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Abstract

Consumer-level digital cameras observe a single
value at each pixel. The remaining two chan-
nels of a three-channel image are reconstructed
through a process called demosaicking. This
paper describes a methodology for enhancing
current demosaicking methods. Using an iter-
ative relaxation approach from probabilistic AI
literature, our empirical results show that we
can improve the results of the standard algo-
rithms using monitored successive application
of those algorithms. We apply the new tech-
nique to several algorithms: hue-based interpo-
lation, gradient-based interpolation, and adap-
tive colour plan interpolation; and we show a
significant improvement in mean-squared error

over both RGB and CIE colour spaces using
each of these algorithms.

1 Introduction

A digital still camera employs a sensor called a
charge-coupled device (CCD) that converts in-
coming light image to a digital image. The volt-
age at each photodiode (pixel) is directly pro-
portional to the light intensity. Hence, the image
coming through this CCD is grayscale. In order
to invoke colour in an image, a colour filter must
be placed over the diodes.

Professional level digital cameras make use
of a mirror which directs the light through three
sensors, each overlain with a specified colour fil-
ter. The resulting digital images are then recom-



bined, creating an image with all three colour
channels. Although this yields the highest qual-
ity images, the cameras are both expensive and
bulky due to the use of three CCD photodiodes
per pixel.

Another way of capturing the colour is to ro-
tate three filters in front of the same image. This
reduces the cost of the camera considerably, but
does little to reduce its size. The camera is inef-
fective for high-speed photography, as three dif-
ferent images taken at different moments must
be recombined.

In order to create an inexpensive all-purpose
camera, each photodiode is overlain with one
colour filter. The two unknown channel val-
ues for a particular diode are estimated using
interpolation methods. The most common fil-
ter pattern is the Bayer colour array [1], shown
in Figure (1). The dominant green (luminance)
channel is sampled as much as the red and blue
(chrominance) channels combined. The human
eye is most responsive to changes in green; that
is, the efficiency of human observation peaks
very close to the wavelength of green light [14]
(see Figure 2). The interpolation of the
chrominance channels in most algorithms is di-
rectly affected by the quality of the luminance
estimation. Therefore, effective interpolation of
luminance is of utmost importance. That be-
ing said, the green channel is sampled at 50%,
so standard demosaicking techniques work very
well. In fact, the luminance channel is generally
unresponsive to the iterative techniques of this
paper. In some cases, the progress is negative.

We focus on improving the chrominance
channel interpolation given an effective lumi-
nance estimate. Given observed information
(the known colours), and hypothesized colours

Figure 1: The Bayer colour array (US Patent
3,971,065).

Figure 2: Luminous efficiency of human ob-
server (from Ramanath et al.). Note that the
wavelength of green light is denoted by the ver-
tical line.



given these observed values (the unknown val-
ues), the problem is quite naturally modelled by
probability theoryP (HypothesisjEviden
e).
Naively applying a Bayesian approach yields
an intractable result, even using approximation
methods. However, by utilizing the underly-
ing mechanics of a well known approximation
scheme, Loopy Belief Propagation [12], we em-
pirically demonstrate that the major algorithms
discussed by Ramanath [14] can be consistently
improved.

The structure of the paper is as follows. Sec-
tion 2 discusses some preliminaries, both in
Bayesian calculation and demosaicking strate-
gies. Section 3 outlines the previous and cur-
rent research in the area of image reconstruc-
tion, with an emphasis on Bayesian techniques
and demosaicking. Section 4 outlines the pa-
rameters of the new algorithm. Section 5 shows
our results and gives a comparison between pre-
vious algorithms. Finally, section 6 outlines the
conclusions of the paper, and presents some fur-
ther research ideas.

2 Preliminaries

2.1 Imaging

Demosaicking an image involves interpolat-
ing missing colour information given some ob-
served values. LetV represent the set of missing
colours, and letO represent the set of observed
values. We want to develop a functionF that
takes the observed values as a parameter and re-
turns the unobserved values:

V = F(O): (1)

In most cases, each unknown value is estimated
independently of other colours. LetVi denote
theith value ofV. Then:Vi = F(O) (2)

for all i. In general, the function applied will
be dependent upon the particular value fromV
that we are deriving. Hence, letFi denote the
function applied toO, Fi 2 F. Then:Vi = Fi(O): (3)

Theneighbourhoodof an unknown valueVi, de-
noted asNi � O, is a subset of the observed
values with the property that an instantiation of
values forNi renders the estimation ofVi inde-
pendent of the rest ofV. More formally:Vi = Fi(V) = Fi(Ni) (4)

The size of the neighbourhood directly influ-
ences the complexity and quality of the algo-
rithm [7, 15]. Hence, choosing a proper neigh-
bourhood is critical. In this work, we tested a
variety of neighbourhood sizes.

2.2 Loopy Propagation

Belief Propagation is a polynomial-time in-
ference algorithm for Bayesian polytrees [13],
based on message passing between nodes in the
graph. This algorithm can be generalized to
undirected graphs (for example, to Markov ran-
dom fields); in this presentation, we consider
undirected graphs.

Let X denote a node, and letU1:::Uk denote
its neighbours. LetMX(Ui) denote the message
passed from neighbouri, which is a distribution



overUi. The formula for computing posterior
probabilities for a nodeX is as follows:Bel(X) = �X

U
P (XjU) kYi=1MX(Ui); (5)

where� is anormalizingconstant.
The message passing algorithm sends mes-

sages from a node to its neighbours. For correct-
ness, the outgoing messageUi(X) to a nodeUi
must disregard any incoming message received
from Ui:MUi(X) = X

U[X�Ui P (XjU) kYj=1;j 6=iM(Uj): (6)

When a node has received all messages from all
neighbours exceptUi, it can send a message toUi.

For trees, the belief propagation algorithm is
complete and correct. However, it has been
shown [12] that applying the algorithm to gen-
eral graphs can lead to rapid convergence to a
reasonable approximation of the correct distri-
butions (hence the name Loopy Belief Propa-
gation). In general graphs, the algorithm starts
by having all nodes send initial, uninformative
messages.

Loopy Belief Propagation is the inspiration of
the approach of this paper; we do not, however,
compute probabilities, as this is computationally
infeasible. Rather, we use the key ideas to esti-
mate colour directly: The incoming messages
are used for local computation, and outgoing
messages summarize all of the information re-
ceived,omittingany information received from
the neighbour to which the message is going.

3 Previous Work

3.1 Demosaicking

Most demosaicking algorithms use the Bayer
colour array [1] (see Figure (1)). The four algo-
rithms compared in this paper were summarized
by Ramanath [14]. They include bilinear inter-
polation, hue-based interpolation [4], gradient-
based interpolation [11], and adaptive color plan
interpolation [8]. As well, we consider the ef-
fects of median filtering [6], also discussed by
Ramanath. Details of these algorithms will be
discussed in subsequent sections.

Ramanath notes two major types of errors in
reconstructed images:

1. The zipper effect, which causes blurring
across the border of an intensity step.

2. Confetti error, which produces a “speck-
led” effect around either a dark spot in a
bright neighbourhood or a bright spot in a
dark neighbourhood.

The conclusions were that gradient-based and
adaptive color plan interpolation produced very
little zipper effect, while median filtering suc-
cessfully reduced confetti error in most cases.

Demosaicking can be modelled as a uncer-
tainty problem in probability. Bayesian ap-
proaches to image reconstruction began almost
20 years ago;Geman and Geman [7] used a
Markov Random field approach to reconstruct
images that had suffered various forms of de-
formation. Similar to the message-passing ap-
proach, they used Gibbs sampling and local
computation to calculate probabilistic distribu-
tions over the gray-scale colours, with excellent
results.



More recently, Brainard [3] took a more bio-
logical approach, studying closely the mechan-
ics of the human optical system and trying to
mimic them in engineering application. The
human eye operates similarly to a digital cam-
era, in that we sample individual color chan-
nels at individual locations and interpolate the
missing colours. Experiment shows that the hu-
man visual system uses all three colour channels
simultaneously when interpolating the missing
colours, rather than independently estimating
the three colour channels. It would be otherwise
impossible for humans to interpolate colours so
flawlessly (since the frequency is well above the
Nyquist limit). This explains the effectiveness
of the gradient-based and adaptive interpolation
algorithms, which use the three colour channels
in conjunction with one another. Brainard also
developed a Bayesian algorithm for reconstruc-
tion based on these results [2].

Kimmel [10] introduces an algorithm that in
some respects is similar to the one presented
here. The algorithm is based on Cok’s template
matching algorithm [5]. Then the colours are
adjusted across edges in the photograph using
a gradient function. Finally, an enhancement is
applied using inverse diffusion.

For the purposes of the paper, only the algo-
rithms from Ramanath et al. [14] were used. The
gradient and adaptive interpolation algorithms
seemed to produce better results than Kimmel’s
method [10]; hence, we chose to focus on these
algorithms instead.

4 The Algorithm

We chose to directly calculate colour based
on the incoming messages, rather than com-
puting a probability for each possible colour.
This reduced the complexity of the algorithm to
O(
nk), wheren is the number of variables,k is
the size of the largest family, and
 is the over-
head of combining messages from neighbours.

The application of loopy propagation was
straightforward. The messages of a node con-
sisted of the neighbourhood values (defined ear-
lier asNi). Hence, given neighboursNi, the fol-
lowing represents the update function for valueVi: Vi = Fi(MVi(Ni)): (7)

The combination functions that were tested
were simply the functions from Ramanath et
al. [14]. In most cases, the luminance functions
differed from the chrominance functions.

The second parameter is the definition of
the outgoing messages from each node. How-
ever, each function defines the combination of
each individual message separately. Hence, for
neighbourUj 2 Ni, the following represents the
messageMUj (Vi):MUj (Vi) = Fi(MVi(Ni)�MVi(Uj)): (8)

The third parameter is neighbourhood consider-
ations. Geman and Geman addressed this prob-
lem. Although larger neighbourhoods logically
encode more data, they contribute exponentially
to the complexity of the algorithm. In this pa-
per, two different neighbourhood types are con-
sidered:

1. 4-Neighbourhood: the pixels immediately



above, below, and to the left and right of
the pixel in question.

2. 8-Neighbourhood: the 4-neighbourhood
plus the adjacent corners.

Using the standard approach, the effective
neighbourhood size is limited to wherever
colours are observed. For example, interpolat-
ing red on a green square limits interpolation to
two neighbouring values. The iterative nature
of our algorithm allows the neighbourhood to
be extended. That is, after the first iteration, all
colour channels at all pixel locations have been
filled in, and can be used in future calculations
as an “observed” value.

The final parameter is the choice of dummy
message, that is, the message sent when there is
not one to be calculated (i.e., initially). We fol-
low the lead of Murphy et al. [12], who achieved
good results using an identity message (a mes-
sage that does not affect the resulting computa-
tion). We also employed a special identity mes-
sage, telling a receiving node to disregard this
message it in its computation. Hence, in some
cases, depending on the neighbourhood, the al-
gorithm required at least 2-3 passes before fin-
ishing.

4.1 Details

The following describes the finer details of each
algorithm tested. It presents the original algo-
rithm, an interpretation of its design, the combi-
nation function for the algorithm, and the struc-
ture of the messages sent from each pixel.

For the following, letX represent the current
pixel, and letYX represent the unknown colour

value (which can be any of the three colour
channels). LetGX represent the green value
at the current pixel location, letZX represent
the opposite chrominance value as the one be-
ing interpolated, and letOX represent the ob-
served value at pixelX. Let the neighbours of
the current pixel be represented byU1::Uk, and
by subscriptingY , G, orZ with Ui or simplyi,
we represent the corresponding colour channels
at each neighbour. LetMYX (Ui) represent the
message toX from Ui representing the colourY .

4.1.1 Bilinear Interpolation

Bilinear Interpolation is the simplest approach
to demosaicking. It is simply the arithmetic av-
erage of the surrounding observed colour values.
That is, for each colour channel, the interpolated
value ofY is: YX = (1=k) kXj=1Yj: (9)

In the iterative algorithm,Yi is simply repre-
sented by the messages sent byUi:YX = (1=k) kXj=1MY sX(Uj): (10)

The message sent to neighbourUi from Y is:MY Ui(X) = (1=(k � 1)) kXj=1;j 6=iMY X(Uj): (11)

This represents the interpolated colour value
minus the input fromUi. In the following, we
will assume that whenever the algorithm calls
for a neighbouring value, it will use the message
sent from the corresponding neighbour.



4.1.2 Hue-based Interpolation

Hue-based interpolation was first proposed by
Cok [4], and is based on the observation that the
red:green and blue:green ratios remain consis-
tent amongst objects in a picture. In the first
pass, the green colour channel is completed us-
ing bilinear interpolation. For each chrominance
channelY , let the surrounding observed col-
ors be represented byYi for each neighbourUi,1 � i � k. Then, each unknown value is inter-
polated using the following:YX = GX(1k ) kXj=1MY X UjGj : (12)

The message sent to neighbourUi from Y is:MY Ui(X) = GX( 1k � 1) kXj=1;j 6=iMY X UjGj : (13)

4.1.3 Gradient-based Interpolation

Gradient-based interpolation was introduced by
Laroche and Prescott [11]. Like hue-based inter-
polation, it also has two separate algorithms for
the luminance and chrominance channels. How-
ever, the interpolation of the green channel in-
volves a decision. Letpi = hL;Ri; L; R 2 X
represent two pixels that are on geometric oppo-
site sides ofX, and let P represent the set of allpi; 1 � i � h . For eachXi neighbouringX, letWXi represent the neighbour ofXi on the geo-
metrically opposite side ofXi from X. Then,
we create classifiers�i corresponding to eachpi 2 P :�i = abs((OWL +OWR)=2�OX): (14)

Each�i represents the second derivative for the
colour channelOX running in the direction fromL toR. We choose the smallest gradient (i.e. the
highest probability of belonging to the same ob-
ject) to interpolate the green value from the sur-
rounding pixels. Let�min represent the smallest
classifier, and letpmin = hLmin; Rmini be the
corresponding pair. Then:GX = (GLmin +GRmin)=2: (15)

If there is more than one minimum� value, then
the result for each is calculated, andGX be-
comes the arithmetic average of all minima.

Calculating the message involves the classi-
fiers as well. The message sent toLmin isGRmin , andGLmin is sent toRmin. The other
neighbours simply receiveGX .

The chrominance channel calculations are not
based on classifiers. The combination function
is given by:YX = GX + 1k kXj=1(MYX (Uj)�Gj): (16)

and the message passed to neighbour i is:MY Ui(X) = GX+ 1k � 1 kXj=1;j 6=i(MY X(Uj)�Gj):
(17)

4.1.4 Adaptive Color Plan Interpolation

This is a slight variation of gradient-based inter-
polation. It uses classifiers for both luminance
and chrominance interpolation.

The classifier for the green channel is simi-
lar to that of gradient-based interpolation, only



slightly more sophisticated. Using the same ter-
minology as the previous section, the classifiers
are defined by:�i = j �OWL +2OX �OWR j+ jGL �GRj: (18)

Letting �min represent the smallest classifier,
andpmin = hLmin; Rmini be the corresponding
pair, we have:GX = GLmin +GRmin2+ �OWLmin + 2OX �OWRmin4

Again, if there is more than one minimum� value, then the results for each is calculated,
andGX becomes the arithmetic average of all of
them.

The interpolation of a chrominance value is
also based on classifiers:�i = j �GL + 2GX �GRj+ jYL � YRj: (19)

Then, the value ofYX becomes:YX = YLmin + YRmin2+ �GLmin + 2GX �GRmin4 :
with the same rule about multiple minimal clas-
sifiers.

During testing, we observed that the adaptive
color plan iterative algorithm would not con-
verge, but would instead oscillate erratically; the
oscillation was caused by a flip in the minimum
alpha values. We resolved the issue by using
the classifiers in a different manner. Rather than
have the classifiers represent a boolean value
(either use their corresponding colour values

or disregard them), we used them as inverse
weights. The smaller the classifier, the larger
the effect that the corresponding colour values
contributed to the final result. LetTi represent
the result that would be obtained if�i were the
lowest classifier. The weights were normalized,
converted such that they sum to 1.0 while main-
taining their relative proportionality. Let�i rep-
resent the normalized result of�i. The resulting
value is as follows:YX = hXi=1 �iTi: (20)

With this modification, the adaptive color plan
algorithm converged similarly to the other algo-
rithms.

5 Results

When testing the algorithms, two error metrics
were used. The first was Mean Squared Er-
ror (MSE), which is the Euclidean distance of
the real colour value vs. the interpolated colour
value in RGB. The second is the�E�ab colour er-
ror, which is the MSE in the CIE colour space.
The second metric is more relevant to the case of
digital photography, as it is more closely aligned
with human perception [14].

A number of test photos were used for com-
parison. In particular, four representative pho-
tos were chosen (see Figure 3). We included the
parrot photograph from Ramanath et. al that dis-
plays high spatial variance [14]. We chose the
sailboat and lighthouse pictures from Kimmel,
as they produce interesting artifacts. Finally, we
chose the statue picture from Kimmel, to test the
sharpness of our algorithm. It is easy enough



Figure 3: Four example images: the Parrot image from Ramanath et.al, Sailboat image from
Kimmel; the Lighthouse image from Kimmel; the Statue image from Kimmel

to show using the conventional algorithms that
the quality of the chrominance interpolation is
directly dependent on the quality of the green
interpolation (with the exception of bilinear in-
terpolation). We have only three methods of
green interpolation (as hue-based interpolation
uses bilinear interpolation to calculate its lumi-
nance channel).

In all of our testing, the error in the lumi-
nance monotonically increases as the iterations
increase, regardless of the picture or neighbour-
hoods chosen. We conclude that the iterative ap-
proach is ineffective for the green channel, and
in all future tests, the green channel is interpo-
lated using conventional methods.1

Next, we analyzed the convergence effect of
each algorithm. The test was done using our
four test pictures. Note that only one iteration

1It is worth noting at this point that a full neighbour-
hood and one iteration corresponds exactly to the corre-
sponding conventional method in all of the interpolation
algorithms.
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is performed on the green channel. Only�E�ab
is shown; the results for MSE are similar. Fig-
ures 4, 5, 6, and 7 show the convergence effect
for each case. All of the algorithms benefited
from this iterative relaxation approach, with the
exception of bilinear. The quality of the bilinear
interpolation consistently decreased with itera-
tions. Hence, it was disregarded in further anal-
ysis.
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Figure 8: The maximum change in the red chan-
nel using hue-based interpolation.

In the initial iterations, there is a significant
decrease in the error. Unfortunately, in most
cases, the error derivative changes sign very
early on, and the error begins to increase. We at-
tribute this behaviour to the locality of objects in
an image: during the first few iterations, a pixel
receives information from nearby pixels, which
are part of the same object, and this increases
the quality of the interpolation. However, after
a number of iterations, the pixel receives infor-
mation from outside its own object, contaminat-
ing the original information and causing a loss
of interpolation quality.

Even though the error does not monotonically
decrease, the algorithm still converges to a so-
lution. Figures 8, 9, and 10 show the change
in the red channel per iteration. The same re-
sults are seen in the blue channel. Hence, as
the iterations progress, the changes in the colour
channels decrease. From these results, we can
specify a termination for the algorithm, when
the change in the picture falls below a specific
threshold.

Based on these results, the algorithm is as fol-
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Figure 9: The maximum change in the red chan-
nel using gradient-based interpolation.
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Figure 10: The maximum change in the red
channel using adaptive color plan interpolation.

Figure 11: Algorithmic comparison usingLight-
houseimage

lows:

1. Interpolate green channel using one of the
three algorithms

2. Interpolate red channel using one of the
four algorithms, until either the threshold
is reached, or the maximum number of it-
erations has been reached.

3. Interpolate blue channel using one of the
four algorithms, until either the threshold
is reached, or the maximum number of it-
erations has been reached.

4. Recombine the four channels into an im-
age; return this image.

Figures 11, 12, 13, and 14 show comparisons
between the conventional methods and the iter-
ative methods. Iterations varied between 3 and
12, depending on the method.



Figure 12: Algorithmic comparison usingPar-
rot image

Figure 13: Algorithmic comparison using
Statueimage

Figure 14: Algorithmic comparison usingSail-
boat image

5.1 Discussion

The iterative approach improved on the origi-
nal results for all combinations of image and
algorithm. In most cases, the improvement
was significant, providing up to 8% improve-
ment over the standard approach. The opti-
mal neighbourhood varied with the algorithm;
the hue-based and gradient based algorithms
generally saw their best results with a full 8-
neighbourhood, whereas the adaptive algorithm
worked best with a 4-neighbourhood. However,
the effect of the neighbourhood was marginal,
and similar performance was observed for both
neighbourhoods.

The iterative approach inherently affords cer-
tain advantages. It requires minimal additional
resources beyond that necessary to run the un-
derlying conventional algorithm, and in conse-
quence is suitable for deployment on a digi-
tal camera. Iterative algorithms have desirable
characteristics in a real-time context: partial re-
sults are available immediately but more pro-



cessing can still be done when time permits.
Finally, the iterative message-passing approach
is an instance of a methodology which can po-
tentially be applied to other algorithms beyond
those for which we report results in this paper.

Our algorithm has higher cost than does the
the original, which had complexityO(nk) forn image pixels and neighbourhood sizek. Our
iterative method has costa � n � (k + k2) =
O(ank2) wherea is the number of iterations.
The increase, a factor ofak, is significant but
manageable; in an onboard context, the algo-
rithm would be run in parallel by dedicated
hardware. Also, the incremental nature of the
algorithm means that partial results are available
at lower cost.

6 Conclusions and Future
Work

The iterative approach described above can be
used to generate better pictures, that is, pictures
that more closely resemble the original scene.
In all but a few cases, the iterative approach had
error lower than that of the corresponding con-
ventional algorithm. The cost of the iterative ap-
proach is polynomial, a factor ofn higher than
its conventional counterpart; however, this cost
is customizable, in that we can halt and report
the results at any time. In the limiting case, we
perform one iteration, exactly equivalent to run-
ning the conventional algorithm.

The overhead required to deploy the iterative
algorithm onboard a digital still camera is min-
imal, as the method enhances other algorithms
already so deployed. The only major addition

would be a source of RAM for storing the in-
termediate pixel values and message values, and
the logic for computing message values.

We reported that the error reduction is not
monotonic, and proposed the explanation that
increase in error is caused by messages from
outside the appropriate local neighbourhood.
Thus, extensions to the algorithm may involve
modelling boundaries of objects, and block-
ing information from crossing these boundaries.
The size of the objects in an image will give us a
clue as to the optimal number of iterations. Al-
ternatively, we might approach the issue of de-
ciding optimality by treating the computation as
an action under uncertainty [9].

Finally, the weighted approach used in the
amended version of adaptive color plan presents
a possible new method of demosaicking that
will be explored further. The weighted approach
more naturally lends itself to the message-
passing algorithm, hence, some modifications to
our current tactics will perhaps lead to an overall
better solution.
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