MODELING DENDRITIC SHAPES

Using Path Planning

Ling Xu, David Mould

Department of Computer Science, University of Saskatchewan, Saskatoon, Canada
lix272@mail.usask.ca, mould@cs.usask.ca

Keywords: dendrites, procedural modeling, natural phenomena, path planning

Abstract: We present a method for creating geometric models of dendritic forms. Dendritic shapes are commonplace in the natural world; some examples of objects exhibiting dendritic shape include lichens, coral, trees, lightning, rivers, crystals, and venation patterns. Our method first generates a regular lattice with randomly weighted edges, then finds least-cost paths through the lattice. Multiple paths from a single starting location (or generator) are connected into a single dendritic shape. Alternatively, path costs can be used to segment volumes into irregular shapes. The pathfinding process is inexpensive, and admits control handles including endpoint placement, distribution of generators, and arrangement of nodes in the graph.

1 INTRODUCTION

Dendritic forms are common in nature, and the phenomena manifesting dendritic shapes are exceedingly varied, from the humble to the spectacular: lichens, coral, river systems, and lightning are all examples of naturally-occurring dendritic shapes. The key elements of dendritic forms are the branching structures and the erratic winding travels of individual branches; both these characteristics can be obtained with least-cost paths in randomly weighted graphs, branching because paths to different destinations will share the early part of their route, and winding because the optimal path will have to travel around random expensive obstacles. In this paper, we propose explicit path planning as a modeling primitive for dendritic shapes.

Path planning is the problem of finding the least-cost path between two nodes in a weighted graph. Algorithms for finding the least-cost path (Winston, 1992) are well known, since the problem appears so often in different contexts in computer science. Modeling dendrites using path planning is straightforward: by finding multiple paths from the same starting point to different endpoints, we create a dendrite. By using an entire dendrite as the destination for a new set of paths, we can create explicitly fractal dendrites.

One of the most popular algorithmic methods for creating dendrites is diffusion-limited aggregation (DLA), first proposed in the physics literature by Witten and Sander (Witten and Sander, 1981). DLA has been exploited for dendrite creation in computer graphics. However, methods for simulating DLA are slow. Employing an iterative path planning technique, we are able to produce dendrites comparable in appearance to dendritic shapes produced by a costly DLA simulation, but orders of magnitude more quickly. Some 2D dendrites created by our method appear in Figure 1.

Our basic method operates over a fixed lattice, and lattice artifacts can sometimes be seen in the resulting models, just as in lattice DLA. In this paper, we also present a formulation for refining the lattice and computing a higher-resolution version of the dendrites.

We demonstrate the utility of our framework by applying it to synthesizing coral. In particular, we model staghorn coral, one of the most obviously dendritic types of coral. We believe that our method is suitable for other types of sessile marine life, as well as for other natural objects that are well represented by dendrites, including lichens, trees, and lightning.

The paper is organized as follows. Following the introduction, we review some previously proposed methods for generating dendritic shapes, concentrating on DLA and L-systems. We give details of our
path-planning algorithm in section 3. Results, in the form of images of dendrites and dendrite-based geometry, are shown in section 4; this section also contains timing figures. Finally, section 5 concludes our paper with a summary of the contributions and pointers to possible future work.

2 Previous Work

Algorithms for procedural geometry have been devised by computer graphics practitioners. Two algorithms in particular, L-systems and diffusion-limited aggregation, have seen considerable attention because of their versatility and the quality of their results. L-systems (Lindenmayer and Prusinkiewicz, 1990) uses a replacement grammar to create strings which can be interpreted as a variety of botanical forms, particularly (though not exclusively) branching structures. Diffusion-limited aggregation (DLA) is an algorithmic process capable of generating dendritic forms akin to those seen in a number of natural objects, including lichens, crystals, neurons, and lightning (Bunde and Havlin, 1996). We are particularly interested in DLA, owing both to the rich set of phenomena which can be described by this method, and to the irregularities in the branching structures; we aspire to create dendrites with the same natural appearance. Other models for dendritic growth, including viscous fingering (Ball, 2004), the Eden model (Bunde and Havlin, 1996), and ad-hoc greedy models (Gastner and Newman, 2006), have appeared in the physics and biology literature.

Diffusion-limited aggregation has recently been used in graphics to model lichens (Desbenoit et al., 2004) and ice crystals (Kim and Lin, 2003; Kim et al., 2004). Lightning (Kim and Lin, 2004) has been modeled using the related dielectric breakdown model, which describes another form of Laplacian growth. These results are of high visual quality, although the modeling process is time-consuming.

The brute-force algorithm for diffusion-limited aggregation (Witten and Sander, 1981) is as follows. Some initial sites in a lattice are set to “occupied”; the remainder of the lattice nodes are unoccupied. A particle is released, at a great distance from any occupied site, and undertakes a random walk until it reaches some location adjacent to an occupied site. At that point, the node where the particle is located becomes occupied, and a new walker is released. The above process is repeated, hundreds, thousands, or even millions of times. When a sufficient number of particles have been placed, the resulting aggregation has a fractal dendritic shape; the dendrites arise owing to the greater likelihood of a particle encountering the tip of a branch than a point along a branch.

L-systems is a parallel rewriting grammar that takes an initial string (“axiom”) and repeatedly performs applicable transformations on it. The final string is an encoding of some object, often fractal; the string is interpreted into geometry by mapping each symbol in the string to some geometric primitive or action. (A popular mapping is to have the symbols represent “turtle movement”: move forward, move backward, turn left, turn right).

Basic L-systems do not consider information about the surroundings, since the interpretation into geometry happens at the end of the process. While basic DLA alters the contents of the grid, other environment variables are not used in DLA simulation either. For modeling interactions with the environment, open L-systems (Mech and Prusinkiewicz, 1996) were devised. While the previous environmentally-sensitive L-systems (Prusinkiewicz et al., 1994) introduced query symbols allowing information about the environment to influence development, open L-systems have a symbol in the grammar for two-way communication between the L-system and the environment. The similar notion of open DLA has also been employed for lichen simulation (Desbenoit et al., 2004). The main drawback to L-systems lies in the difficulty of devising the system of replacement rules; the connection between the rules and the resulting shapes can be profoundly obscure.
3 Algorithm

Our algorithm involves finding a collection of paths through a weighted graph. The graph is a regular lattice filling the 2D or 3D space where the modeled object is to exist; weights on the edges are chosen at random. To create a dendritic form, we connect together multiple paths which share one endpoint, the root of the dendrite. Our implementation performs a breadth-first computation of path costs from the root to all nodes in the lattice. The dendritic shape can either be converted to geometry, directly (as lines) or by taking an isosurface from a scalar field; or, the shape can be visualized without the intermediate geometry, in the case of 2D dendrites.

The method for creating dendrites operates as follows. A regular lattice is created, and the edges of the lattice given weights from some distribution. We use four-connected lattices (six-connected in 3D) to conserve memory, but eight-connectivity (26-connectivity) could be used to reduce lattice artifacts; in this case non-orthogonal edges’ weights would need to be scaled appropriately. We have found that a uniform distribution of weights, say \(W = 1 + r \langle R \rangle \), works well. In the preceding, we denote by \(W \) a weight, and let \(\langle R \rangle \) be a value chosen randomly from the interval \((0, 1)\); \(r \) is a parameter determining the amount of fluctuation permitted in the weights. We found a value of \(r \) around 10 to work well. Note that with small \(r \) the resulting paths are close to Manhattan paths (since the constant term dominates), while with larger \(r \) the paths are more erratic (since the random component is relatively more important).

We often perform breadth-first computation from a more elaborate set of nodes than just a single root node, and we need some terminology to refer to the base nodes (those at distance zero); borrowing from the implicit surfaces terminology, we call this set of nodes the **generators**. The next stage in our algorithm is to choose the generators for the dendrite. If the generators are single disjoint nodes, each one will become the root of a separate dendritic shape, but we commonly choose connected sets of points, as described shortly. Using breadth-first search, we populate all nodes in the lattice with the costs of their least-cost paths from the generators.

Next, we select a set of endpoints in the lattice. The endpoints can be chosen randomly, determined procedurally, or placed manually. In the examples shown in this paper we placed endpoints almost randomly; we used rejection sampling to prevent two endpoints from appearing too near to one another.

With the endpoints chosen and the graph populated with distance values, we use a greedy algorithm to find the least-cost path from each endpoint to the nearest generator. The union of the paths thus obtained is the dendrite. The overall construction process is shown in Figure 2.

3.1 Path refinement

Our method as described so far produces shapes with resolution limited by the fixed resolution of the mesh. However, there is a natural extension to an iterative refinement approach: once the skeleton of the dendrite has been created, or the shell of the object in the case of a mesh from a segmentation, a new higher-resolution lattice can be constructed in the region of interest. This refinement process can be repeated if desired. The basic idea is that a new sublattice is built for each node in the dendrite; the sublattices are hooked together to form a connected graph, where a new pathfinding process can take place. Figure 3 illustrates the process.

Pseudocode describing the refinement process for a single path is shown in Figure 4; the process is repeated for each path in a dendrite. One advantage of doing the refinement on a per-path basis is that the high-resolution graphs are individually small, and they are temporary, and hence memory usage is not overly onerous. A side-by-side comparison between a coarse dendrite and a refined dendrite is shown in Figure 5. The refinement can also be applied to 3D...
Input: a coarse path D consisting of m nodes.
Output: a refined path D'.

1. For each node in D, say N_i, create a regular lattice L_i of size $n \times n$. Assign positions to nodes in L_i relative to N_i.
2. For $i = 0$ to $m-2$, stitch the lattices together by adding edges between nodes in L_i and L_{i+1}. Call the resulting graph G.
3. Perform a path planning task within G and return the result.

Figure 4: Pseudocode for refining a path.

Figure 5: Left: a dendrite generated on a coarse graph. Right: a refined version of the coarse dendrite.

lattices to create a high-resolution 3D model.

3.2 Fractal site placement

A fractal dendrite can be created through an iterative process involving repeatedly adding new endpoints, and the corresponding paths, to an existing structure. In the first iteration, the structure is a single root node. In later iterations, we compute paths to the entire structure obtained at the previous iteration.

At each iteration, we increase the number of endpoints to be placed by a branching factor β. At the same time, the maximum distance from the generators that each new endpoint is placed is reduced – divided by a factor α, the attenuation factor. The process continues until the maximum distance is less than some small value, say 2 pixels. Notice that the number of iterations therefore depends on the attenuation factor; a larger factor means that the maximum distance decays to a value beneath the threshold more rapidly, resulting in a sparser dendrite. Figure 7 gives a visualization of this process; pseudocode describing the process is given in Figure 6. Images showing different fractal dendrites are shown in Figure 8.

Figure 6: Pseudocode for creating fractal dendrites.

Figure 7: A fractal dendrite (four iterations). Initially, we have only a few branches, but successively more endpoints are placed at successively smaller distance from the structure.

3.3 Converting to geometry

We have two options for converting the description of path locations to geometry. One option is to use the paths nearly directly, and render each node on the path as a simple geometric object, e.g., a sphere. This approach has the advantage of extreme simplicity.

Another option is to create a distance field from the structure and extract an isosurface from the field. The distance field can be computed using the machinery we already have in place: using the dendrite as the generator, we make a pass of breadth-first search over the lattice. The breadth-first search visits each node in the lattice, populating it with the least-cost path distance from the generators. The resulting distance field can then be converted to geometry using an existing isosurface extraction algorithm such as marching cubes. A visualization of the 2D isosurfaces from a dendritic generator are shown in Figure 9.
Figure 8: A few fractal dendrites, with different parameters governing the branching factor and distance limit at each iteration. Right to left: $\alpha = 2, 1.5, 1.2$; top to bottom, $\beta = 2, 3, 4$. All dendrites were built with three iterations.

Figure 9: Two-dimensional isocontours from a dendritic generator. A surface can be generated by taking one of these contours.

3.4 Creating solid objects with region marking

The same workflow used to create dendritic shapes can also be used to generate irregular solid objects. Specifying multiple disjoint nodes as generators, and keeping track during the breadth-first search process of which site is nearest a given lattice node, has the effect of segmenting the volume. One region is created for each generator node, consisting of all the points nearest that node. A mesh marking the boundary of one of these regions is shown in Figure 10.

The regions from the segmentation are locally irregular but have a simple overall shape. We have referred to them as “rocks” because they resemble broken pieces of some hard and not necessarily homogeneous material.

4 Results and Discussion

We next show some further results created by our method, in the form of images and models. We have already shown several examples of simple dendritic forms, from Figure 1 onward. In this section we give more elaborate models and provide some commentary on the types of models that our approach can generate. We give unadorned skeletal models and meshes; more sophisticated rendering, including texture mapping, could improve the final images, but in this paper we are focusing on the models themselves.

We can readily create dendritic forms, i.e., branching structures. Branching comes about in our model owing to the use of a common graph for all pathing queries: paths to nearby destinations will often share the early portion of their route, so that a single path appears to emerge from the source, branching when the two previously overlapping paths deviate. The same reasoning, plus the fact that we use a common set of source nodes for all paths, means that the paths will never cross one another. Given a consistent tie-breaking mechanism, there is a unique path from the source nodes to any node in the graph; hence, two paths that meet do not cross, but rather share the same path the rest of the way to the generators.

We have set out to imitate the dendritic forms of DLA, and the results of this imitation are shown in Figure 11. The two models are visually extremely
similar, although a detailed investigation would reveal the limited nature of the path planned dendrite (it is fractal only over the small range of scales explicitly programmed in). However, to the unaided human eye the structures look extremely similar; the pragmatic difference is that the path planned dendrite took about 100 times less computer time to create.

We used our system to build a model of staghorn coral, shown in Figure 12. The coral model was created by manually placing endpoints in a 3D graph; the points were not chosen to exactly duplicate the input model, but to give a visually similar appearance, i.e., the synthetic coral could plausibly have come from the same underlying growth process. Despite the small amount of information provided to the modeler (only the endpoints of the branches were specified), the synthetic coral model resembles the real coral quite well. The synthetic image was rendered using Pixie (pixie.sourceforge.net), with the high-frequency structure (thorns) on the surface of the branches obtained from a Renderman displacement shader.

Figure 13 demonstrates one way to exploit the graph to give high-level control over the dendritic shapes. In generating this figure, we created a separate graph for each letter, and arranged the nodes of the graph into the shape of the desired letter. The resulting paths filled a portion of the space within the graph, causing the letter to become visible. A similar mechanism could be used to generate three-dimensional forms, in a manner akin to the synthetic topiaries of Prusinkiewicz et al. (Prusinkiewicz et al., 1994). Our 2D result is comparable to the lichen-writing of Desbenoit et al., who distributed seeds for DLA in letter-shaped regions.

Competition for space is one of the phenomena simulatable within the framework of open L-systems. We can imitate this phenomenon within our framework by placing multiple disjoint generators within
our graph and scattering endpoints nearby. An example of competition is shown in the left of Figure 14. Although the dendrites do not actually communicate during the path planning process, the dendritic forms appear to exhibit an avoidance behaviour.

A dendritic form akin to lightning is shown in the right of Figure 14. For this 2D example, little needs to be changed from the typical 2D dendrites we previously showed: the generator is a single node at the top of the image, and we initially placed a small number of endpoints at the bottom of the image, producing the main lightning strokes. Subsequently, we added more endpoints in the vicinity of the main strokes, with a bias towards placing them lower in the image. This approach can straightforwardly be extended to 3D by using a 3D lattice.

The lightning example illustrates another control handle our framework possesses: the endpoints of the dendrite can be specified exactly. DLA can offer control over the endpoints of the main branches (by starting random walkers from the location the branch should reach), but control over positions of secondary branches is more difficult to achieve.

We can produce forms resembling moss by having a plane or other surface as a generator, and computing paths to destinations near the surface. Figure 15 shows a large number of paths computed up from the plane. In this example, paths are rendered as chains of line segments with lighting given by the variant of deep shadow maps (Lokovic and Veach, 2000) proposed by Bertails et al. (Bertails et al., 2005), and the colors of the paths taken from the peppers test image. Hair or fur could be generated similarly.

Figure 16 shows a lichen growing over a rock. Both the lichen and the rock models were generated using our method: the rock mesh by segmenting a lattice as described in section 3.4, and the lichen by placing both the path endpoints and the dendrite generator on the rock and forbidding paths to enter interior rock nodes. Notice, therefore, that the modelled lichen is able to leave the surface of the rock briefly before returning; had we so chosen, we could easily have constrained the lichen to the rock face, simply by considering only nodes on the rock boundary. The rock and lichen models in Figure 16 demonstrate the flexibility of our approach, with two quite different models generated by the same underlying process.

Table 1 and Table 2 show timing results for our

<table>
<thead>
<tr>
<th>Model</th>
<th>lattice</th>
<th>endpoints</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple dendrite</td>
<td>600^2</td>
<td>15</td>
<td>0.94 s</td>
</tr>
<tr>
<td>Fractal dendrite</td>
<td>512^2</td>
<td>8930</td>
<td>7.55 s</td>
</tr>
<tr>
<td>Coral (no refinement)</td>
<td>50^3</td>
<td>11</td>
<td>1.06 s</td>
</tr>
<tr>
<td>Coral (with refinement)</td>
<td>50^3</td>
<td>24</td>
<td>3.06 s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>lattice</th>
<th>modeling</th>
<th>isosurface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock model</td>
<td>128^3</td>
<td>8.0 s</td>
<td>3.2 s</td>
</tr>
<tr>
<td>Rock+lichen</td>
<td>128^3</td>
<td>9.5 s</td>
<td>7.4 s</td>
</tr>
</tbody>
</table>
method. The figures in Table 1 give times for model construction; these models were either shown directly or were rendered using spheres. Timing results in Table 1 are given for a 1.8GHz P4 with 512 MB RAM. Table 2 gives timing figures for the models rendered using extracted isosurfaces; here, “modeling” is the time needed to create the lattice, produce the dendritic shape, and compute the distance field for that shape, and “isosurface” is the time needed for marching cubes to extract the isosurface from the distance field. In Table 2, timing figures are given with respect to a 3.2GHz P4 with 1GB RAM.

For 2D dendrites, the sub-one second modeling time can be considered interactive, so that different parameter settings can be experimented with live. The 3D modeling times, albeit on a somewhat coarser grid, are nonetheless only around 10 seconds; for comparison, the lightning simulations of Kim and Lin require hours, and the ice simulations (in 2D) still require at least a few minutes. Desbenoit et al. (Desbenoit et al., 2004) give times ranging from 1 second to nearly 500 seconds, depending on the complexity of the generated lichen. The DLA image shown in Figure 11 was generated at a resolution of 500 × 500 with 25000 particles; the basic random walker algorithm was used on a 3.2GHz P4 and required about 7.5 minutes to complete.

5 Conclusions

We have presented a fast, simple method for generating dendritic forms. Because path planning has been well studied in computer science, many standard algorithms exist and should be familiar to computer graphics practitioners; in consequence, our algorithm is easy to implement. The path planning formulation creates dendrites extremely quickly: less than a second for simple structures, and less than 10 seconds for complex fractal and 3D structures. Orders of magnitude more time are required for DLA and other reported systems for creating dendritic shapes.

The range of natural objects expressible as dendritic forms is great. In addition to dendrites, the path planning approach can generate irregular solid objects by segmenting an input mesh. The versatility of dendrites, combined with the ability to generate irregular solid models, gives our method potentially wide applicability. Unlike L-systems, the path planning framework is not very mature, and much remains to be discovered. For example, future work can address the endpoint placement process, perhaps by distributing them procedurally in a more sophisticated way.

In this paper, we have given a broad overview of the dendritic shapes our method can generate. One avenue for future work is to narrow in on specific phenomena: lightning, trees, and lichens have long been of interest in computer graphics, and we find moss a particularly intriguing direction.

Acknowledgements

Thanks to Peter O’Donovan for the mossy peppers image. This work was supported by NSERC RGPIN 299070-04.

REFERENCES

