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Figure 1: Image Quilting (left) and Improved Image Quilting (right).

ABSTRACT

In this paper, we present an improvement to the minimum er-
ror boundary cut, a method of shaping texture patches for non-
parametric texture synthesis from example algorithms such as Efros
and Freeman’s Image Quilting [4]. Our method uses an alternate
distance metric for Dijkstra’s algorithm [3], and as a result we are
able to prevent the path from taking shortcuts through high cost ar-
eas, as can sometimes be seen in traditional image quilting. The re-
sulting artifacts tend to be less pronounced than those created using
the traditional cumulative distance metric. Post-process methods
such as pixel re-synthesis [8] can easily be modified and applied
to our minimum error boundary cut to increase the quality of the
results. This technique is not only useful for texture synthesis, but
also seems promising for applications such as Wang Tiles [12, 13],
or other contexts in which the minimum error boundary cut is ap-
plied.

Keywords: texture synthesis, non-parametric synthesis from ex-
ample, patch-based texture synthesis, minimum error boundary cut

1 INTRODUCTION

Texture synthesis from example is the process of taking an input
texture chip and using it as a basis for generating an arbitrary quan-
tity of ’similar’ texture, without obvious repetition. One way this
can be accomplished is by copying parts (pixels or patches) from
the input and pasting them together as an output image.

Though many methods have been developed using a combination
of pixel and patch-based approaches, there remains much active re-
search in this area. In this paper, we review several methods that
are used to remove seams and discontinuities in patch-based syn-
thesis, and propose our own method, which is a modification on the
minimum error boundary cut first introduced into texture synthesis
by Efros and Freeman [4].

First, we survey related work in the field of non-parametric tex-
ture synthesis from example. Because there has been so much re-
search done in this area, we focus very specifically on the domain
where our contribution is most relevant. As such, our emphasis
is on patch-based synthesis and on previous methods for avoiding
boundary artifacts along the seams of the patches. We also survey
several other domains where improvements to the minimum error
boundary cut might prove fruitful, such as Wang Tiles [12, 13].

Once we have a background for comparison, we then describe
the alternate non-scalar distance metric that our improved image
quilting algorithm uses. This metric encourages paths to avoid peak
cost areas, even if it means taking long circuitous routes. We show
in this paper how this property is desirable for texture synthesis
and other applications where the minimum error boundary cut is
applied. We also show how this metric can be approximated to fit
with a user’s preferences.

Finally, we compare results obtained using several different
methods for shaping the texture patches. We demonstrate the ef-
fectiveness of our method through a qualitative survey, wherein
respondents were asked to pass judgement on textures generated
using the traditional minimum error boundary cut [4] and our im-
proved version. We discuss error counts supplied by our respon-
dents which seem to indicate that our method produces fewer dis-
cernable errors in general. We also note that our participants tended
to prefer our results over ones generated using conventional image
quilting (table 1).

The main contribution of our paper is a new distance metric for
generating the minimum error boundary cut that reduces visual dis-
continuities and can be controlled by modifying the size of the plane
upon which the pathing is calculated. We show the application of
this method to texture synthesis from example, but we believe it
also has implications in other related areas such as Wang Tiles.

2 RELATED WORK

There have been two major branches of research with regards to
non-parametric synthesis from example. One set of methods are
pixel-based, where each pixel in the output is copied individually
from the input based on the nearby neighborhood of already syn-
thesized pixels [5]. Although initially an exhaustive process, many



clever optimizations have been implemented to increase the effi-
ciency of this method and to generalize a framework based upon it
[14, 1, 16, 6]. However, because the algorithm focuses only on a
small neighborhood and a single pixel, it does not tend to preserve
global features within the input texture.

Patch-based approaches attempt to synthesize whole patches of
pixels at once, usually using an overlap region to determine which
patch to choose. Implementations of this method [15, 4, 7, 8, 9, 11]
tend to preserve features in the image, assuming the chosen patch
size is large enough to encompass them. However, the naive patch-
based approach can leave discontinuities along the seams of the
patches, unless some method is applied to avoid or repair them.
Because that is the focus of this paper, we delve more deeply into
previous work in this area.

Several methods for removing the seams on the boundaries of
patches have been investigated, including the use of irregularly
shaped patches [4, 7] and post-process pixel re-synthesis meth-
ods [8, 9]. Our contribution falls into the former category, so we
shall describe some of the existing methods for creating irregularly
shaped patches in detail.

One of the first methods for shaping irregular patches was Liang
et al.’s feathering approach [7]. This technique uses alpha blend-
ing across the overlap region to mix the new patch with the results
synthesized in previous iterations. While feathering is effective for
preserving global structure, it comes at the cost of significant blur-
ring along the edges of the patches. This defect can be subtle in
high frequency input, but it is much more apparent when applied to
textures with strong features or sharp edges.

Efros and Freeman [4] proposed a different method for obtain-
ing irregularly shaped patches in their Image Quilting paper. They
transform the overlap region between a new patch and the already
synthesized texture into an error map, and then use Dijkstra’s algo-
rithm [3] to find a lowest cost path through the error map from one
boundary to another. This is called the minimum error boundary
cut, and it attempts to shape the patches so as to minimize the error
along the boundary path. In so doing, the minimum error bound-
ary cut helps to preserve localized high-frequency structure such as
edges within the input texture. This makes it a useful technique for
approaching textures with distinct, localized features.

Overlap repair methods have also been proposed that use a com-
bination of the patch and pixel-based approaches [8, 9]. Nealen
and Alexa proposed a hybrid method that uses patch sampling for
initial synthesis, followed by a post-process stage where individual
pixels are re-synthesized in a carefully calculated sequence. These
sorts of methods can yield very compelling results, and can be ap-
plied to any of the patch shaping methods described earlier. For the
sake of completeness, it is important to note that pixel re-synthesis
could be adapted and applied to our new method as a post-process
in order to achieve comparable results. However, it is not our aim to
improve on the end results of hybrid synthesis - we are more inter-
ested in the applications of a superior minimum error boundary cut,
which could lead to new avenues for texture synthesis, in addition
to having implications in other areas.

We propose an alternative that is based on the idea of the min-
imum error boundary cut, but uses a different distance metric for
obtaining the shortest path. We believe our algorithm reduces dis-
continuities in the result, as it makes greater attempts to avoid high
cost regions in the error maps of the overlap regions. We also find
that our method benefits more from a larger overlap region, as it will
use this extra space to maneuver around high error regions, while
the conventional minimum error boundary cut will adhere mostly
to paths with fewer edges in keeping with its priority to minimize
cumulative distance.

The distance metric that we use for our improved image quilting
was first introduced by Pai and Reissell [10] as a means of im-
proving path planning for robots. Their non-scalar distance metric

attempts to model the roughness of terrain, under the premise that
robots are safer by avoiding peak edge costs, even if it means taking
an alternate route with a higher total cost.

As our contribution is an improvement to the minimum error
boundary cut, we also discuss several other contexts in which it
has been or could be used, and where we believe our method could
also yield some improvements. Two of the applications discussed
here are Wang Tiles and lapped textures.

Wang Tiles are defined as a set of squares in which each edge
of each tile is colored, and these colored edges are matched and
aligned to tile the plane [12, 13, 2]. Textures can be mapped to
Wang Tiles in order to perform a form of synthesis. Cohen et al.
have presented a novel means of generating Wang Tiles based on
deploying the minimum error boundary cut on an input texture [2].

Another area of interest is lapped textures [11], where texture
patches are placed repeatedly onto an arbitrarily shaped surface.
While some methods use alpha blending to mix the patch with the
surface [11], we believe that using the minimum error boundary
cut could potentially be useful for the class of textures for which
image quilting is well suited, such as those with strong and distinct
edges.

3 THE NON-SCALAR DISTANCE METRIC

3.1 Motivation

The minimum error boundary cut described by Efros and Freeman
[4] is a useful means of forming irregularly shaped patches for tex-
ture synthesis. However, we find that there are certain undesirable
side effects associated with the cost metric traditionally used in the
path planning step.

The cumulative distance metric that is classically used for the
minimum error boundary cut tries to minimize the total cumulative
cost along the path. This can sometimes lead to very visible dis-
continuities when the path takes a shortcut through cost peaks in
order to avoid having to travel long distances to circumvent them.
This can lead to sharp discontinuities along the seams of the texture
patches, as seen in figure 2. This figure shows that our method’s
non-scalar distance metric avoids cutting through the cost peak, re-
sulting in a much less prominent discontinuity.

Figure 2: Discontinuities in image quilting (left) and improved image
quilting (right).



3.2 The Partial Non-Scalar Distance Metric

The main contribution of our work is the implementation of a non-
scalar distance metric for the minimum error boundary cut. This
metric discourages paths from travelling over cost peaks. It is based
on a pathing metric for robotics first introduced in 1998 [10] to sim-
ulate roughness along a path. Even if the cumulative distance of a
given path is low, we do not want the robot to traverse an extremely
high cost edge, as this could prove hazardous to the robot’s health.

This non-scalar metric can be implemented by storing the list of
edges for a prospective path in the order of decreasing cost. When
two prospective paths are being compared, the corresponding ele-
ment from each array of edges is selected. As soon as one differs
from the other, the path with the smaller value is chosen. In essence,
this metric can be seen as minimizing the maximum edge costs in
the path.

Sorting the edges along a path in descending order is not a cheap
operation. The best sorting algorithms are nlog(n), which is fairly
prohibitive in cases where many path computations must be done.
Fortunately, we find that we can achieve results similar to the full
non-scalar Pai metric using only a partial version.

The partial non-scalar distance metric implemented in this pa-
per keeps track of only the maximum edge cost traversed along
the path. Comparisons between paths are first made by comparing
these two maximal cost values. In the case where there is a tie, we
then rely on cumulative path distance to determine the shorter path.

partialNonscalarCompare(Path p1, Path 2): path
{
if (p1.maxEdgeCost == p2.maxEdgeCost)
{
return min(p1.distance, p2.distance);

}

else
{
return min(p1.maxEdgeCost, p2.maxEdgeCost);

}

}

Pseudo code for the comparison between paths for the partial
non-scalar metric is shown above. It returns the ’shorter’ path by
first comparing the maximum edge values in each, and using cu-
mulative distance only to break ties. As shown in figure 3, even
this very reduced version of the Pai metric produces markedly dif-
ferent results from the normal path planning method. These paths
were generated within identical graphs using the same 28 end-
points. These endpoints are marked in red, while the starting point
is marked in green.

We find that using the partial non-scalar distance metric instead
of the traditional cumulative distance metric has very little impact
on the efficiency of the overall algorithm. The dominant step of
the pathing operation is the brusfire algorithm that is used to find
all the costs in the graph, and this does not change with our new
method. As such, we conclude that texture synthesis methods based
on our approach will be comparable in efficiency to the traditional
minimum error boundary cut used in image quilting.

3.3 Image Quilting with the Non-Scalar Distance Metric

We briefly describe the process of Image Quilting [4] upon which
this work is based. In order to synthesize an output texture of ar-
bitrary size, we divide an input chip into a number of patches. We
synthesize the results by copying a patch from the input that best
matches the overlap region with the already synthesized portion of
the result. In order to shape the patches, we create an error map over

Figure 3: The conventional distance metric (top) and the partial
non-scalar metric (bottom) using the same set of 28 endpoints in
the same weighted graph.

the overlap region and find the shortest cost path from the ends of
the patch to the other ends. This cut defines which parts of the over-
lap region will be left as the already synthesized result and which
pixels will be considered part of the new patch. An example of the
minimum error boundary cut is shown in figure 7, with the path
through the error map in red.

As described above, our method differs from traditional image
quilting in how the shortest path through the error map is deter-
mined. Figure 4 shows patches shaped using the traditional cost
metric against those calculated using our non-scalar method.

The patches that emerge from improved image quilting display a
more winding characteristic consistant with the metric’s attempts to
avoid high cost areas. As such, we have noticed that increasing the
overlap size tends to greatly improve the quality of results. In our
examples, we found that best results could be achieved by using
an overlap region roughly equivalent to half the patch size. This
is somewhat contrary to regular image quilting, where cumulative
distance paths do not tend to wander far from the routes with fewer
edges, meaning that adding greater overlap space does not seem
to have much impact upon the quality of results. The increase in
quality of the non-scalar metric as the size of the overlap region is
increased is shown in figure 5.



Figure 4: Uncut patch (left) and the same patch after the minimum
error boundary cut generated with the conventional distance metric
(left) and the non-scalar distance metric (right).

Figure 5: Non-scalar metric with an overlap of 10 (left) and an
overlap of 14 (right).

By closely examining the error profiles of two patches being cut
with identical constraints along the overlaps, we can see that the
partial non-scalar metric features a noticeably lower peak, as seen
on at the bottom of figure 6, while the top part of figure 6 shows
the conventional metric. Winding around the peak in the error map
causes the non-scalar metric to generate a longer path, but this al-
lows it to avoid the high error areas that the conventional metric
cuts right through. In essence, the non-scalar metric spreads the er-
ror out over a long distance, making it less sharp and apparent. In
contrast, the traditional distance metric tries to take a short, com-
pact route, even when that means travelling over an error peak.

We built our implementation for Improved Image Quilting us-
ing the Matlab framework for Hybrid Texture Synthesis [8]. This
allowed us to take advantage of several advanced features such as
adaptive patch sizes. This technique can be used to split patches
into smaller ones when certain user defined error thresholds are ex-
ceeded.

The Hybrid Texture Synthesis framework uses feathering by de-
fault as a means of shaping patches. We first added functionality
for the traditional minimum error boundary cut by creating a heap
within Matlab and populating it with paths across the overlap sur-
face. We then added functionality for the partial non-scalar metric
[10]. As with feathering, we still believe that pixel re-syntehsis can
be modified and applied as a post-process pixel in order to reduce
errors in our results.

4 RESULTS AND SURVEY

This section compares results generated using the two different
methods for patch shaping described in detail within this paper: the
traditional minimum error boundary cut and our improved image
quilting method. We decided not to include feathering in this sur-
vey because it does not work as well for the sorts of textures in

Figure 6: Per pixel error profile along the minimum error boundary
cut (top) and the partial non-scalar boundary cut (bottom).

Figure 7: Minimum error boundary cut through the error map.

which image quilting is typically most effective - those where we
wish to preserve strong, localized details. Also, feathering is not
often used as a standalone process for other contexts in which the
minimum error boundary cut is used.

We chose a set of 3 textures, and applied each method to them.
The results were shown to a test group of 8 participants, who were
asked to count the grievous visible defects in the output, in addi-
tion to stating their preferences as to which result best captured the
essence of the input texture. We chose to perform this test using
more difficult input textures with highly localized features, both
because counting errors is much more strenuous in examples that
synthesize well with both methods or that have a great deal of high
frequency detail, and because these are the sorts of textures where
image quilting is the method of choice. As we show in figure 11,
our method is still perfectly capable of producing compelling re-
sults with high frequency input textures.

Figures 8, 9 and 10 show the input texture used and the out-
put generated from conventional image quilting and our algorithm.
The initial patch placement was hardcoded, and the best match-
ing patch was chosen at each iteration. This means that the results
initially share the same patch sequence, and that they are easily re-
producible. We generated two test sets with each texture using a
different arbitrarily chosen initial patch.

The results from our survey are discussed in two parts. First,



we consider the errors that were counted by our respondents. We
asked them to look for grievous synthesis defects in results gener-
ated by traditional image quilting and our new version. For five of
the six texture sets, respondents reported fewer discernable errors
within the ouput synthesized using our method. The exception to
this was the second soybean test set, where we believe that poor ini-
tial patch placement led to many defects. More importantly, even in
cases where the error counts were comparable, respondents noted
that the defects created by our method were much less noticeable
to casual observation, and could sometimes only be found through
close examination.

Perhaps more interesting was the overall qualitative assessment
performed by each participant. We asked them to decide which out-
put seemed like a better synthesis of the input. This required them
to take into account the magnitude of the errors present in addi-
tion to the number. Without having any knowledge of the methods
used to generate the outputs, the respondents prefered our improved
image quilting results 73% of the time. This percentage includes
the second soybean test set which met with universally poor re-
views. Discounting that one set increases the overall approval to
88%. These results are shown for the individual textures in table 1.

Table 1: Texture Survey Qualitative Assessment

Texture Image Quilting Improved Quilting
Green 1(Figure 8) 0% 100%

Green 2(Not shown) 0% 100%
Peppers 1(Figure 9) 37% 63%

Peppers 2(Not shown) 25% 75%
Soybeans 1(Figure 10) 0% 100%
Soybeans 2(Not shown) 100% 0%

We do not believe that our survey is a rigorous proof of this tech-
nique; rather, we see it as further anecdotal evidence that human ob-
servers tend to believe that our method yields fewer errors, and also
less grievous ones. This seems to support the concept of the non-
scalar distance metric within the context of texture synthesis, and
suggests that it often succeeds in avoiding the most serious defects
that are created using the traditional cumulative distance pathing
metric.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduced a method for improved image quilt-
ing. Our method uses a minimum error boundary cut based on a
non-scalar distance metric which attempts to avoid areas with high
error, instead of taking shortcuts through them as the conventional
distance metric tends to do. This yields fewer discontinuities than
conventional image quilting when applied as a method for shaping
patches in patch-based texture synthesis. In addition, we find that
modifying the size of the overlap region significantly improves the
results of our method, whereas it has little effect on the conventional
minimum error boundary cut.

One avenue of future work would be a more precise method for
determining proper patch placement based on the minimum bound-
ary cut. Rather than choosing a patch based on the total error
present over the entire overlap region, it would seem more fruit-
ful to choose the next patch based on the error characteristics of the
lowest cost path through the overlap, which might be very different
from the overall error. This seems like it would be especially true
for our non-scalar distance metric, where the paths can be much
longer, but will avoid high cost regions.

As stated in our introduction, we also hope that this method for
generating a minimum error boundary cut can be introduced into
other contexts where this concept could be useful, such as Wang
Tiles [12, 13, 2] or lapped textures [11]. We believe the charac-
teristics of this method - especially the ability to improve quality
using overlap size - are promising, of comparable efficiency to ex-
isting methods and easy to add on top of existing implementations
of the minimum error boundary cut.
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Figure 8: Input texture (top), image quilting (middle) and improved
image quilting (bottom). Both outputs were generated with a patch
size of 32 x 32 and an overlap size of 14.

Figure 9: Input texture (top), image quilting (middle) and improved
image quilting (bottom). Both outputs were generated with a patch
size of 32 x 32 and an overlap size of 14.



Figure 10: Input texture (top), image quilting (middle) and improved
image quilting (bottom). Both outputs were generated with a patch
size of 32 x 32 and an overlap size of 14.

Figure 11: Input texture (top), image quilting (middle) and improved
image quilting (bottom). Both outputs were generated with an adap-
tive patch size starting at 32 x 32 and an overlap size of 10.



Figure 12: Input texture (top), image quilting (middle) and improved
image quilting (bottom). Both outputs were generated with a patch
size of 32 x 32 and an overlap size of 14.

Figure 13: Input texture (top), image quilting (middle) and improved
image quilting (bottom). Both outputs were generated with a patch
size of 32 x 32 and an overlap size of 14.


