Collision Detection

Doron Nussbaum

COMP 3501- Collision Detection

1

- How to determine if a shell hit the target?
- How to determine if the driver is off the road?
- Did the kick hit the target?
- Will the submarine escape the torpedo?

Doron Nussbaum

COMP 3501- Collision Detection

Collisions in the gaming world

- Collisions in the gaming world are a two step operation:
 - Collision Detection
 - The action of determine what or who collided and when?
 - Collision Resolution
 - What to do about the collision?
 - Changes the game state (e.g., losing an airplane)

Doron Nussbaum

COMP 3501- Collision Detection

3

Addressing Collisions

- When addressing collision one must handle
 - Objects may be complex
 - Objects change location
 - Dynamic objects
 - · Static objects
 - Many objects to handle
 - Discrete time steps
 - Limited amount of time
 - · Real-time detection

Doron Nussbaum

COMP 3501- Collision Detection

- Dynamic environment
 - Many objects
 - Most of the objects change their position over time
 - Collisions between the objects changes the state of the game
- Static environment
 - Few objects change their position over time
 - Collision between objects may not affect the state of the game

Doron Nussbaum

COMP 3501- Collision Detection

.

Collision Detection Brute Force Approach

- At each time step of the game check all possible occurrences of a collision.
 - If there are *n* moving objects and m static objects then
 - $O(n^2 + mn)$ collision detection tests
 - Each test can be complex

Doron Nussbaum

COMP 3501- Collision Detection

Collision Detection Approaches

- Detection between objects ("low level")
 - Overlap testing
 - Intersection detection
- Large scale detection
 - Simplifying objects
 - Space partitioning
 - Time based collisions

Doron Nussbaum

COMP 3501- Collision Detection

7

Overlap testing

 Every time step of the game test each pair of objects for intersection (overlap)

Pros

- Simple to implement
- Work well for small number of objects
- Easy for simple shapes

Cons

- Time consuming
- Detects whether a collision occurred in the past
- Require backtracking to determine exact collision time

Doron Nussbaum

COMP 3501- Collision Detection

Overlap Tests

- Sphere-Sphere overlap
- Sphere A
 - $-c_a$ centre of sphere
 - $-r_a$ radius of sphere
- Sphere B -
 - $-c_b$ centre of sphere
 - $r_{\rm b}$ radius of sphere
- Overlap if

$$\left\| \left| c_a - c_b \right| \le r_a + r_b \right\|$$

- Cube-Cube overlap
- Each cube is represented by a centre (x_i, y_i, z_i) and width w_i

$$\begin{vmatrix} x_1 - x_2 | \le w \text{ and} \\ |y_1 - y_2| \le w \text{ and} \\ |z_1 - z_2| \le w \end{vmatrix}$$

Doron Nussbaum

COMP 3501- Collision Detection

Overlap Tests

- 2 Rectanclges overlap
- Each cube is represented by
 - Centre (x_i, y_i, z_i)
 - Width $(\mathbf{w}_x, \mathbf{w}_y, \mathbf{w}_z)$

$$|x_1 - x_2| \le w_x$$
 and $|y_1 - y_2| \le w_y$ and $|z_1 - z_2| \le w_z$

Doron Nussbaum

COMP 3501- Collision Detection

Handling overlap collisions

- What happens if more than one collision was found?
- What happens if an object collides with two ore more other objects
- When a collision was detect exact time must be computed
 - Backtrack in time (e.g., using binary search)
 - Use exact geometry to find out when the two borders meet.
- Ensure that the correct collision was used to ensure proper game state

Doron Nussbaum

COMP 3501- Collision Detection

11

Limitation

- Approach fails when
 - Objects move two fast
 - Time step too coarse
- Possible "Remedies"
 - Refine time steps
 - Limit speed of objects

Doron Nussbaum

COMP 3501- Collision Detection

Intersection Testing

- Predicts when the collision will occur
- Operates on simulation time
- When a collision was found
 - Determine collision time
 - Do not recompute collisions until simulation time matches collision time

Doron Nussbaum

COMP 3501- Collision Detection

Parametric computation

Doron Nussbaum

COMP 3501- Collision Detection

19

$$\begin{split} & \|p'-q\| \le r_p + r_q \\ & (p'-q')^2 \le (r_p + r_q)^2 \\ & [p_1 + t(p_2 - p_1) - (q_1 + t(q_2 - q_1))]^2 \le (r_p + r_q)^2 \\ & [(p_1 - q_1) + t((p_2 - p_1) - (q_2 - q_1))]^2 \le (r_p + r_q)^2 \end{split}$$

Letting
$$v = (p_1 - q_1)$$
 and $u = (p_2 - p_1) - (q_2 - q_1)$
we obtain

$$[v + tu]^{2} \le (r_{p} + r_{q})^{2}$$
$$v^{2} + 2tuv + t^{2}u^{2} \le (r_{p} + r_{q})^{2}$$

Doron Nussbaum

COMP 3501- Collision Detection

$$t^{2}u^{2} + 2tuv + v^{2} - (r_{p} + r_{q})^{2} \le 0$$

solving the quadratic equation

$$\begin{split} t_{1,2} &= \frac{-2uv\mp\sqrt{(2uv)^2 - 4u^2((v^2 - (r_p + r_q)^2)}}{2u^2} \\ t_{1,2} &= \frac{-uv\mp\sqrt{(uv)^2 - u^2((v^2 - (r_p + r_q)^2)}}{u^2} \end{split}$$

$$t_{1,2} = \frac{-uv \pm \sqrt{(uv)^2 - u^2((v^2 - (r_p + r_q)^2))}}{u^2}$$

a solution exists if (note equality means toucing)

$$(uv)^2 > u^2((v^2 - (r_p + r_q)^2)$$

$$(r_p + r_q)^2 > v^2 - \frac{(uv)^2}{u^2}$$

Doron Nussbaum

COMP 3501- Collision Detection

• A collision occurs when

$$(r_p + r_q)^2 > v^2 - \frac{(uv)^2}{u^2}$$

Doron Nussbaum

COMP 3501- Collision Detection

Example

$$v = (p_1 - q_1) = (5,7) - (4,4) = (1,3)$$
and $u = (p_2 - p_1) - (q_2 - q_1)$

$$u = ((10,3) - (5,7)) - ((12,8) - (4,4))$$

$$u = (5,-4) - (8,4) = (-3,-8)$$
Other quantities
$$uv = -27$$

$$v^2 = 10$$

$$(r_p + r_q)^2 > v^2 - \frac{(uv)^2}{u^2}$$
$$(.5 + .25)^2 > 10 - \frac{729}{73}$$
$$0.5625 > \frac{1}{73}$$

$$v = (p_1 - q_1) = (5,7) - (4,4) = (1,3)$$
and $u = (p_2 - p_1) - (q_2 - q_1)$

$$u = ((10,3) - (5,7)) - ((12,8) - (4,4))$$

$$u = (5,-4) - (8,4) = (-3,-8)$$
Other quantities
$$uv = -27$$

$$v^2 = 10$$

$$u^2 = 73$$

$$\begin{split} t_{1,2} &= \frac{-uv^{\mp}\sqrt{(uv)^2 - u^2((v^2 - (r_p + r_q)^2)}}{u^2} \\ t_{1,2} &= \frac{27 \mp \sqrt{729 - 73((10 - 0.5625)}}{73} \\ t_{1,2} &= \frac{27 \mp 6.33}{73} \approx 0.28 \\ t_{1,2} &= \frac{27 \mp 6.33}{73} \approx 0.45 \\ p' &= p1 + (p2 - p1) * t \\ p' &= (5,7) + (5,-4) * 0.28 = (6.4,5.88) \end{split}$$

Doron Nussbaum

 $u^2 = 73$

COMP 3501- Collision Detection

Similar computation

- Sphere-square
- Box-Box
- Sphere-box
- What is in common?

Convex Objects

Doron Nussbaum

COMP 3501- Collision Detection

25

How to take advantage of it? (last)

- Reduce number of collision detection operations
 - Compute collisions only as required
 - Organize collision by time
- Preprocessing
 - Examine all collisions $(O(n^2))$
 - Store the collisions in a heap
- Processing
 - Remove top of heap (corresponding to game time)
 - Determine effect of collision (collision resolution)
 - Compute new collisions (only O(n))
 - Update the heap

Doron Nussbaum

COMP 3501- Collision Detection

Limitations

- Assumes constant speed
 - Can be modified to use acceleration
- Network games
 - Time may not be synchronized
 - Delay in packet transmission
 - Prediction may be problematic

Doron Nussbaum

COMP 3501- Collision Detection

27

Addressing complexity

- Simplifying the operations
 - Approximations sacrifice accuracy
 - Convert object to a simple object
 - Bounding box
 - Sphere
 - E.g., convert a car to a sphere
 - Can be combined in a hierarchy
 - Two levels of spheres

- - Spheres
 - Boxes

Doron Nussbaum

COMP 3501- Collision Detection

Bounding box

- Usually axis aligned
 - Simple computation
 - Small amount of space

- Limitation
 - Crude approximation
 - High error rate
 - Use hierarchical representation

Doron Nussbaum

COMP 3501- Collision Detection

20

Addressing a Large Number of Collision Tests (last)

- Brute force / naïve
 - $O(n^2)$ tests per frame
- Parametric computation
 - can be time consuming
 - Require careful bookkeeping
- Partition the space into buckets
 - Sort objects into buckets
 - Test collisions between objects in the buckets

Doron Nussbaum

COMP 3501- Collision Detection

Addressing a Large Number of Collision Tests (last)

- Brute force / naïve
 - O(n^2) tests per frame
- Parametric computation
 - can be time consuming
 - Require careful bookkeeping
- Partition the space into buckets
 - Sort objects into buckets
 - Test collisions between objects in the buckets

Doron Nussbaum

COMP 3501- Collision Detection

3

Collisions

- When to use an auxiliary data structure
 - Large number of objects
 - \bullet What is large? depending on the computer
 - tradeoffs between collision computation and data structure updating are favourable
 - Space (memory) is available
 - Time restriction
 - Allotted time in a frame amortized, absolute

Doron Nussbaum

COMP 3501- Collision Detection

Auxiliary DS

Properties

- Handle large number of data elements
- Simple
- Good fundamental operations performance
- Independent of data arrival order
- Little or no data redundancy
- Handle heterogeneous objects
- Possible other properties
 - Handle apriori knowledge (e.g., data distribution)
 - Performance relative to data size

Doron Nussbaum

COMP 3501- Collision Detection

33

Required Operations

Fundamental Operations

- Insertion
- Deletion
- Update
 - Deletion
 - Insertion
 - Support dynamic

Query Operations

- Range search
 - Proximity
- Ray shooting
 - Ray tracing
- Collisions
 - Proximity

Doron Nussbaum

COMP 3501- Collision Detection

Space partitioning

- A large number of space partitioning schemes
 - Strips
 - 3D Grid
 - Quadtree/Octree
 - BSP tree binary space partition tree
 - K-D tree
 - R-tree

Doron Nussbaum

COMP 3501- Collision Detection

35

Space partitioning

- Data driven DS
 - Dynamic partitioning
 - DS is modified
 - DS is initially constructed with respect to data
 - Static may lead to poor performance
- Examples
 - BSP tree
 - K-D tree
 - R-tree

- Space driven DS
 - Static partitioning
 - DS is modified
 - DS is initially constructed with respect to data
 - Static may lead to poor performance
 - Dynamic partition may be expensive
- Examples
 - Quadtree/Octree
 - Strips
 - 3D Grid

Doron Nussbaum

COMP 3501- Collision Detection

Strips

- Partition the space into strips
 - Key strip size

Partitioning

- Two types of objects
 - Guard objects
 - Shared between two or more buckets
 - Contained objects
 - Contained in a single bucket

Doron Nussbaum

COMP 3501- Collision Detection

Strips

- Simple
 - Use bounding box to determine bucket
 - As object moves update the buckets
- In determining strip size min strip size > 2 * max object width
 - Avoid collision detection of objects in non adjacent buckets.

3D Grid

- Similar to strips but two dimensional
 - Key determining the grid size
 - Guard objects are shared by at most four backets

Collisions - Parametric

- Compute collisions within each buckets
- Organize each bucket in a priority queue, $Q_{\rm b}$
- Organize a priority queue of all buckets, Q

Doron Nussbaum

COMP 3501- Collision Detection

41

Priority Queue Events

- Insertion (repeat for a guard)
 - Insert to bucket
 - Compute collisions with all bucket elements
 - Insert earlier collision to Qb
- Deletion object u (repeat for a guard)
 - Remove object from bucket
 - Search object v in Q that collides with u
 - Compute next collision for v

Doron Nussbaum

COMP 3501- Collision Detection

Priority Queue Events

- Collision between u and v (repeat for a guard)
 - Delete u
 - Delete v
 - Determine collision response
 - Insert u
 - Insert v
- Boundary
 - Make object a guard
 - Special insert into new bucket

Doron Nussbaum

COMP 3501- Collision Detection

43

Fast Moving Objects – Ray Query

- For each ray
 - Check entry and exit time

Doron Nussbaum

COMP 3501- Collision Detection