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Abstract over both RGB and CIE colour spaces using
each of these algorithms.

Consumer-level digital cameras observe a single

value at each pixel. The remaining two cha: | ntroduction

nels of a three-channel image are reconstructed

through a process called demosaicking. Thasdigital still camera employs a sensor called a
paper describes a methodology for enhanciolgarge-coupled device (CCD) that converts in-
current demosaicking methods. Using an itezeming light image to a digital image. The volt-

ative relaxation approach from probabilistic Ahge at each photodiode (pixel) is directly pro-
literature, our empirical results show that wgortional to the light intensity. Hence, the image
can improve the results of the standard algoeming through this CCD is grayscale. In order
rithms using monitored successive applicatidainvoke colour in animage, a colour filter must

of those algorithms. We apply the new teclpbe placed over the diodes.

nique to several algorithms: hue-based interpo-Professional level digital cameras make use
lation, gradient-based interpolation, and adapfa mirror which directs the light through three

tive colour plan interpolation; and we show aensors, each overlain with a specified colour fil-
significant improvement in mean-squared errtar. The resulting digital images are then recom-



bined, creating an image with all three colour
channels. Although this yields the highest qual-
ity images, the cameras are both expensive and
bulky due to the use of three CCD photodiodes
per pixel.

Another way of capturing the colour is to ro-
tate three filters in front of the same image. This
reduces the cost of the camera considerably, but
does little to reduce its size. The camera is inef-
fective for high-speed photography, as three dif-
ferent images taken at different moments must
be recombined.

In order to create an inexpensive all-purpose

camera, each photodiode is overlain with otggure 1: The Bayer colour array (US Patent

colour filter. The two unknown channel valg 971 065).

ues for a particular diode are estimated using
interpolation methods. The most common fil-
ter pattern is the Bayer colour array [1], shown
in Figure (1). The dominant green (luminance)
channel is sampled as much as the red and blue
(chrominance) channels combined. The human
eye is most responsive to changes in green; that
is, the efficiency of human observation peaks
very close to the wavelength of green light [14]
(see Figure 2). The interpolation of the
chrominance channels in most algorithms is di-
rectly affected by the quality of the luminance
estimation. Therefore, effective interpolation of
luminance is of utmost importance. That be-
ing said, the green channel is sampled at 50%,
so standard demosaicking techniques work very
well. In fact, the luminance channel is general‘y
unresponsive to the iterative techniques of thé
paper. In some cases, the progress is negativ.
We focus on improving the chrominanc
channel interpolation given an effective lumi-
nance estimate. Given observed information
(the known colours), and hypothesized colours

550
Wavelength (nm)

Zijgure 2: Luminous efficiency of human ob-
rver (from Ramanath et al.). Note that the
ﬁ/avelength of green light is denoted by the ver-
fical line.



given these observed values (the unknown vat-most cases, each unknown value is estimated
ues), the problem is quite naturally modelled bgdependently of other colours. L&t denote
probability theory P(Hypothesis|Evidence). theith value ofV. Then:

Naively applying a Bayesian approach yields

an intractable result, even using approximation Vi =F(0) (2)
methods. However, by utilizing the underly- . . . ,
ing mechanics of a well known approximatiof‘Pr all i. In general, the fun_ctlon applied will
scheme, Loopy Belief Propagation [12], we erfp€ dependent upon the particular value frgm
pirically demonstrate that the major algorithri§@t We are deriving. Hence, léf, denote the
discussed by Ramanath [14] can be consisterjtfction applied td, ¥; € F. Then:

improved.

The structure of the paper is as follows. Sec- Vi = F(0). 3)
tion 2 discusses some preliminaries, both ¥heneighbourhooaf an unknown valug’, de-
Bayesian calculation and demosaicking strafgsted asy; ¢ O, is a subset of the observed
gies. Section 3 outlines the previous and Cyfz|yes with the property that an instantiation of
rent research in the area of image reconstryggyes for/V, renders the estimation &f inde-

and demosaicking. Section 4 outlines the pa-

rameters of the new algorithm. Section 5 shows Vi = F;(V) = Fi(N;) (4)

our results and gives a comparison between pre-

vious algorithms. Finally, section 6 outlines théhe size of the neighbourhood directly influ-

conclusions of the paper, and presents some feimces the complexity and quality of the algo-

ther research ideas. rithm [7, 15]. Hence, choosing a proper neigh-
bourhood is critical. In this work, we tested a
variety of neighbourhood sizes.

2 Preiminaries

2.2 Loopy Propagation

2.1 Imagin
ging Belief Propagation is a polynomial-time in-

Demosaicking an image involves interpolaterence algorithm for Bayesian polytrees [13],
ing missing colour information given some okhased on message passing between nodes in the
served values. L&t represent the set of missingraph. This algorithm can be generalized to
colours, and leO represent the set of observedndirected graphs (for example, to Markov ran-
values. We want to develop a functiéhthat dom fields); in this presentation, we consider
takes the observed values as a parameter andurairected graphs.
turns the unobserved values: Let X denote a node, and |ét;...U, denote
its neighbours. Lebd/x (U;) denote the message
V = F(O). (1) passed from neighbouywhich is a distribution



overU;. The formula for computing posterio3  Pr evious Wor k
probabilities for a nod& is as follows:

3.1 Demosaicking
k

Bel(X)=a)_ P(X|U)[[ Mx(U;), (5) Most demosaicking algorithms use the Bayer

U i=1 colour array [1] (see Figure (1)). The four algo-
rithms compared in this paper were summarized
wherea is anormalizingconstant. by Ramanath [14]. They include bilinear inter-

The message passing algorithm sends mpefation, hue-based interpolation [4], gradient-
sages from a node to its neighbours. For correptised interpolation [11], and adaptive color plan
ness, the outgoing messagéX ) to a nodel; interpolation [8]. As well, we consider the ef-
must disregard any incoming message receigdts of median filtering [6], also discussed by
from U Ramanath. Details of these algorithms will be

i discussed in subsequent sections.
My, (X) = Z P(X|U) H M(U;). (6) Ramanath n_otes two major types of errors in
Uox. v, G reconstructed images:
1. The zipper effect which causes blurring
When a node has received all messages from all 5cross the border of an intensity step.
neighbours except;, it can send a message to
U,. 2. Confetti error, which produces a “speck-

For trees, the belief propagation algorithm is |e‘_j" eﬁegt around either a d_ark spot i_n a
complete and correct. However, it has been Pright neighbourhood or a bright spot in a
shown [12] that applying the algorithm to gen- ~ dark neighbourhood.
eral graphs can lead to rapid convergence to arhe conclusions were that gradient-based and
reasonable approximation of the correct distédaptive color plan interpolation produced very
butions (hence the name Loopy Belief Propéttle zipper effect, while median filtering suc-
gation). In general graphs, the algorithm staggssfully reduced confetti error in most cases.
by having all nodes send initial, uninformative Demosaicking can be modelled as a uncer-
messages. tainty problem in probability. Bayesian ap-

Loopy Belief Propagation is the inspiration gbroaches to image reconstruction began almost
the approach of this paper; we do not, howev@f) years ago;Geman and Geman [7] used a
compute probabilities, as this is computationalMarkov Random field approach to reconstruct
infeasible. Rather, we use the key ideas to estirages that had suffered various forms of de-
mate colour directly: The incoming messagésrmation. Similar to the message-passing ap-
are used for local computation, and outgoimoach, they used Gibbs sampling and local
messages summarize all of the information reemputation to calculate probabilistic distribu-
ceived,omitting any information received fromtions over the gray-scale colours, with excellent
the neighbour to which the message is going.results.



More recently, Brainard [3] took a more bio4 The Algor ithm
logical approach, studying closely the mechan-
ics of the human optical system and trying 8/ chose to directly calculate colour based
mimic them in engineering application. Then the incoming messages, rather than com-
human eye operates similarly to a digital canputing a probability for each possible colour.
era, in that we sample individual color chanFhis reduced the complexity of the algorithm to
nels at individual locations and interpolate tHe(cnk), wheren is the number of variables,is
missing colours. Experiment shows that the hthe size of the largest family, andis the over-
man visual system uses all three colour channbgad of combining messages from neighbours.
simultaneously when interpolating the missing The application of loopy propagation was
colours, rather than independently estimatiisgraightforward. The messages of a node con-
the three colour channels. It would be otherwisésted of the neighbourhood values (defined ear-
impossible for humans to interpolate colours $ier as/V;). Hence, given neighbours;, the fol-
flawlessly (since the frequency is well above thewing represents the update function for value
Nyquist limit). This explains the effectivenes$’:
of the gradient-based and adaptive interpolation Vi=F;(My,(N;)). (7)

glgorlt_hms,_whlc_h use the three colou_r channell}s_]e combination functions that were tested
in conjunction with one another. Brainard alsg

developed a Bayesian algorithm for reconstruW-ere simply the functions from Ramanath et
. AT, [14]. In most cases, the luminance functions
tion based on these results [2]. di . )
iffered from the chrominance functions.

The second parameter is the definition of
the outgoing messages from each node. How-

Kimmel [10] introduces an algorithm that irever, each function defines the combination of
some respects is similar to the one presentstch individual message separately. Hence, for
here. The algorithm is based on Cok’s templateighbout/; € N;, the following represents the
matching algorithm [5]. Then the colours armessagé/y, (V;):
adjusted across edges in the photograph using
a gradient function. Finally, an enhancementis My, (Vi) = Fi(My;(N;) — My, (U;)).  (8)

applied using inverse diffusion. _ . . .
The third parameter is neighbourhood consider-

ations. Geman and Geman addressed this prob-
lem. Although larger neighbourhoods logically

For the purposes of the paper, only the alggncode more data, they contribute exponentially
rithms from Ramanath et al. [14] were used. Thg the complexity of the algorithm. In this pa-

gradient and adaptive interpolation algorithmser, two different neighbourhood types are con-
seemed to produce better results than Kimmedigjereqd:

method [10]; hence, we chose to focus on these
algorithms instead. 1. 4-Neighbourhood: the pixels immediately



above, below, and to the left and right ofalue (which can be any of the three colour
the pixel in question. channels). LetGx represent the green value
at the current pixel location, Ie¥y represent
2. 8-Neighbourhood: the 4-neighbourhoagie opposite chrominance value as the one be-
plus the adjacent corners. ing interpolated, and le©y represent the ob-

) _served value at pixeK. Let the neighbours of
Using the standard approach, the effectiyge cyrrent pixel be represented by..Uy, and
neighbourhood size is limited to wherevgy subscripting’, G, or Z with U; or simply,
colours are observed. For example, interpolgfe represent the corresponding colour channels
ing red on a green square limits interpolation tq ~5cn neighbour. Lety, (U;) represent the

two neighbouring values. The iterative naturl?lessage toX from U, representing the colour
of our algorithm allows the neighbourhood tg-

be extended. That is, after the first iteration, all
c_olou_r channels at all plxe! locations have l.)e%fl.l Bilinear Interpolation
filled in, and can be used in future calculations
as an “observed” value. Bilinear Interpolation is the simplest approach
The final parameter is the choice of dummyp demosaicking. It is simply the arithmetic av-
message, that is, the message sent when theeragje of the surrounding observed colour values.
not one to be calculated (i.e., initially). We folThat s, for each colour channel, the interpolated
low the lead of Murphy et al. [12], who achievedalue ofY is:

good results using an identity message (a mes- &
sage that does not affect the resulting computa- Yy = (1/k) Y Y;. (9)
tion). We also employed a special identity mes- j=1

sage, telling a receiving node to disregard ﬂ"lﬁ the iterative algorithmy; is simply repre-

message it in its computation. Hence, in SON&hied by the messages sentby
cases, depending on the neighbourhood, the al- ’

orithm required at least 2-3 passes before fin- k
g g P Yy = (1/k)S My, x(U;).  (10)

ishing. =

. The message sent to neighbaégrfrom Y is:
4.1 Details )
The following describes the finer details of eachMyv, (X) = (1/(k — 1)) Z Myx(U). (11)
algorithm tested. It presents the original algo- j=Li7i

rithm, an interpretation of its design, the combi-This represents the interpolated colour value
nation function for the algorithm, and the struaninus the input fronT/;. In the following, we
ture of the messages sent from each pixel.  will assume that whenever the algorithm calls

For the following, letX represent the currenfor a neighbouring value, it will use the message
pixel, and letYx represent the unknown colousent from the corresponding neighbour.



4.1.2 Hue-based Interpolation Eachq; represents the second derivative for the

. . . colour channe® x running in the direction from
Hue-based interpolation was first proposed %y

: . to R. We choose the smallest gradient (i.e. the
C%lf [4], and '3 bb?se.d onthe c;_bservatlo_n that t : |eghest probability of belonging to the same ob-
red.green and blue.green ratios remain con gét) to interpolate the green value from the sur-
tent amongst objects in a picture. In the fir

. 6unding pixels. Lety,,;, represent the smallest
pass, the green colour channel is completed Uissifier, and lep,,,, — (Lysins Roin) be the

ing bilinear interpolation. For_each chromlnancceOrresponding pair. Then:

channelY’, let the surrounding observed col-

ors be represented iy for each neighbout/;, Gy = (G,

1 <4 < k. Then, each unknown value is inter-

polated using the following: If there is more than one minimumvalue, then
\ the result for each is calculated, a8y be-

Yy = Gx(~) Z My 522 (12) comes the'arlthmetlc average of all minima. .

k= G Calculating the message involves the classi-

_ ' fiers as well. The message sent Rg,;, is
The message sent to neighbéuyfromY'is: . and@G, s sent toR,,;,,. The other

+Gp,...)/2. (15)

min

) k U neighbours simply receivé x .
Myy, (X) = Gx(m) > MYXG_J-' (13)  The chrominance channel calculations are not
’ J

min !

J=1,5#i based on classifiers. The combination function
is given by:
. ) . 1 k
4.1.3 Gradient-based Interpolation Yy =Gy + - Z(MYX(UJ') ~G,). (16)

k <
Gradient-based interpolation was introduced by 7=

Laroche and Prescott [11] Like hue-based |ntqnd the message passed to neighbour iis:
polation, it also has two separate algorithms for

the luminance and chrominance channels. How- 1 b
ever, the interpolation of the green channel in-""" (X) =Gx 43— j_%:#(MYX(Uj) —Gi)-
volves a decision. Let; = (L, R),L,R € X . (17)

represent two pixels that are on geometric oppo-
site sides ofX, and let P represent the set of all
pi,1 <@ < h. ForeachX; neighbouringX’, let 4 1 4 Adaptive Color Plan Interpolation
Wy, represent the neighbour df; on the geo-
metrically opposite side ok, from X. Then, Thisis a slight variation of gradient-based inter-
we create classifiers; corresponding to eachpolation. It uses classifiers for both luminance
p; € P: and chrominance interpolation.
The classifier for the green channel is simi-
a; = abs((Ow, + Ow,)/2 — Ox).  (14) lar to that of gradient-based interpolation, only



slightly more sophisticated. Using the same tesr disregard them), we used them as inverse
minology as the previous section, the classifiangights. The smaller the classifier, the larger
are defined by: the effect that the corresponding colour values
contributed to the final result. L&f; represent
(18) the result that would be obtaineddf were the

Letting ,,;, represent the smallest cIassifiePWESt classifier. The weights were normalized,

o = ‘ — OWL +20x 7OWR| + |GL *GR|.

pair, we have: taining their relative proportionality. Let; rep-
resent the normalized result @f. The resulting
Gy = CGlmint GRuin value is as follows:
2
-0 +20x — O h
+ w7 e Vi =3 BT (20)
=1

. , .. With this modification, the adaptive color plan
Again, if there is more than one minimumn

a value, then the results for each is calculatggigomhm converged similarly to the other algo
andG y becomes the arithmetic average of all o
them.

The interpolation of a chrominance value 5 Results
also based on classifiers:
When testing the algorithms, two error metrics
were used. The first was Mean Squared Er-
ror (MSE), which is the Euclidean distance of
the real colour value vs. the interpolated colour

()zi:|*GL+2GX*GR‘+|YL*YR‘. (19)

Then, the value ofy becomes:

Yy = Vomin ¥ VRoin value in RGB. The second is the~*, colour er-
o 2 oG G ror, which is the MSE in the CIE colour space.
4+ Gt 1 X T Rmin, The second metric is more relevant to the case of

digital photography, as itis more closely aligned
with the same rule about multiple minimal claswith human perception [14].
sifiers. A number of test photos were used for com-
During testing, we observed that the adaptiparison. In particular, four representative pho-
color plan iterative algorithm would not contos were chosen (see Figure 3). We included the
verge, but would instead oscillate erratically; thgarrot photograph from Ramanath et. al that dis-
oscillation was caused by a flip in the minimumlays high spatial variance [14]. We chose the
alpha values. We resolved the issue by usisgilboat and lighthouse pictures from Kimmel,
the classifiers in a different manner. Rather thas they produce interesting artifacts. Finally, we
have the classifiers represent a boolean vati®se the statue picture from Kimmel, to test the
(either use their corresponding colour valustarpness of our algorithm. It is easy enough



Figure 3: Four example images: the Parrot image from Rarhagizdl, Sailboat image from
Kimmel; the Lighthouse image from Kimmel; the Statue imagerf Kimmel

to show using the conventional algorithms that ., | Convnerce-Labove
the quality of the chrominance interpolation is )
directly dependent on the quality of the green s
interpolation (with the exception of bilinear in- =/
terpolation). We have only three methods of *'|
green interpolation (as hue-based interpolation °
uses bilinear interpolation to calculate its lumi-
nance channel).

In all of our testing, the error in the lumi- ..l
nance monotonically increases as the iterations
increase, regardless of the picture or neighbour-
hoods chosen. We conclude that the iterative ap-
proach is ineffective for the green channel, and
in all future tests, the green channel is interps performed on the green channel. Oy *,
lated using conventional methods. is shown; the results for MSE are similar. Fig-

Next, we analyzed the convergence effect ofes 4, 5, 6, and 7 show the convergence effect
each algorithm. The test was done using ofar each case. All of the algorithms benefited
four test pictures. Note that only one iteratioftom this iterative relaxation approach, with the

exception of bilinear. The quality of the bilinear
11t is worth noting at this point that a full neighbour= b q y

hood and one iteration corresponds exactly to the cork@terpmaﬂon consistently decreased with itera-

sponding conventional method in all of the interpolatio%o_ns- Hence, it was disregarded in further anal-
algorithms. ysis.

Figure 4:AE?, rates orlighthouse




Convergence - Parrot

Iterations

Figure 5:AE?, rates orparrot

Convergence - Sailboat

Iterations

Figure 6:AE?, onstatue

Convergence - Statue

Iterations

Figure 7:AE?, onsailboat

Image Convergence - Hue-based Interpolation

Max. change in red channel

Figure 8: The maximum change in the red chan-
nel using hue-based interpolation.

In the initial iterations, there is a significant
decrease in the error. Unfortunately, in most
cases, the error derivative changes sign very
early on, and the error begins to increase. We at-
tribute this behaviour to the locality of objects in
an image: during the first few iterations, a pixel
receives information from nearby pixels, which
are part of the same object, and this increases
the quality of the interpolation. However, after
a number of iterations, the pixel receives infor-
mation from outside its own object, contaminat-
ing the original information and causing a loss
of interpolation quality.

Even though the error does not monotonically
decrease, the algorithm still converges to a so-
lution. Figures 8, 9, and 10 show the change
in the red channel per iteration. The same re-
sults are seen in the blue channel. Hence, as
the iterations progress, the changes in the colour
channels decrease. From these results, we can
specify a termination for the algorithm, when
the change in the picture falls below a specific
threshold.

Based on these results, the algorithm is as fol-



Conventional vs, Iterative: Lighthouse

W Conventional
@ lterative - 4

Image C - Gradient-based 0O lterative - 8

Huzbased Gradiem Adaptve
Algorithin

1 Figure 11: Algorithmic comparison usihgght-

Figure 9: The maximum change in the red Chap](_)uselmage

nel using gradient-based interpolation.
lows:

1. Interpolate green channel using one of the
three algorithms

2. Interpolate red channel using one of the
four algorithms, until either the threshold
is reached, or the maximum number of it-
erations has been reached.

Image C

3. Interpolate blue channel using one of the
5 four algorithms, until either the threshold

] is reached, or the maximum number of it-
erations has been reached.

2 : . o 4. Recombine the four channels into an im-
age; return this image.
Figure 10: The maximum change in the red
channel using adaptive color plan interpolation. Figures 11, 12, 13, and 14 show comparisons
between the conventional methods and the iter-
ative methods. Iterations varied between 3 and
12, depending on the method.



Conventional vs. Iterative: Parrot

Figure 12: Algorithmic comparison usirféar-

rot image
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Conventional vs. Iterative: Statue
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Figure 13:
Statuemage

Gradien:
Algorithm

Algorithmic comparison usin

Addaptvs

Conventional vs. Iterative: Sailboat

W Conventional
[@ lterative - 4
[0 lterative - 8

Hus-baced Gradisnt Adaptive
Algorithm

Figure 14: Algorithmic comparison usirggail-
boatimage

5.1 Discussion

The iterative approach improved on the origi-
nal results for all combinations of image and
algorithm. In most cases, the improvement
was significant, providing up to 8% improve-
ment over the standard approach. The opti-
mal neighbourhood varied with the algorithm;
the hue-based and gradient based algorithms
generally saw their best results with a full 8-
neighbourhood, whereas the adaptive algorithm
worked best with a 4-neighbourhood. However,
the effect of the neighbourhood was marginal,
and similar performance was observed for both
neighbourhoods.

The iterative approach inherently affords cer-
tain advantages. It requires minimal additional
resources beyond that necessary to run the un-
derlying conventional algorithm, and in conse-

%uence is suitable for deployment on a digi-

tal camera. lIterative algorithms have desirable
characteristics in a real-time context: partial re-
sults are available immediately but more pro-



cessing can still be done when time permitaould be a source of RAM for storing the in-
Finally, the iterative message-passing approaehmediate pixel values and message values, and
is an instance of a methodology which can pthe logic for computing message values.
tentially be applied to other algorithms beyond We reported that the error reduction is not
those for which we report results in this papermonotonic, and proposed the explanation that
Our algorithm has higher cost than does tlcrease in error is caused by messages from
the original, which had complexitp(nk) for outside the appropriate local neighbourhood.
n image pixels and neighbourhood size Our Thus, extensions to the algorithm may involve
iterative method has cost x n x (k + k*) = modelling boundaries of objects, and block-
O(ank?) wherea is the number of iterations.ing information from crossing these boundaries.
The increase, a factor afk, is significant but The size of the objects in an image will give us a
manageable; in an onboard context, the algdue as to the optimal number of iterations. Al-
rithm would be run in parallel by dedicatedernatively, we might approach the issue of de-
hardware. Also, the incremental nature of tleding optimality by treating the computation as
algorithm means that partial results are availatda action under uncertainty [9].
at lower cost. Finally, the weighted approach used in the
amended version of adaptive color plan presents
a possible new method of demosaicking that
6 Conclusons and Future willbe explored further. The weighted approach
more naturally lends itself to the message-
Work passing algorithm, hence, some modifications to

_ _ _ our current tactics will perhaps lead to an overall
The iterative approach described above can f&ter solution.

used to generate better pictures, that is, pictures
that more closely resemble the original scene.
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