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Abstract

3D shape parsing, the process of analyzing and breaking down a 3D shape into components or parts, has become an important

task in computer graphics and vision. Approaches for shape parsing include segmentation and approximation methods. Approx-

imation methods often represent shapes with a set of primitives fit to the shapes, such as cuboids, cylinders, or superquadrics.

However, existing approximation methods typically rely on a large number of initial primitives and aim to maximize their cov-

erage of the target shape, without accounting for correspondences among the primitives. In this paper, we introduce a novel

3D shape approximation method that integrates reconstruction and correspondence into a single objective, providing approx-

imations that are consistent across the input set of shapes. Our method is unsupervised but also supports supervised learning.

Experimental results demonstrate that integrating correspondences into the fitting process not only provides consistent cor-

respondences across a set of input shapes, but also improves approximation quality when using a small number of primitives.

Moreover, although correspondences are estimated in an unsupervised manner, our method effectively leverages this knowledge,

leading to improved approximations.

CCS Concepts

• Computing methodologies → Shape modeling;

1. Introduction

Humans naturally decompose objects into parts to make sense

of their structure, function, and purpose—whether recognizing a

chair by its seat and legs or assembling a product by understand-

ing its components [Bie85]. Thus, research in computer vision and

graphics has also focused on analyzing the part composition of 3D

shapes, which can be regarded as shape parsing. One line of work

introduced methods for shape segmentation, where the goal is to

decompose an input polygonal mesh or point cloud into meaning-

ful parts, possibly based on example segmentations given as train-

ing data. For example, recent shape segmentation methods use su-

pervised learning based on neural networks such as convolutional

neural networks (CNNs) [YSGG17, KAMC17, WGS∗18], autoen-

coders [CCZZ24], transformers [LASM24, LHJ∗22], or graph net-

works [Roy23, SSSS21].

Another line of work related to part analysis seeks to ap-

proximate a shape with a set of primitive shapes. Represent-

ing a shape as a set of primitives provides a higher-level ab-

straction [SZTL19] of the shape, and more easily enables ap-

plications such as primitive-based editing [TSG∗17]. Different

types of primitives have been used for approximating shapes,

such as cuboids [TSG∗17, SZTL19], cylinders [Bin71], su-

perquadrics [Pen86, PUG19, LWRC23], and structured implicit
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(a) Without correspondence (b) With correspondence

Figure 1: 3D shape parsing with and without primitive correspon-

dence. Each colored shape represents a primitive and the color de-

notes the primitive’s correspondence across the set of shapes. The

point clouds being fit are shown in gray. We compare the shape

parsing performance between a method targeting purely recon-

struction (on the left) and our method which also establishes cor-

respondences among the primitives (on the right). The results show

that learning correspondence during the fitting can lead to a more

accurate shape approximation in an unsupervised approach.

functions [GCV∗19, GCS∗20]. These works focus on reconstruct-

ing input shapes with primitives and thus provide good approxima-

tions of the shapes.

However, none of the existing works cited above consider es-

tablishing a correspondence between the primitives. Specifically,

the approximation methods rely on a large number of primitives
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and aim to maximize the coverage of the target shape’s surface,

without accounting for correspondences between primitives of dif-

ferent shapes. A correspondence between primitives is desirable in

certain contexts, such as when we require a consistent abstraction

for all the shapes in a set. Primitives with correspondence can also

enable applications such as the learning of generative models, con-

struction of templates and statistical shape models of primitives, or

collection editing, including collective part editing, deformation,

exchange, and deletion.

Thus, in this paper, we introduce an unsupervised method for

approximating a set of input shapes with primitives, so that the

primitives approximate well the input and at the same time pos-

sess a correspondence across the set (Figure 1). We focus on fitting

shapes with superquadric primitives, since superquadrics are more

expressive than other representations by capturing a diverse class

of shapes in a single parameter space [PUG19], such as cuboids

and ellipsoids. Specifically, we extend existing unsupervised fitting

methods based on a reconstruction loss by introducing a soft corre-

spondence loss. The novel correspondence loss is guided by shape

features extracred by a pre-trained, unsupervised foundation model,

which allows us to compute the probability of primitive matches.

Once the approximation is computed, we can also derive a consis-

tent segmentation of all the shapes in the set if desired.

One alternative to fitting primitives with correspondence is to

first segment the shapes and then fit primitives to the segments.

However, this approach leads to less accurate fitting, since errors

in the segmentation are propagated to the fitting step and cannot be

corrected based on the collective correspondence. The method of

Yang and Chen [YC21] is related to this type of approach, although

it simultaneously computes a shape abstraction into cuboids and

co-segmentation of a set of shapes. However, since their network

is based on an encoding-decoding model, enough data is needed

for training the feature encoder. In contrast, our method can also be

applied to small sets of shapes since no encoding is necessary. A

second alternative to our method is to define a template and fit it to

all the shapes [KLM∗13]. However, this requires constructing the

template beforehand and does not benefit from taking all the shapes

into account during fitting.

In contrast to the alternatives described above, our contributions

can be summarized as follows:

• We introduce a method to approximate a set of input shapes

with superquadric primitives while also establishing a correspon-

dence between the primitives. Our method is capable of fitting

primitives in a supervised or unsupervised manner.

• For unsupervised approximation, we introduce a novel corre-

spondence loss as part of the combined loss for our deep net-

work to learn the approximation, which captures point-to-point

correspondences.

• We demonstrate with experimental validation that our method

enables parsing of 3D shapes by obtaining approximations

with good quality and consistent primitive correspondence. We

trained our model with datasets of varying quality (e.g., poor cor-

respondence and small datasets). The results (Figure 6 and Ta-

ble 1) show the surprising performance of our method, especially

on small datasets, demonstrating its flexibility and robustness.

• Additionally, we design a metric called penalized bi-directional

Rand index (PBRI) to evaluate the correspondence of unsuper-

vised shape parsing approaches. This index can work with the

probability of existence and does not require one-to-one labels

between points on the primitives and the input point cloud.

Our implementation is available at https://github.com/

YujinK-CHN/USPC.

2. Background and Related Work

In this section, we briefly review the technical background and pre-

vious work related to our paper.

2.1. Superquadric Parametrization

Superquadrics provide a vocabulary for shape representation, of-

ten used for modeling real-world objects as compositions of simple

parts. Pentland [Pen86] is among the earliest to use superquadrics

for shape parsing aligned with our recognition of “parts” in scene

structures. A superquadric can be described by the following para-

metric equation [PUG19]:

r =





α1 cosϵ1 ηcosϵ2 ω

α2 cosϵ1 ηsinϵ2 ω

α3 sinϵ1 η





, (1)

where r is a 3D vector that sweeps out a surface parameterized by

latitude η and longitude ω, with − π
2 f η f π

2 and −π f ω f π,

α = (α1,α2,α3) determines the size of the shape along each di-

mension, and ϵ = (ϵ1,ϵ2) determines the global shape of the su-

perquadric, making it “rounder” or more “squarish”. Superquadrics

can describe primitive shapes such as spheres, ellipsoids, cylinders,

and smooth cubes and diamonds. This representation can be ex-

tended by applying a translation t and rotation q to describe a su-

perquadric in any orientation and position in space. Thus, such a

general superquadric can be represented with 11 parameters from

α, ϵ, t, and q, assuming a 3D translation vector t and normalized

quaternion q.

2.2. Learning-Based Shape Parsing

For shape parsing, Zou et al. [ZYY∗17] introduced 3D-PRNN, a

generative recurrent neural network using long-short term mem-

ory networks and mixture density networks to encode symme-

try in depth images, enabling cuboid primitive decoding. Niu et

al. [NLX18] proposed a convolutional-recursive autoencoder that

extracts shape structures from RGB images and recursively de-

codes cuboid hierarchies while modeling part relations. Tulsiani

et al. [TSG∗17] developed an unsupervised CNN-based method

that predicts volumetric primitives by minimizing the discrep-

ancy between input meshes and reconstructed assemblies. Paschali-

dou et al. [PUG19] extended this by leveraging superquadric rep-

resentations and demonstrating the tractability of bi-directional

chamfer distance as a loss function. Because superquadrics of-

fer a flexible, compact, and differentiable way to represent ge-

ometric primitives, more 3D shape parsing and primitive fitting

methods have been developed using them. For instance, Liu et

al. [LWRC22] present a probabilistic optimization framework to

robustly recover superquadric parameters from 3D point clouds.
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Figure 2: Overview of our shape parsing method. Given an input shape represented as a mesh, volume, and point cloud, the network at the

center encodes the volume with a CNN which forwards the encoding to multi-head layers that predict superquadric parameters. The blue

trajectory represents the reconstruction process, while the yellow trajectory represents the process of learning the correspondence.

Alaniz et al. [AMA23] propose an iterative method to reconstruct

3D objects by fitting and recomposing superquadric primitives

from multi-view observations. In addition, for man-made objects

such as computer-aided design models, methods have been devel-

oped to fit geometric primitives in forms other than superquadrics,

such as planes, spheres, cylinders, and cones, for shape segmenta-

tion or reconstruction [LSD∗19, YYM∗21, LSC∗21, LLY∗23].

Yang et al. [YC21] is the most similar work to ours, predicting

parameterized cuboids for point cloud segmentation. The key dif-

ferences to our work include: (i) our approach fits superquadrics,

predicting more parameters; (ii) we introduce a novel correspon-

dence loss integrated into training, rather than learning segmenta-

tion and approximation with separate network branches; (iii) our

approach does not require learning a feature encoder from the data,

instead employing a foundation model.

2.3. Correspondence and Segmentation

Recent work in 3D shape modeling has focused on establishing cor-

respondences and performing segmentation within or across shape

categories.

Co-segmentation methods, in particular, leverage part correspon-

dences across shapes within a category to produce consistent seg-

mentations. For example, Zhu et al. [ZXC∗20] propose a weakly

supervised method that adaptively co-segments 3D shapes by learn-

ing consistent part correspondences using a group consistency

loss. Chen et al. [CYF∗19] introduce BAE-NET, an unsupervised

branched autoencoder to co-segment 3D shapes by learning recur-

ring parts through reconstruction.

With recent advances in foundation models, new methods ad-

dress correspondence and segmentation beyond category bound-

aries. Dutt et al. [DMM24] propose Diff3F, a feature distiller that

extracts semantic features by rendering shapes from multiple views

and generating depth/normal maps. These maps guide ControlNet-

based [ZRA23] photo-realistic image synthesis via stable diffu-

sion [RBL∗22], with the diffusion features then aggregated onto

input surfaces to enable semantic correspondence without addi-

tional training. Diff3F leverages foundation models for vision to

extract semantic descriptors in a zero-shot manner, employing DI-

NOv2 [ODM∗24] to learn robust visual features from large, un-

labeled datasets. While Diff3F produces high-level semantic fea-

tures, we seek instance segmentation for correspondence learning.

Notably, Diff3F’s semantic features remain distinguishable within

the same object for functionally similar components (e.g., legs).

See Figure 3 for examples of the feature similarity.

3. Shape Parsing with Correspondence

Our method is based on the work of Paschalidou et al. [PUG19],

where we perform the primitive fitting with a neural network

trained in an iterative optimization. However, we do not use all

terms of their loss function, and instead incorporate the estimation

of correspondences into the fitting process, which requires the de-

sign of a new soft correspondence loss. The method operates in an

unsupervised manner, although it can also be used with supervi-

sion. In each iteration, the network predicts a set of primitives for

an input shape, and then corrects the prediction based on a loss

function incorporating reconstruction and correspondence objec-

tives. At the end of the optimization, the network will have learned

to perform an accurate prediction of primitives for an input shape.

As Paschalidou et al. [PUG19] and Tulsiani et al. [TSG∗17], we

represent primitives as superquadrics. As follows, we first provide

a general overview of the network. Then, we discuss each term of

the loss function used in the optimization. A diagram providing an

overview of our method is shown in Figure 2.

Input and output. Our method takes as input a set of shapes and

computes an approximation of each shape with a set of primitives

in correspondence across the set. Each shape is given as a mesh.

We extract an occupancy grid (volume) and a point cloud X from

the shape. We use the mesh for feature extraction, the volume for

feature encoding, and the point cloud for chamfer distance compu-

tation. We also take as input the maximum number of initial prim-

itives M, and the expected number of primitives k per shape. The

output reconstruction is not constrained to k primitives. However, k

provides us with an initial guess on the number of labels in a shape,

and is fixed throughout the optimization. Our method outputs a set
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of up to M primitives for each input shape, which are ordered con-

sistently according to their correspondence across the set.

Network architecture. As in the work of Paschalidou et

al. [PUG19], our architecture is a multi-head neural network that

predicts a set of up to M primitives that approximate the input

shape. The network consists of a 3D CNN encoder followed by five

independent heads that predict each parameter of a superquadric

primitive: size α, shape ϵ, translation t, rotation q, and probability

of existence γ. We add an independent head for estimating a pre-

dicted correspondence matrix W ∈ R
M×k as a differentiable prob-

ability distribution, where k is the expected number of primitives.

3.1. Loss Function

Our network is optimized with the loss L:

L= λ1Lrecon +λ2Lcorr +λ3Lreg, (2)

where Lrecon is the reconstruction loss, Lcorr is the correspondence

loss, Lreg is a cosine similarity regularization loss for the predicted

correspondence, and λ1, λ2, and λ3 are the coefficients for balanc-

ing the loss components.

3.1.1. Reconstruction Loss

The approximation loss is given by a bi-directional chamfer dis-

tance computation as in the work of Paschalidou et al. [PUG19]:

Lrecon = LY→X +LX→Y , (3)

where X indicates the input point cloud containing N points, i.e.,

X = {xi | i ∈ {1, . . . ,N}}, and Y denotes the set of predicted prim-

itives, where each primitive is represented as a set of S points sam-

pled from its surface, e.g., the mth primitive Ym is represented as

{ym
j | j ∈ {1, . . . ,S}}. LY→X represents a primitive-to-point cloud

distance, which computes the average minimum distance from each

point in each primitive of Y to its nearest neighbor in X :

LY→X =
M

∑
m=1

γmLYm→X , (4)

with

LYm→X =
1

S

S

∑
j=1

min
i∈{1,...,N}

∥τm(xi)−y
m
j ∥, (5)

where γm is the probability of existence of the mth primitive, and

τm(·) is a transformation function that transforms a 3D point in

world coordinates into the local coordinate system of the mth prim-

itive. More details on τm(·) can be found in [PUG19].

The point cloud-to-primitive direction is mainly used to ensure

that the target is covered by the predicted primitives. Thus, in

LX→Y , we measure only the distance from existing primitives.

Therefore, the point cloud-to-primitive loss can be defined as:

LX→Y =
N

∑
i=1

M

∑
m=1

∆m
i γm

m−1

∏
m̄=1

(1− γm̄), (6)

where

∆m
i = min

j∈{1,...,S}
∥τm(xi)−y

m
j ∥. (7)

Figure 3: Color maps of features extracted with the foundation

model Diff3F [DMM24], based on cosine similarity between a pair.

Paschalidou et al. [PUG19] provide the full details of this recon-

struction loss, which we use in our method.

3.1.2. Feature Extraction and Clustering

Our correspondence loss is based on the similarity of point features.

Thus, we utilize a method based on a foundation model [DMM24]

as a black box for feature extraction. The foundation model takes

an entire mesh of a shape as input and generates a feature vector for

each mesh vertex. For each point in the input point cloud, we assign

a feature based on the feature vector of its nearest mesh vertex,

resulting in a sequence of N features vectors {fi | i ∈ {1, . . . ,N}}.

Next, we assume that the input is composed of the expected num-

ber of labels k and thus we group the points into k clusters based on

their feature vectors. We assume that the clusters represent prim-

itives that likely compose the input, which we call the “reference

primitives”. We leverage k-means clustering for this step. Specifi-

cally, we first derive k cluster centers {c j | j ∈ {1, . . . ,k}} from the

feature vectors. Then, we derive a reference correspondence matrix

P = (pi, j)N×k, with each entry pi, j computed as:

pi, j = softmax(∥fi − c j∥), (8)

where pi, j can be interpreted as the probability of the ith point cor-

responding to the jth reference primitive, according to the extracted

features. Since we define P as a probability distribution, we use the

softmax function to ensure that all entries lie within [0,1]. Note that

P is only computed once at the beginning of the optimization.

3.1.3. Correspondence Loss

The main idea of the correspondence loss is to match the input

points to points sampled on the predicted primitives based on the

features extracted in Section 3.1.2. However, to simplify the for-

mulation, we pose the problem as matching the correspondence

vectors of input points to the vectors of points sampled from the

predicted primitives. The vectors for input points encode the prob-

ability of a point matching to one of k hypothetical reference prim-

itives, while the vectors for a predicted point encode its probability

of matching to one of the predicted primitives. Thus, the problem

is reduced to matching the reference to the predicted primitives.

Moreover, since features around a primitive may be similar, we

also consider the spatial distance between points in the matching.

In this setting, we are given the probabilistic correspondence ma-

trix P from the foundation model, while the network also predicts a

probability matrix W. Note that the network will learn to perform

this prediction during the optimization. Then, we match the points

based on these two matrices and their spatial distances.

Specifically, we denote pi = (pi,1, . . . , pi,k) as the ith row of P,

representing the reference correspondence vector for the ith point in

© 2025 The Author(s).
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Medium weight distance

Low weight distance

[0.9,0.1,0.0]

[0.8,0.1,0.1]
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[1.0,0.0,0.0]
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Figure 4: Illustration of the correspondence vector for a point sam-

pled from a primitive (at the center) surrounded by input points,

with the best matches indicated by solid lines. Left: using feature

vectors. Right: using pseudo-labels.

X , where i ∈ {1, . . . ,N}. We denote wm = (wm,1, . . . ,wm,k) as the

mth row of W, representing the predicted correspondence vector

for the mth primitive. Given each point ym
j ( j ∈ {1, . . . ,S}) on the

mth primitive, we calculate a distance vector dm
j = (dm

j,1, . . . ,d
m
j,N)

between ym
j to each point in X . Thus, we define the correspondence

loss on each sample point ym
j as:

Lym
j
=

1

N

N

∑
i=1

d
m
j,i max(pi »wm). (9)

Therefore, the correspondence loss on the mth primitive Ym is de-

fined as:

LYm
=

1

S

S

∑
j=1

Lym
j
. (10)

We sum up the correspondence loss on all the primitives weighted

by their probabilities of existence to derive the overall correspon-

dence loss for the entire shape, i.e.,

Lcorr =
M

∑
m=1

γmLYm
. (11)

According to (9), as the predicted correspondence gets close to

the correspondence vector of a reference point and concentrates

on the same region, its corresponding distance contributes more to

the loss, which causes the model to pay more attention to reducing

the distance between points and primitives. Thus, the primitive is

pulled towards the corresponding area.

We illustrate the calculation of the Lym
j

term of the loss in the left

column of Figure 4, where the reference correspondence vectors are

derived from the features of the foundation model. The illustration

shows the correspondence vectors for a predicted point and multi-

ple input points that it can match to, while the matches with solid

lines have higher weighted distances.

3.1.4. Variations of our method

The right column of Figure 4 shows a variation of our unsupervised

method where we encode the correspondences as one-hot-encoded

labels, which we call pseudo-labels since the labels are provided by

the segmentation given by the foundation model. Finally, we can

also train our method in a supervised manner by one-hot encoding

ground truth (GT) labels, if these are available.

3.1.5. Correspondence Regularization Loss

We introduce a third term to the loss function which serves two pur-

poses: (i) it prevents multiple primitives from mapping to the same

region of a shape, ensuring that the primitives spread out to cover

the shape rather than concentrating on the same regions, and (ii) it

maintains the correspondences fixed once primitives locked to dif-

ferent regions, allowing only the reconstruction fit to be improved.

The term is defined as the differentiable cosine similarity with

existence probabilities for the set of primitives:

Lreg =
∑

M
i=1 ∑

M
j=1, j ̸=i γiγ j

(

1− cos(θi, j)
)

∑M
i=1 ∑M

j=1, j ̸=i γiγ j

, (12)

with

θi, j =
wi ·w j

∥wi∥∥wj∥
, (13)

where γi and γ j are the probabilities of existence of the ith and jth

primitives, and wi and w j represent the predicted correspondence

vectors of the ith and jth primitives.

This loss penalizes the similarity between the correspondence

of primitives and thus encourages the network to explore a better

approximation.

3.2. Schedule for Dynamic Loss Balancing

We randomly initialize the weights of the network and optimize it

with the Adam optimizer. In order to avoid bad local minima in our

optimization, which translate into suboptimal primitive fittings, we

use a scheduling approach for dynamically weighting the terms of

the loss function. Specifically, we divide the optimization iterations

into three phases, which are illustrated in the top row of Figure 9.

In the first phase starting at the first iteration, we set a larger weight

for the correspondence regularization loss, which encourages prim-

itives to distribute themselves around the shape and avoid overlaps.

Next, we increase the weight of the correspondence loss, which

leads the primitives to position themselves in specific areas of the

shapes which most likely reduce the correspondence loss. This is

exemplified in the 20th iteration of Figure 9. Finally, we increase

the weight of the reconstruction loss, so that the primitives better

fit and reconstruct the shape, and so that imperfect correspondence

features have less effect in the final results. This occurs between the

40th and 300th iterations in Figure 9. Note that, for optimal results

in the unsupervised setting, the range of the three phases may need

to be experimentally adjusted.

4. Experimental Evaluation

In this section, we present the experimental setup for evaluating

our model’s 3D shape parsing performance and provide evidence

that our network can learn and leverage correspondence informa-

tion within a single objective during unsupervised shape approxi-

mation training.

© 2025 The Author(s).
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We evaluate our model under supervised and unsupervised set-

tings. Both supervised and unsupervised models use the same

formulation to compute Lcorr. However, the supervised method

uses GT labels derived from the GT segmentations given with the

datasets, while the unsupervised setting uses pseudo-labels or fea-

tures provided by the foundation model, as discussed at the end of

Section 3.1.3. Moreover, to the best of our knowledge, there is no

other method that performs superquadric fitting while establishing

primitive correspondence. Thus, we use the method of Paschali-

dou et al. [PUG19] as the main baseline for comparison. We run

the method with all the losses described in their paper, including a

parsimony loss that reduces the number of primitives. As an addi-

tional baseline, we also evaluate an alternative to our method, i.e.,

segmenting the shapes first with the foundation model and then fit-

ting superquadrics to the segments via principal component analy-

sis; we refer to this as “seg + fit” for brevity. Lastly, we compare

with the method of Yang and Chen [YC21] which learns shape ab-

stractions using cuboids as primitives in an unsupervised manner

by simultaneously segmenting the input meshes.

4.1. Datasets and Implementation Details

We use the ShapeNet [CFG∗15] and PartNet [MZC∗19] datasets

of 3D shapes in our experiments. We focused on the airplane and

car categories from ShapeNet, and the chair and lamp categories

from PartNet, given that these categories have complex part struc-

tures. We primarily use the raw shapes from both datasets, with

part labels from PartNet used in the experiments with supervised

learning. The training set consists of 126 regular chairs, 67 office

chairs, 84 lamps, 103 airplanes, and 207 cars, while the test set in-

cludes 10 shapes from each category. The shapes in these datasets

are consistently aligned. However, note that our method does not

require pre-alignment since the features of the foundation model

are rotation-invariant.

We set the initial number of primitives to a maximum of M =
8, with each category having an expected number of primitives k

(where k applies only to our model). The training process runs for

1000 epochs with a learning rate of 10−4. To compute the loss,

2048 points are uniformly sampled from the mesh’s surface, and

256 points are sampled from each primitive during every iteration.

4.2. Evaluation Metrics

To evaluate the reconstruction quality of the results, we measure the

chamfer distance between the point cloud and the union of points

sampled from all primitives generated.

To evaluate the quality of the fitting with correspondences, we

use the Rand Index measure, which is commonly used for evaluat-

ing segmentation results [CGF09]. We use the measure to compare

each primitive to the GT labels of the points and estimate how well

the primitives fit to the semantics parts of the shape. We can com-

pute the Rand index per point. However, since we randomly sample

points on the superquadrics, the sampling density may not be uni-

form across the shape. Thus, direct pairwise comparison of points

may not be effective. Instead, we propose a modified Rand index,

PBRI, which compares primitives to semantic parts also based on

spatial proximity rather than just label matching. Points are con-

sidered correctly clustered if they are within a distance threshold

from the corresponding semantic part in the GT. Our PBRI ranges

from 0 (no correspondence) to 1 (perfect correspondence), reflect-

ing clustering accuracy based on labels and spatial proximity. We

briefly describe the computation of our PBRI as follows.

Given two sets of points A = {ai | i ∈ {1, . . . , |A|}} and B =
{bi | i ∈ {1, . . . , |B|}}, we define a Spatially-aware, Probability-

weighted Rand Index (SPRI) from A to B, computed as:

SPRI(A,B) =

∑
|A|
i=1 ∑

|A|
j=i+1 σi, j1TP(ai,a j | B)+σi, j1TN(ai,a j | B)

(|A|
2

)

,

(14)

where the indicator 1TP(ai,a j | B) is 1 when the point pair (ai,a j)
is classified as a true positive w.r.t. B, i.e., (i) the two points are spa-

tially close to their closest points in B (within a predefined distance

threshold), (ii) they have the same label, and (iii) their closest points

in B have the same label. Similarly, 1TN(ai,a j | B) is 1 when the

point pair (ai,a j) is classified as a true negative w.r.t. B, i.e., (i) the

two points are spatially close to their closest points in B (within a

predefined distance threshold), (ii) they have different labels, and

(iii) their closest points in B have the different labels. The term σi, j

represents the average of γi and γ j, which are the probabilities of

existence of the closest points to ai and a j in B. Note that, if B

contains points from the GT point cloud, all the probabilities of ex-

istence are set to 1; if B contains points sampled on the predicted

primitives, the probability of existence of each point is that of the

predicted primitive it belongs to.

Then, we first define the labels associated with each point as

follows. For the input point cloud X , the label of each point xi (i ∈
{1, . . . ,N}) is defined as:

lGT(xi) = argmax
j

({pi, j | j ∈ {1, . . . ,k}}). (15)

For the points on the predicted primitives, e.g., a point ym
i (i ∈

{1, . . . ,S}) on the mth primitive, its label is defined as:

lpred(y
m
i ) = argmax

j

({wm, j | j ∈ {1, . . . ,k}}). (16)

Furthermore, given the set of labels of the points in the GT

point cloud as LGT = {lGT(xi) | i ∈ {1, . . . ,N}} and the labels of

the points on the predicted primitives as Lpred = {lpred(y
m
i ) | i ∈

{1 . . . ,S},m ∈ {1, . . . ,M}}, we define the coverage penalty Q as:

Q =
|unique(LGT)\unique(Lpred)|

k
, (17)

where unique(·) is a function that returns the unique elements of

the input set.

Finally, based on (14) and (17), we define the PBRI between the

GT point cloud X and the point set Y =
⋃M

i=m Ym containing the

points from all predicted primitives as:

PBRI(X ,Y ) = max

(

SPRI(X ,Y )+SPRI(Y,X)

2
−Q,0

)

. (18)
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Figure 5: Qualitative results of our unsupervised shape parsing on various shapes, where each pair is the original shape followed by the

parsed shape with primitives colored according to their correspondence in the category. The number of primitives is set between 2 and 8.

Seg + fit
(baseline)

Paschalidou et al. [PUG19]
(baseline)

Ours
(unsupervised

using pseudo-labels)

Ours
(unsupervised

using feature vectors)

Ours
(supervised)

Figure 6: Qualitative comparison between the supervised and un-

supervised settings of our method and the baselines, with the cor-

responding original shape shown at the top of each column.

4.3. Results

Figure 5 shows qualitative results of our method in the unsuper-
vised setting, where we assign a color to each primitive to indicate
the correspondence across the set. In the figure, we show the input
meshes voxelized by marching cubes to give an idea of the input
provided to the network. We see that our model successfully parses
the shapes into meaningful components, approximating their gen-
eral structure. Most of the approximations use the expected number
of primitives. The correspondence is consistently predicted across
various shapes within the same category.

Figure 7: Qualitative results from Yang and Chen [YC21], with

each cuboid in the shape abstraction assigned a distinct color.

Figure 6 presents a qualitative comparison between the super-
vised setting of our method, the two unsupervised variations of our
method, one using the feature vectors extracted from the foundation
model and the other using pseudo-labels for primitive fitting, and
the two baselines, i.e., the method of Paschalidou et al. [PUG19]
and “seg + fit”. All these methods were trained using identical
resources. When running our method, we found that the results
showed no significant difference when using fewer than 200 shapes
in the input set. Especially when both the training set and the initial
number of primitives are small, our models generally achieve the
expected number of instances/primitives and accurately approxi-
mate the structure of the shapes. In contrast, the results of the base-
lines provide less desirable approximations. On the other hand, the
features extracted from the foundation model are not always fully
informative, which implies that the results of our method are not
perfect, particularly the results of our method using pseudo-labels,
which can be expected for an unsupervised method.

Figure 7 shows qualitative results from the method of Yang and
Chen [YC21]. Due to the architecture of their network, the method
requires a large amount of training data to function effectively.
As a result, we were only able to reproduce their results for two
shape categories: airplanes and regular chairs. While the assem-
bled cuboids capture the overall structure of the shapes, the method

© 2025 The Author(s).
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Figure 8: Qualitative results of Paschalidou et al. [PUG19] when

fixing the number of primitives to the expected number.

Without Lcorr

With Lcorr

Epoch 1st 20th 40th 300th

Figure 9: Ablation study where we show results of intermediate

iterations of the fitting. We use our full loss or a loss without Lcorr.

With Lcorr, in the 20th iteration only 6 out of 8 primitives remain,

while at the 40th iteration their fit starts to improve.

tends to produce unnecessary extra cuboids, leading to visual arti-
facts in the reconstruction.

We also provide a quantitative comparison of the methods in
Table 1, where the chamfer distance measures the reconstruction
quality and PBRI measures the correctness of the correspondence
(Section 4.2). Note that the scale of the chamfer distance is differ-
ent from that reported by Paschalidou et al. [PUG19], due to factors
such as shapes being normalized differently and a different number
of superquadrics being fitted. We see that our method achieves the
best or near-best performance among the unsupervised methods,
and the results are close to the method that receives supervision
for training. The method of Yang and Chen [YC21] yields strong
reconstruction quality, as indicated by low chamfer distances. How-
ever, the unnecessary extra cuboids it generates reduce correspon-
dence accuracy, resulting in lower PBRI scores.

Since our method requires the expected number of primitives
k, we also evaluate the baseline of Paschalidou et al. [PUG19] by
fixing the maximum number of primitives M to the same value k,
which may be regarded as a fairer comparison to their method. We
show example results in Figure 8, where the gray point clouds rep-
resent the input point clouds to which the primitives are being fit.
We observe that the baseline fails to focus on any particular area,
likely due to under-learning caused by the difficulty of discovering
the optimal parameters with only a few superquadrics. In contrast,
our approach succeeds by leveraging potential correspondences.

(a) Typical features (b) Failure cases

Figure 10: Features extracted by the foundation model for selected

example shapes.

4.4. Ablation Study

We experiment with a variation of our method where we remove
the correspondence loss Lcorr from the formulation. Note that this
is different from the baseline method as the baseline includes ad-
ditional terms in the loss function that are not necessary in our
method. In Figure 9, we show examples of how removing this loss
impacts the quality of the results during different iterations of the
optimization. We see that the training scheme described in Sec-
tion 3.2 in addition to Lcorr enables the method to move the prim-
itives to suitable positions in earlier iterations, and then improve
their fit in later iterations, which is not possible without simultane-
ously establishing correspondences.

4.5. Limitations

As discussed in Section 3.2, our method requires some user input to
determine the best scheduling for dynamically adjusting the three
weights of the loss function, so that we are able to obtain optimal
results. Specifically, increasing the correspondence regularizer loss
coefficient helps to achieve the desired number of primitives but
also sharpens the predicted correspondence, causing it to focus on
few features, which negatively impacts the approximation (simi-
lar to the results using pseudo-labels). Moreover, achieving good
results also depends on the capabilities of the foundation model,
which must provide features that effectively distinguish among dif-
ferent shape regions. Figure 10 shows typical examples where the
foundation model provides features that distinguish different shape
parts, contrasted to some failure examples where the features pro-
vided by the foundation model are less meaningful and may lead
to errors in the fitting. Moreover, the use of k-means in the feature
space creates clusters of points with similar features that are often
spatially correlated. However, there is no guarantee that the points
in the clusters are spatially connected.

5. Conclusion and Future Work

This paper presents a novel part-based 3D shape approximation
method that jointly learns reconstruction and correspondence end-
to-end. Our results and ablation study show that learning correspon-
dences from start to finish reduces the risk of converging to subop-
timal local minima. Our method achieves similar or better results
than the baselines, requiring fewer initial primitives and faster con-
vergence. We also introduce a novel correspondence loss, which
can be used for unsupervised or supervised fitting, and the PBRI

© 2025 The Author(s).
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Reconstruction (chamfer distance↓) Correspondence (PBRI↑)

Ours (S) Ours (U) [PUG19] Seg + fit [YC21] Ours (S) Ours (U) [PUG19] Seg + fit [YC21]

Airplane 2.299 2.768 5.691 24.10 1.103 0.8000 0.7137 0.2792 0.6463 0.5685
Car 4.903 5.373 7.295 28.70 — 0.7425 0.7692 0.5140 0.6103 —

Chair (regular) 3.672 3.623 4.928 27.38 1.289 0.8798 0.8460 0.4491 0.6585 0.7321
Chair (office) 6.473 4.724 7.989 28.44 — 0.8239 0.7890 0.6309 0.6833 —

Lamp 3.579 4.153 5.730 61.20 — 0.7556 0.7570 0.6253 0.5374 —

Table 1: Comparison of the mean chamfer distance (smaller is better) and spatial rand index (larger is better) for different methods across

different categories, where the chamfer distance is multiplied by 103. “S” and “U” denote the supervised and unsupervised settings of our

method, respectively. The best results per category and metric among the unsupervised methods are highlighted in bold.

measure for evaluating the quality of primitive correspondence in
the results. Future work includes extending the model with a self-
adaptive tuning mechanism to further enhance its usability for auto-
matic 3D shape parsing, and also explicitly enforcing the connect-
edness of points during clustering. It would also be interesting to
explore the use of our method for matching parts of transformable
objects [ZLH∗25], e.g., for matching the parts of a sofa-bed in the
sofa and bed transformation states.
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