,

Iout = Iin× (1−eτd) (3)

could be used, for a distance valued and a normalization
factorτ. In practice, it is not necessary to visit every pixel
of I , only those sufficiently close to a crack pixel that they
risk having their intensity reduced. Each crack pixel can
broadcast its presence within a small neighbourhood, and
any texture pixel which lies outside all such neighbour-
hoods can be left untouched.

In Fig. 8 we show a modulated texture. As stated pre-
viously, the cracks are not as compelling as those gen-
erated by image analogies. Also, the technique is more
restricted, in that it produces only dark cracks; for situa-
tions such as cracks in a mirror, or the ice cracks of Fig. 7,
modulation does not work. However, for those materials
where we would expect to see dark cracks, the modulated
crack patterns are acceptable.

6 Animation

We have so far shown how static crack patterns may be
generated. However, our framework offers two ways of
animating the crack patterns: unconventionally, by ad-
justing the image guide parameter, and in the expected
way, by allowing the cracks to progress across the tex-
ture. We discuss each of these in turn.

Figure 9: Words gradually emerging from the crack pat-
tern.

6.1 Dynamic image content

By increasing the value of the guide parameterγ in equa-
tion 2, we increase the influence of the input image over
crack placement. We have found that in practice the tran-
sition from no influence to strong influence is visually
smooth. Any discontinuities in region adjacency are hid-
den by the width of the cracks. Fig. 9 shows a few frames
from an animation in whichγ is being increased: from
a relatively regular crack pattern, the image slowly shifts
until the text is unmistakably visible.

Each frame is a separately computed texture. Key to
maintaining interframe coherence is that the noise map
and site locations do not change: the only difference is
in the value ofγ. It is possible to accelerate the texture
computation by only recalculating those regions poten-
tially affected by the changedγ, but our implementation
does not exploit this information.

It is possible to interpolate between crack patterns gen-
erated with different underlying images, sayI1 andI2, by
using two dynamicγ ’s: say

ei j = α max(Ni ,Nj)+β + γ1max(I1
i , I

1
j )+ γ2max(I2

i , I
2
j ),
(4)

and obviously we can extend the set of images indef-
initely to obtain an animation sequence. Interpolation
in the construction is crucial for crack images, because
of their large-scale high-frequency content (i.e., promi-
nent edges); the usual alpha blending performs extremely
poorly on such images, creating obvious and distracting
ghosting artifacts.



Figure 10: Words gradually emerging from the crack pat-
tern.

6.2 Fracture expansion
Our crack widths are a function of their distances from
the generating site, with further cracks being wider. We
can simulate the effect of fracture expansion by introduc-
ing a time parameter into the width function. The sim-
plest way of suppressing cracks early in time while al-
lowing the full crack pattern to appear later is to modulate
crack width over time:

w(t) = wmaxmin(t/tmax,1). (5)

Though simple, the preceding equation is effective.
Fig. 11 shows the effect of altering the crack widths,
giving the illusion of a progression of cracking. The
method works best when widely disparate crack widths
are present in the image. When the cracks are all nearly
the same width, the effectiveness of modulation is greatly
reduced; the implicit assumption is that the cracks are all
nearly the same age.

7 Discussion

The chief contribution of this work is the image-guided
crack placement. The user need only supply a binary
image showing the preferred edges, and the system will
automatically produce a crack texture within which the
cracks are aligned with the image edges. The system
has some parameters, such as the number of sites and the
guide parameterγ, but a user need not interact with these
in order to achieve good results.

We also wish to highlight the use of path cost in a graph
as a Voronoi distance metric. Other work using distance
metrics typically uses Euclidean or Manhattan distance,

Figure 11: Cracks progressing across the pavement.

relying on later modification of region edges to escape ex-
cessive regularity. Different pattern formation effects are
possible within the framework of distances in a weighted-
edge graph, which might be seen as an augmentation of
cellular texture. We have not much pursued this possi-
bility here, since our interest in this paper has been in
achieving local nonstationary control over the crack im-
age, and not in texture synthesis per se.

The fact that we generate two-dimensional images
could be seen as a drawback of our system. Much of
the work in physical simulation of fracture has dealt with
fragmentation of 3-dimensional objects. However, real
cracks do not inevitably shatter the object on which they
appear; there exist cases such as dehydration cracking of
drying mud, or a ‘cracked’ glaze, or cracking leather or
skin (e.g., elephant skin). We view our work as a form
of NPR of the image filter type, in which an input image
is transformed into a similar image done in the chosen
artistic style. To our knowledge, no one has yet created
images using cracks as the drawing primitive.

Not all images are amenable to being rendered in the
crack style. We have shown examples using text and line
art, which are the types of images best suited to crack
rendering. Since comparatively few cracks appear in the
final image, effects such as shading and crosshatching do
not translate well. Rather, the best images are those con-
taining simple shapes delineated with bold strokes.

One shortcoming of the system as implemented is that
the graph must be computed at the texture resolution. Al-
though there is scope for a multiresolution approach (the
graph could be refined near the region boundaries) we
have not yet undertaken such. Note, however, that com-
puting the graph at the texture resolution does prevent
aliasing artifacts from becoming prominent – we did not
observe aliasing in any images we synthesized. Note that
the final rendering process can remove aliasing artifacts
which may appear in the crack map.



Lastly, we give a note on timing. We tested our sys-
tem on maps of size 1000×1000 and found that gener-
ating the crack map required approximately 4.7 seconds
on a 1.8 GHz Pentium. For the more typical 400×400
images shown in the paper, the synthesis time was ap-
proximately 0.9 seconds. These times do not account for
the final render, which can be very fast (if crack modula-
tion is employed, sub-0.5 seconds) or very slow (if image
analogies is used, 5-15 minutes).

8 Conclusions and Future Work

At the outset, we gave two goals. First, we sought to
create crack patterns difficult to distinguish from real
crack patterns. Second, we attempted to control the crack
placements so that an image could be seen in the crack
segments. Of the two, the second is more important, since
fracture has been so well studied in computer graphics.

We have given examples showing the plain crack pat-
terns and the image-guided crack patterns. The real pave-
ment in Fig. 1 can be distinguished from the synthetic
pavement chiefly because of differences in the texture
and lighting, and not because of discrepancies in the
crack pattern. The numerous examples of image-guided
crack placement show the cracks lining up with the in-
put edges as instructed. We achieved image-guided crack
placement by computing Voronoi regions on a graph with
weighted edges, and we postulated that using the same
system with different ways of generating edge weights
could be used as a more general pattern synthesis tool.

There is room for improvement in the existing method,
as well as scope for further research directions. We have
cracked only flat surfaces, and may wish to apply cracks
to the surfaces of three-dimensional objects, avoiding dis-
tortion in texture mapping. Our current method could be
adapted to create texture directly on the surface of a mesh,
by sampling the surface with Voronoi sites and nodes for
the graph. That is, nodes would be distributed over the
surfaces to be cracked, with the density of nodes corre-
sponding to the resolution of the crack map; the nodes
would be hooked together (e.g., by a Delaunay triangu-
lation); and weights would be assigned to the resulting
edges. The graph produced by this approach could be
used as input to the cracking algorithm described in this
paper. Note that nothing in the algorithm depends on the
number of edges per node.

We also want to expand the range of images we can
render in crack style. It might be possible to use networks
of very fine cracks to suggest shading and texture, and
thus to produce more nuanced images.

We are interested in further exploring what can be done
with Voronoi regions on the weighted-edge graph. Al-
though the utility of the framework as a general texture

synthesis tool may be limited, there may be additional
phenomena, such as lightning, which can benefit from
being treated by a similar technique.

References
[1] Raanan Fattal and Dani Lischinski. Target-driven smoke

animation.ACM Trans. Graph., 23(3):441–448, 2004.

[2] Pavol Federl.Modeling Fracture Formation on Growing
Surfaces. PhD thesis, University of Calgary, 2002.

[3] Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian
Curless, and David H. Salesin. Image analogies.Proceed-
ings of SIGGRAPH 2001, pages 327–340, August 2001.

[4] Koichi Hirota, Yasuyuki Tanoue, and Toyohisa Kaneko.
Generation of crack patterns with a physical model.The
Visual Computer, 3(14):126–137, 1998.

[5] Koichi Hirota, Yasuyuki Tanoue, and Toyohisa Kaneko.
Simulation of three-dimensional cracks.The Visual Com-
puter, 7(16):371–378, 2000.

[6] Oleg Mazarek, Claude Martins, and John Amanatides.
Animating exploding objects. InProceedings of Graph-
ics Interface ’99, pages 211–218, June 1999.

[7] Matthias Muller and Markus Gross. Interactive virtual
materials. InProceedings of Graphics Interface 2004,
pages 239–246, May 2004.

[8] Michael Neff and Eugene Fiume. A visual model for blast
waves and fracture. InProceedings of Graphics Interface
’99, pages 193–202, June 1999.

[9] Alan Norton, Greg Turk, Bob Bacon, John Gerth, and
Paula Sweeney. Animation of fracture by physical model-
ing. The Visual Computer, 7(4):210–219, 1991.

[10] James O’Brien and Jessica Hodgins. Graphical model-
ing and animation of brittle fracture. InComputer Graph-
ics (SIGGRAPH ’99 Proceedings), volume 33, pages 137–
146, August 1999.

[11] Joseph O’Rourke.Computational Geometry in C. Cam-
bridge University Press, Cambridge, 1990.

[12] Saty Raghavachary. Fracture generation on polygonal
meshes using Voronoi polygons. InSIGGRAPH 2002
Sketches, pages 187–187. ACM Press, 2002.

[13] Demetri Terzopoulos and Kurt Fleischer. Modeling in-
elastic deformation: Viscoelasticity, plasticity, fracture. In
Computer Graphics (SIGGRAPH ’88 Proceedings), vol-
ume 22, pages 269–278, August 1988.

[14] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt
Fleischer. Elastically deformable models. InComputer
Graphics (SIGGRAPH ’87 Proceedings), volume 21,
pages 205–214, July 1987.

[15] Steven P. Worley. A cellular texture basis function. InPro-
ceedings of SIGGRAPH 96, pages 291–294, New Orleans,
Louisiana, August 1996.

[16] Brian Wyvill, Kees van Overveld, and Sheelagh Carpen-
dale. Rendering cracks in batik. InProceedings of the 3rd
international symposium on Non-photorealistic animation
and rendering, pages 61–69. ACM Press, 2004.


