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Abstract

We present a stipple placement method which provides extra emphasis to image features, especially edges. Our
algorithm transforms an image into a regular graph, with edge weights given by the local gradient magnitude
of the input image. Then, a variant of Disjkstra’s algorithm is used to place stipples: new stipples are placed
along the frontier, which tends to be aligned with image edges. The resulting stipple distribution approximates a
blue noise distribution, but emphasizes edges from the input image. We also show how irregular mosaics can be
organized and the mosaic tiles shaped using the same underlying mechanism.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Line and Curve Genera-

tion

1. Introduction

Stippling is a process whereby an image is constructed from
a large number of small dots. In computer graphics, stippling
has been applied to the problem of halftoning: approximat-
ing a continuous-tone image with low color resolution (in
this case just black and white) but high spatial resolution
(large numbers of dots). Pioneering work by Secord [Sec02]
did an excellent job of tone reproduction with stipples, and
recent work by Kopf et al. [KCODLO06] has provided the
ability to produce millions of stipple points per second.

However, human artists use stipples not only for tone re-
production, but also to illustrate features, including edge em-
phasis and texture indication [Gup76]. Also, placing stipples
by hand is a time-consuming process, and handmade stip-
ple drawings contain fewer stipples than modern computer-
generated stipple images. In this paper, we concentrate on
improving the quality of image reproduction by moving
away from a strict halftoning regime.

Existing algorithms inherently integrate darkness (more
generally, importance) over a two-dimensional area, while
the features needing emphasis are often one-dimensional,
such as edges. Our proposed approach in effect takes path
integrals, where one-dimensional features can easily be re-
solved; there is a point at which the path crosses the feature.
In the area integral formulation, however, nonzero impor-
tance away from the feature of highest interest will drag the
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stipple away. It is not clear how to resolve the issue within a
pure halftoning framework — hence our proposed method.

We present a novel algorithm for primitive placement in
the plane, and show its application to stipple generation. The
algorithm takes an input image, say a photograph, and out-
puts a stippled version. Our method operates by computing
a least-cost path planning operation through a graph repre-
sentation of the image, and progressively placing sites of
distance zero whenever the length of the shortest path ex-
ceeds a threshold. This process enforces a minimum distance
between sites (since the path cost must exceed the thresh-
old) and gives even small-scale features considerable influ-
ence over site placement: some path reaches every feature,
or crosses it, in the case of linear features (i.e., edges).

Having shown the use of our progressive algorithm for
stippling, we then demonstrate a variant of our algorithm
which can produce an irregular tesselation of the plane con-
strained by an input image. Such tesselations are akin to his-
torical pebble mosaics and chip mosaics [Lin98, Dun99].

This paper is organized as follows. Section 2 reviews pre-
vious work in computer-generated stipple and mosaic art, as
well as other relevant literature. Section 3 describes our stip-
pling algorithm, and in Section 4 we show stippled images
resulting from our algorithm and compare them against stip-
plings produced using Secord’s weighted Voronoi stippling
(WVS). Next, in Section 5 we briefly discuss application of
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our algorithm to the problem of irregular mosaics. Finally,
in Section 6 we conclude and suggest future work.

2. Previous Work

Automatic stippling methods have employed Centroidal
Voronoi Diagrams (CVD’s) to place points. CVD’s are often
achieved by Lloyd’s algorithm [O’R90], a relaxation process
that repeatedly moves the Voronoi centres to the centroids
of their regions. The CVD process has formed the basis for
considerable work in stipple creation, as well as mosaic tile
placement [DHvOS00, HauO1, Sec02, HHDO3], since it is a
good way to distribute points on the plane. In particular, the
weighted Voronoi stippling (WVS) of Secord [Sec02] pro-
vides a benchmark for high-quality stipple halftoning. WVS
moves Voronoi centres to the centre of mass of the regions,
where local density is given by darkness or some other mea-
sure of importance.

Approaches for blue noise generation have been the sub-
ject of recent work [DH06, KCODLO06, ODJ04]. These re-
sults drastically speed up the stippling process, and have
provided the ability to generate millions of stipple points per
second. However, while these results can be used for halfton-
ing, they do not attempt to treat sharp features. As we argued
in the introduction, sharp features are inherently underem-
phasized by area-based importance matching.

Mosaics share with stipples the problem of distributing
primitives, and have received substantial attention. Haus-
ner [HauO1] used hardware-accelerated CVD'’s to distribute
tiles. Hausner also identified a crucial issue in mosaics:
that tile edges should be aligned with image edges, and re-
solved this in his work by having tiles move away from user-
specified edges. An alternative method for achieving edge
alignment was given by Elber and Wolberg [EW03], who ar-
range rows of tiles along streamlines parallel to initial user-
specific curves. Yet another way of resolving it was given
by Di Blasi and Gallo [BGOS5], who proposed cutting the
rectangular tiles where they crossed image edges. Kim and
Pellacini’s Jigsaw Image Mosaic [KP02] produces an irreg-
ular tiling of the image plane with predefined tiles. The Jig-
saw Image Mosaic algorithm strives to pack user-specified
regions with a known set of tiles, minimizing a set of error
criteria including tile overlap and color mismatch; it gives
good results, but is resource-intensive and is not easy to ex-
tend, as was also observed by Dalal et al. [DKLS06].

The RenderBots postulated by Schlechtweg et
al. [SGS05] are a general method for distributing primitives
and have been applied to stipples. RenderBots distribute
stipples equivalently to CVD in homogeneous regions. The
authors propose attracting stipples towards image edges to
increase edge emphasis, but sharp edges are not conveyed
by the resulting stipples: instead, an increasing density of
stipples appears in the vicinity of the image edge.

Other methods for distributing primitives and tiling the

plane have been devised, and we briefly mention a few oth-
ers. Smith et al. [SLKO05] focussed on coherent movement of
tiles to create animated mosaics; later, Dalal et al. [DKLS06]
used Fourier transforms to find good packings of input prim-
itives. Kaplan and Salesin [KS00] worked on automatically
controlling tile shapes to produce Escher-like tilings where
the tiles were close to an input goal shape.

3. Algorithm

For greatest generality, we concentrated on stippling
grayscale images. We use gradient magnitude as a measure
of local contrast, similar to Winnemdller et al. [WOGO06];
any other measure of importance can be substituted instead.

Our method uses the same underlying mechanism as
Mould’s image-guided fracture [Mou05]. Mould employed
multiple-source graph search (brushfire) to obtain region
boundaries aligned with image features. However, that work
did not attempt to address site placement other than trivially.
Making the observation that the frontier consists largely of
nodes of high cost, and identifying high cost with image fea-
tures, we can notice that the frontier is the best area for site
placement. We developed what we call a “progressive” algo-
rithm, described as follows.

We first construct a graph from an input image: a regular
eight-connected lattice with one node per input image pixel.
Importance is computed for each node as ad + Bg, where d
is the darkness (1-intensity) and g is the gradient magnitude;
o and P are normalizing factors, where we had o = 1/Y.d
and B = 1/Y g — that is, the inverses of the respective values
summed over the entire image. Edge weights are the average
importances of the pixels on either end of the edge.

The progressive algorithm begins with a single site (say,
one corner of the image) at distance zero and floods outward,
computing shortest paths in the graph. When the shortest
path exceeds a threshold length, a new site at distance zero
is placed; we continue until the entire graph is explored.

Shortest paths are computed using Dijkstra’s algorithm.
In the remainder of this section, we give a description of
Dijkstra’s algorithm, followed by additional details of how
we modified the algorithm to perform progressive site place-
ment, resulting in what we call the progressive algorithm.
Once the progressive algorithm chooses stipple sites, we
produce our final images by placing uniformly-sized dots at
all sites. In this work, we are concentrating on stipple place-
ment; naturally, stipple size is a dimension that can be em-
ployed, but in presenting our results this way we are attempt-
ing to remove distraction and encourage the reader to focus
on the stipple positions.

3.1. Dijkstra’s Algorithm

Dijkstra’s algorithm [CLR90] computes shortest distances
from a source point to the other nodes in the graph. Each
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node N has an estimated distance to the source, written
E(N), and an actual distance, written A(N). Dijkstra’s algo-
rithm uses a priority queue to store a set of “frontier”” nodes:
nodes with unknown actual distance, but which lie adjacent
to nodes with known actual distances. The priority queue is
ordered by increasing estimated distance, with smallest dis-
tances at the top; it is often implemented as a heap. Initially,
the frontier contains only the source node, at estimated dis-
tance zero; the graph is initialized with all nodes’ estimated
distances set to infinity. Then, the following is repeatedly
performed. First, the top node, say 7', is removed from the
frontier, and its actual distance set to its estimated distance.
Second, for each node N; adjacent to 7', a new estimate is
computed Epew (N;) as A(T) plus the cost of the edge link-
ing N; and T'; those nodes whose old estimate exceeds Enew
have their estimate replaced by the new estimate and are
added to the frontier. Dijkstra’s algorithm terminates when
the frontier is empty, at which point all nodes in the graph
have known distance values.

To find the distances to n nodes, Dijkstra’s algorithm
makes O(n) removal operations. Maintaining the heap has
a cost of O(logm) per interaction, where m is the number
of nodes in the frontier; thus, the overall cost is O(nlogm).
Typically, m << n; that is, only a small fraction of the graph
is in the heap at any one time.

3.2. Progressive Site Placement

We propose a fast, non-iterative algorithm for placing stip-
ples. Site are placed progressively, building up a stippled
region and adding new stipples at its fringe. The algorithm
works as follows.

An initial seed is placed at some location in the image.
Dijkstra’s algorithm is used to expand a region around the
seed; when the path cost for a newly expanded node exceeds
a threshold, the expansion step triggers the addition of a new
stipple. The new stipple location is the frontier node with
highest gradient magnitude, since we want to place stipples
preferentially on image edges. Crucially, the distance of the
new site is set to zero, so that expansion occurs initially in
the vicinity of the new site (since all other nodes in the heap
have distance at least the threshold). When no part of the
graph remains to be expanded, the progressive algorithm ter-
minates.

The progressive tile placement is illustrated in Figure 1:
first, a region is expanded about the first centre; a new centre
is chosen on the frontier; the new region is expanded until
the threshold is reached again; a third centre is placed, and it
expands; and so on. In the figure, the black outlines indicate
the sets of nodes nearest the central stipple, analogous to
Voronoi regions. At the time of placing a new stipple, the
frontier is the boundary between the grey and white areas.

The above discussion glosses over the details of how to

(© The Eurographics Association 2007.

bﬁa

Figure 1: Progressive site placement. New sites are placed
on the frontier when the cost of the last expanded node ex-
ceeds a threshold.

choose the highest gradient magnitude node from the fron-
tier. A naive approach to this task would require linear search
of the entire frontier. We instead implement a second heap,
ordered by gradient magnitude; when we extract a node from
this heap, we discard stale references until we reach a node
on the current frontier. Although this approach requires a lit-
tle extra memory, it makes the extraction process quite fast.

One feature of this algorithm is that the least-cost path be-
tween any two stipples is at minimum the chosen threshold.
This property arises directly from the use of the frontier to
place sites. At the time a new stipple is placed (triggered by
the expansion of a node whose cost exceeds the threshold)
all nodes on the frontier are at least the threshold distance
away from the nearest stipple. Distributions with a minimum
separation between point are often identified as “blue noise”.

4. Results

Here, we give results and describe some advantages and
disadvantages of our system. First, we show the effect of
applying our technique to a greyscale ramp, in Figure 2.
The range of tones is compressed, because we have in ef-
fect reserved half our dynamic range for conveying edge in-
formation rather than tone. Nonetheless, multiple tones are
clearly visible. In real images, especially photographic im-
ages, edges are common and the ability to express both in-
tensity and edge information is invaluable.

We next show results from applying our method to dif-
ferent input images; the originals of six of these images are
shown in Figure 3. Two stippled images are shown in Fig-
ure 4. The cat image we consider a success: despite the low
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Figure 2: A greyscale ramp, halftoned with the progressive
algorithm.

Figure 3: Original images. Top: cat, old man; middle: sub-
way, sunflower; bottom: Lena, artificial.

stipple count (about 5600) we are able to convey the im-
age content quite successfully. The cat image is fairly low-
contrast, so a difficult case for halftoning. Image edges, in-
cluding details such as the whiskers and the fur direction
in the ears, have been preserved. The old man image is at
best a qualified success. The prevalence of high-frequency
detail, including wrinkles and facial hair, make this a chal-
lenging subject; despite the larger number of stipple used
(about 9000) the features are not expressed clearly.

In Figure 5 we seek to show the results of employing our
algorithm with varying stipple counts. With very low stipple
count (under 1000) details are not visible, and the scene is
just recognizable by someone familiar with the photograph.
With medium stipple count (3000) details begin to emerge,
and lines such as the jawline, forehead, and structure of the
wall to the image right are successfully described. With rel-

Figure 4: Above: stippled cat, 5600 points. Below: stippled
old man, 9000 points.

atively high numbers of stipples (11,000) there remains con-
siderable edge emphasis, but this quantity of stipples also
allows us the luxury of genuine halftoning, and details such
as the shading on the shoulder can be indicated.

We make direct comparisons with the results from Sec-
ord’s WVS in Figures 6, 7, 8, 9, and 10. Although an older
algorithm, WVS has not been improved on in dimensions
relevant to our proposed method; extensions have concen-
trated on generalizing the stipple shape, adding temporal be-
haviour, and accelerating stipple placement.

Weighted Voronoi stippling matches tone superbly. How-
ever, as previously stated, stipples are not used solely for
tone reproduction, but to indicate image features. When
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Figure 5: Subway image with different stipple counts. Leftmost: 945 points; middle: about 3000 points; rightmost: about 11000

points.

halftoning alone is used, moderate stipple counts have dif-
ficulty conveying sharp features.

We are not restricted to faithfully matching the tones in an
input image, however, and can instead construct an impor-
tance image that gives higher weight to areas such as edges.
In principle it should always be possible to construct an im-
portance map so that tone matching the importance image
yields the desired stippling result. In practice, however, it is
not clear how the importance map should be built. The right
of Figure 6 shows one effort to stipple an importance image;
here, the importance of a pixel is a weighted average of dark-
ness and gradient magnitude, with global weights chosen
such that the integral of gradient magnitude times its weight
equalled the integral of darkness times its weight. Stippling
of this importance map yielded a better representation of the
input image, but still not a very good one.

We found the best way for WVS to represent the Lena
image with low stipple counts was to abandon darkness en-
tirely. Figure 7 shows a direct comparison between progres-
sive stippling and WVS of the gradient magnitude. Here, the
choice of which is better is not altogether clear-cut. How-
ever, we can point to elements of the progressive image with
better detail: the separation of the forehead and hat; the lines
across the crown of the hat; the structures on the wall be-
hind Lena, especially directly above Lena’s shoulder. Also,
the WVS image no longer displays tone: darker areas (such
as the curved rim of the mirror, in the image’s mid to upper
right) receive the same uniform shading as lighter areas. The
progressive algorithm does show a difference in tone there.

Comparisons using the artificial image are also illuminat-
ing. Because of the sharp edges and large differences in tone,
neither darkness alone nor gradient alone are suitable for im-
portance, as Figure 8 shows. A mix allows WVS to reveal
both the shading and the edges, shown in Figure 9. However,
although WVS does place stipples on the circular edge, these
stipples are excessively integrated into the overall distribu-
tion, and (especially in the lower portion of the circle) tend
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to vanish into the crowd. By comparison, the edge-aligned
stipples placed by the progressive stippling method disrupt
the pattern, as well as being spaced more closely together,
and in consequence are considerably more visible.

Figure 9 also displays a perceptual artifact well-known to
be present in uniform Voronoi packings of points [INC*06]:
the tendency of the eye to see and follow curved paths
through the distribution. Figure 10 shows a comparison
between uniform distributions generated with CVD’s and
with progressive stippling. The progressive stippling result
lacks the perceptual defect of the CVD result. It also has a
rougher look, difficult to quantify but reminiscent of hand-
made placement of dots. Notice that the progressive distribu-
tion cannot simply be achieved by jittering the positions of
the CVD packing, since it maintains the blue noise charac-
teristic of a minimum distance between any two points; jitter
will tend to bring some points closer together than is desired.

In Table 1 we show timing results and exact stipple counts
for our images. All results are for 512 x 512 resolution im-
ages on a 3.2GHz P4 with 1 GB RAM; our C implementa-
tion was not highly optimized, but stipple results can be ob-
tained in less than 1 second. The times depend mainly on the
resolution of the underlying graph, although there is a weak
dependence on stipple count as well (since larger numbers
of stipples tend to require larger heaps).

5. Mosaic Construction

Mosaics and stipples have a close relationship: the same
primitive distribution problems are seen in each. However,
while stipples should be placed on image edges, mosaic tile
centres should be placed away from edges; the boundaries
between mosaic tiles, rather than the tiles themselves, offer
opportunity to highlight edges. Mosaics differ from stipples
also in that beyond the problem of tile distribution, mosaics
have the additional problems of tile shape and orientation.
We can modify the algorithm of Section 3 to place mosaic
tiles, and employ an identical distance calculation to com-
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Figure 6: WVS applied to the Lena image: left, pure halfton-
ing; right, importance is a mix of gradient magnitude and
darkness.

Image point count | processing time
Cat 5582 0.8s
Old man 9082 0.8s
Lena 4815 0.8s
Artificial 1221 0.8s
Subway (low res) 945 0.7s
Subway (medium res) 2987 0.8s
Subway (high res) 11146 0.9s
Sunflower (mosaic) 1067 1.6s
Lena (mosaic) 1319 1.7s

Table 1: Timing results for some of the stippling processes.

pute irregular shapes surrounding tile centres. We present
this method as a means of approximating the earliest his-
torical mosaics, pebble and chip mosaics; such construc-
tions used heterogeneous sets of tiles rather than the regular
tesserae employed in the archtypal tesselated mosaic, com-
monly studied by NPR practitioners.

We follow the same basic procedure for mosaic tile place-
ment as for stipple placement: the progressive algorithm is
used to place tiles, so that new tile centres placed at the fron-
tier. Now, though, we want to place new tiles at the low-
est gradient location on the frontier, rather than the high-
est. Also, we now care about the size of regions, rather than
(strictly) the separation between tile centres. This latter point
can be achieved by a straightforward conceptual modifica-
tion of the algorithm: rather than placing a new centre when
the path length exceeds a threshold, we place a new cen-
tre when the region size of the most recently placed tile ex-
ceeds a threshold. This idea requires an adjustment to the
implementation: we grow a single region at a time until it
attains the desired size; as a new region grows, it is forbid-
den from growing into nodes already claimed by previously
placed tiles. The regions arising from this process often pos-
sess defects (such as holes), and we compute final tile shapes
from a second pass of the distance calculation, starting from
all tile centres simultaneously, labeling each node with its
nearest tile centre.

Figure 7: Comparison of WVS and PS. Above, WVS of gra-
dient magnitude; below, progressive stippling.

An example of the boundaries of the initial regions, and
the resulting tile shapes, is shown in Figure 11. Some mo-
saic results from input images are shown in Figure 12. We
need fewer tiles than stipples to express an image, since the
tile edges convey so much information; the examples shown
contain approximately one thousand tiles each. Notice how
well the irregular tile edges conform to real image edges,
despite the absence of an explicit edge detection step.

6. Conclusions

We have described a novel stippling algorithm arising from
progressive distance calculation over a graph representation
of an input image. The method can capture both edge and
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Figure 8: WVS applied to the artificial image: left, pure
halftoning; right, importance is gradient magnitude.

darkness information, and is better suited to depicting sharp
features than are previously proposed methods.

The output stippled images have blue-noise-like charac-
teristics where features are absent, but are also able to show
sharp features such as edges. Our output is free of the dis-
tracting “chain” artifacts Voronoi packings are prone to. We
contend that the progressive algorithm produces higher qual-
ity images than does the classic weighted Voronoi method,
and that the images also look more handmade.

There are a few directions for future work. At present,
texture indication is done only by finding intensity edges.
We would like to investigate methods for generating a more
coherent depiction of high-frequency texture structure. We
would like to further explore and refine the application of
this algorithm to irregular mosaics, and to incorporate stipple
size changes into our framework. Finally, further investiga-
tion of automatic importance computation would be useful
in NPR applications including halftoning, painterly render-
ing, and many other artistic styles.
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