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Fig. 1: We introduce a method for automatically extracting color-concept associations from natural images. We apply a colorization
neural network to predict color distributions for input images. The distributions are transformed into ratings for a color library, which
are then aggregated across multiple images of a concept, e.g., blueberry, corn, and glass, to provide the color-concept associations.

Abstract— The interpretation of colors in visualizations is facilitated when the assignments between colors and concepts in the
visualizations match human’s expectations, implying that the colors can be interpreted in a semantic manner. However, manually
creating a dataset of suitable associations between colors and concepts for use in visualizations is costly, as such associations would
have to be collected from humans for a large variety of concepts. To address the challenge of collecting this data, we introduce a
method to extract color-concept associations automatically from a set of concept images. While the state-of-the-art method extracts
associations from data with supervised learning, we developed a self-supervised method based on colorization that does not require
the preparation of ground truth color-concept associations. Our key insight is that a set of images of a concept should be sufficient
for learning color-concept associations, since humans also learn to associate colors to concepts mainly from past visual input. Thus,
we propose to use an automatic colorization method to extract statistical models of the color-concept associations that appear in
concept images. Specifically, we take a colorization model pre-trained on ImageNet and fine-tune it on the set of images associated
with a given concept, to predict pixel-wise probability distributions in Lab color space for the images. Then, we convert the predicted
probability distributions into color ratings for a given color library and aggregate them for all the images of a concept to obtain the
final color-concept associations. We evaluate our method using four different evaluation metrics and via a user study. Experiments
show that, although the state-of-the-art method based on supervised learning with user-provided ratings is more effective at capturing
relative associations, our self-supervised method obtains overall better results according to metrics like Earth Mover’s Distance (EMD)

and Entropy Difference (ED), which are closer to human perception of color distributions.

Index Terms—Color-concept association, colorization, EMD

1 INTRODUCTION

People generally find it easier to interpret visualizations such as graphs
and diagrams if the categories in the visualizations are represented with
colors that match people’s semantic expectations [15,28,30], since the
ability to interpret visualizations also depends on the semantic discrim-
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inability of the colors in the visualization [19]. For example, reading
a graph of nutritional information where strawberries are represented
as red and mangos as yellow requires less conscious effort, as the
two categories are associated to colors that match human perception
of these fruits. In addition, Mukherjee et al. [19] showed with their
semantic discriminability theory that in certain conditions colors can be
associated to concepts usually not considered to be linked with colors.
Thus, making color palettes semantically interpretable is useful for
visualization and possible in many contexts.

Semantic palettes can be created from datasets of color-concept as-
sociations [15,24,30,31]. However, manually creating such a dataset
can be costly, as the dataset has to cover a large variety of concepts,
leading to the collection of a large volume of data from human subjects.
Thus, previous work has proposed automated methods for the extrac-
tion of associations from data. A common idea in many automated
approaches is to collect color-concept associations from images asso-



RGB(a,b)

(lmage Colorization Modulej

@

Image-wise

( Color Mapping Module J

i

a

L=40

a

4 Pixel-wise

(a) Input L channel

(b) Predicted pixel-wise ab probability map

(c) Estimated color rating

Fig. 2: Overview of our method for color-concept association. (a) Given the lightness channel (L) of an input image, we use an image colorization
network to predict (b) an ab color probability distribution for each pixel. (c) Then, we convert the distributions into ratings for a color library with
a color mapping module, and aggregate the ratings for all the pixels to obtain an image-wise color rating. The method further aggregates the
ratings for all the images of a common concept to provide the final color-concept association.

ciated with keywords, where the data can be obtained through image
retrieval from search engines according to given keywords [15, 24].
The image-keyword pairs are then further processed to provide the
color-concept associations. For example, Lin et al. [15] analyze color
distributions of the images and then assign colors to concepts according
to an affinity score. Rathore et al. [24] learn a method to extract color
distributions from images to match human color-concept associations,
providing high-quality results. Although the core method is in principle
unsupervised, in practice it is supervised as it relies on human ratings
to guide the feature selection and weight optimization in the learning.

In this paper, we introduce a self-supervised method based on col-
orization for extracting color-concept associations from natural images
(Fig. 1). Our key insight is that human color-concept associations are
learned from past visual input [7, 18,36]. Thus, natural images should
also be sufficient input for a method that derives color-concept asso-
ciations, i.e., there should be no need for explicitly collecting human
ratings. In this spirit, our main idea is to extract associations from
the model learned by a colorization neural network [37]. Colorization
networks learn to assign colors to the pixels of a grayscale image, and
thus these networks essentially learn how to associate colors to cer-
tain categories of objects in an implicit manner. Our method extracts
such knowledge from a colorization network to explicitly discover
color-concept associations with a self-supervised learning method.

Specifically, we train a colorization network to predict color dis-
tributions for the pixels of natural images (Fig. 2). Then, we convert
these probabilities into ratings for a color library, which are finally
transformed into color-concept distributions that aggregate the ratings
of multiple images. Thus, the output of our method is a color proba-
bility distribution for each concept. Such color-concept distributions
can then be further considered in color assignments for visualizations,
e.g., through an optimization scheme that balances the frequency and
distinctiveness of the colors assigned to different concepts [15].

The main advantage of our method over previous work is that, since
colorization can be posed as a self-supervised learning task, the col-
orization network can be trained simply with a dataset of images of
different concepts. The last step of our method that aggregates the
ratings from multiple images requires a concept “label” for each image.
However, this is also the common requirement of previous methods,
and the assignment of these labels can be automated by retrieving im-
ages for a list of required concepts with a search engine, as in previous
work [15,24]. In addition, our method does not depend on feature
selection based on human ratings, which could be biased towards the
small number of classes for which the ratings were collected. Our
method also extracts the foreground objects in the input images [22] to
ensure that background regions do not negatively impact the learned
color distributions.

We evaluate our method by comparing our results to the results of the
state-of-the-art supervised method [24] with qualitative and quantitative
analyses. Specifically, we evaluate the results quantitatively with the
same measures used by previous work (Pearson correlation and total
variation) but also use a perceptual measure (Earth Mover’s Distance)
to provide an evaluation that better reflects the perceptual differences
between the results. We show that our self-supervised method provides
results that are superior to the state-of-the-art method based on these
perceptual measures while less effective according to non-perceptual
measures due to the lack of supervision.

2 RELATED WORK

We discuss the literature most related to our work, reviewing methods
for automatic extraction of color-concept associations from data and
the state-of-the-art methods for image colorization.

2.1

Color-concept associations can be quantified through human judge-
ment [12, 13,20, 32]. However, it can be costly to create such data
manually. Methods for automatic extraction of color-concept associa-
tions from data can be roughly divided into image-based [2, 15, 16] and
natural language-based methods [9,31].

Image-based methods extract associations from images paired with
keywords. Lin et al. [15] extract color distributions from tagged im-
ages, and determine color-concept affinity scores from the histograms
and keywords using an entropy-based method. The method provides
an optimal assignment of one color to each concept. Similarly, Lindner
et al. [16] use statistical methods to associate colors to concepts from
annotated images.A few methods also compute color distributions for
concepts. Lindner et al. [17] compute distributions in CIELAB space
for over 9,000 color names in 10 different languages using images
retrieved from a search engine. Bartram et al. [3] use clustering algo-
rithms to extract palettes for images associated to affective concepts.
More recently, Rathore et al. [24] perform feature selection based on
human ratings to learn the best features for retrieving histograms from
images, so that the histograms are likely associated to given concepts.

On the other hand, language-based methods extract color-concept
associations from natural language descriptions. Setlur et al. [31] ana-
lyze co-occurrences of concepts and colors in n-grams extracted from
a corpus of text, and then cluster images retrieved with the associated
colors to create color palettes.

In summary, earlier work for color-concept extraction makes use
of handcrafted automatic methods, which provide results that do not
always correlate strongly with human selections [24]. Recent learning-
based methods are more robust and validated on user ratings, but the

Color-concept association
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Fig. 3: Colorization network training. Top row: given an input image
provided in perceptual Lab color space, we convert the image into
a ground truth probability distribution Py in ab space. Bottom row:
the network is trained to predict the distribution P from the lightness
channel (L) via the loss that compares two distributions.

learning is dependent on user input specific to the problem. In con-
trast, our work is a learning-based method that does not require data
specifically prepared for the concept-color association task.

2.2

State-of-the-art colorization methods are based on neural networks
learned on over a million images [4,5,8,10,33,34,37]. These networks
can be trained in a self-supervised manner by taking color images,
transforming them into grayscale, and then training the networks to
predict the colored version of the image from the grayscale. lizuka
et al. [11] introduce a CNN-based colorization method that combines
global priors with local features extracted from the images. Zhang et
al. [37] provide a colorization method based on a convolutional neural
network, which performs significantly better than past methods. This
method is then used as the basis of a user-guided colorization which
incorporates user hints to direct the coloring output [39]. Most of these
previous methods predict single colors for each pixel in the input image.
Moreover, colorization has been used as a proxy task for visual
understanding [14, 38], and in this paper, we utilize colorization to
extract color-concept associations. One interesting aspect of the work
of Zhang et al. [37] is that the output is a pixel-wise color distribution.
Thus, we based our colorization network on this method since we also
require distributions for computing color-concept associations.

Image colorization

3 METHOD

The key idea of our method is to use image colorization as a self-
supervised task to extract color-concept associations automatically from
natural images. A colorization network is able to assign correct colors
for images with different concepts, which means that this network must
implicitly learn color-concept associations. Thus, our goal is to extract
the learned color-concept associations explicitly from such a network.

Fig. 2 shows an overview of our method. With the image colorization
module pre-trained on ImageNet, for each color image associated with
a given concept, we can predict a distribution of possible colors for
each pixel by taking the lightness (L) channel as input and outputting
the probability map over the quantized ab color space. The predicted
pixel-wise color distribution is then converted to the color rating over a
given color library, e.g., UW-58 colors [24] shown in this example, by
weighted color mapping, and accumulated over all pixels of all images
of the same concept, to provide the final color-concept association.

More details about the image colorization module and the color
mapping module are given in the following two subsections.

3.1 Image colorization

We perform the colorization task in the perceptual CIE Lab color space.
The goal of our image colorization module is to take the L channel of
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Fig. 4: Mapping from a color ¢; to the color library {¢;}, distributing the
probability p; of ¢; to the colors in the library according to Equation 2.

an image as input and predict a distribution of possible colors instead
of a single deterministic color for each pixel, so that we are able to
quantify color-concept associations over a large range of colors. As
the L channel is already given as input, we only need to predict the
probability map over the ab color space, which then combined with
the input L provides all the information needed to define a full color
distribution. With this goal in mind, we adopt the image colorization
neural network proposed by Zhang et al. [37], where the input and
output both fit our setting. The network architecture and how the
training data is constructed are illustrated in Fig. 3.

Given an input lightness channel L € RP>*W of an image, the goal
of the colorization module is to learn a mapping to a probability distri-

bution over possible colors P € [0, l]HXWXQ, where H and W are the
image dimensions, and Q is the number of quantized ab values. In all
our experiments, we quantize the ab space into bins with grid size 10
and keep the Q = 313 values which are in-gamut, as in [37].

To define the training data for the network, we convert the ground
truth color image I into a quantized ab probability distribution Py using
a soft-encoding scheme. More specifically, for each pixel, we find the
S-nearest neighbors in the color space determined by the quantized ab
space and its lightness, and then weight them proportionally to their
distance from the ground truth using a Gaussian kernel with o = 5.

The loss function is then defined as the multinomial cross entropy
loss between the predicted probability distribution P and the ground
truth probability distribution Py, :

Loss(P,Py) = — Y v(P(h,w,:)) Y P(h,w,q)log Pyt (h,w,q), (1)
hw q

where v(+) is a weighting term that can be used to rebalance the loss
based on color-class rarity as defined in [37], which gives less weight
to desaturated values as the number of pixels in natural images at
desaturated values are orders of magnitude higher than for saturated
values due to the appearance of background elements such as clouds,
pavement, dirt, and walls.

The network consists of 8 blocks, each of which contains 2 or 3
repeated convolutional and ReLU layers and a BatchNorm layer. The
network is pre-trained on 1.3M images from the ImageNet training
set [26], and fine-tuned on the given images with associated concepts
to extract the color-concept associations. More details of the network
and training can be found in the supplementary material.

3.2 Color mapping

The color mapping module then derives the color-concept associations
from the probability distribution P € [0,1]7*"*€ predicted by the
colorization network. Specifically, for each pixel located at position
(h,w), we use its lightness L(h,w) to map the quantized ab space to the
full color space with the transferred probability map P = P(h,w,:) €

[0,1]2. Then for each color ¢; with probability p; = P, i=1,...,0,

l
we distribute its probability p; to the given color library {¢;}j—1, . n»

e.g., UW-58 colors [24] , UW-71 colors [19] or BCP-37 colors [21], to
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where @;; are distribution weights based on the perceptual difference
between two colors ¢; and ¢;. Fig. 4 illustrates how p; of color ¢; is
re-distributed to the given color library {¢;};—1 . n-

To define @, we first compute the Euclidean distances {d;;}j—1,..n
in Lab color space between ¢; and all the colors in library {¢ j} J=1,...N-
Then, we compute their corresponding z-scores {z;;} j—1.... n- and apply
softmax to the z-scores to get the final weights:

S ®
o= .
g 21}/:1 e~ Gij

To obtain the accumulated color-concept associations { p j} j=1,..N
for the entire image, we simply compute the average probability distri-
bution among all pixels:

pi= Y B"/IF, @)
(h,w)EF

where F' is the set of pixels inside the foreground region of the im-
age. The foreground mask is obtained with the automatic foreground
detection method of Qin et al. [22].

For a set of images associated with the same concept, we further
compute the average probability distribution of all the images to get the

accumulated color-concept association p € [0, l]N . As natural images
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Fig. 6: Example color ratings for different images with the same con-
cept. Top three rows: Apple. Bottom three rows: Metal.

have great variability in lighting, we find that there can be regions in
the images with white glow and dark shadows, which are not common
colors associated to concepts and thus less useful for visualization. To
reduce the impact of these colors on the computed distributions, we half
the probability of the entry in p with both a and b channels equal to zero
and then renormalize the distribution to obtain the final color-concept
association p.

4 RESULTS AND EVALUATION

In this section, we evaluate our method with qualitative and quantitative
analyses on a variety of datasets.

4.1 Datasets

To evaluate our method, we collect four datasets from previous works
with ground truth user ratings, which cover a variety of object cate-
gories, to fully explore the capability of our method.

¢ Recycling6 [30] consists of around 70 images for each of 6 types
of recycling items, including Compost, Glass, Metal, Paper, Plas-
tic, and Trash. The ground truth user ratings are defined on the
Berkeley Color Project 37 (BCP-37) color library [21].

* Fruitl2 [24] consists of 50 images for each of 12 fruit concepts,
including Avocado, Blueberry, Cantaloupe, Grapefruit, Honey-
dew, Lemon, Lime, Mango, Orange, Raspberry, Strawberry, and



Watermelon. The ground truth user ratings are defined on the
University of Wisconsin 58 (UW-58) color library [29].

Fruit5 [19] consists of 50 images for each of another 5 fruit
concepts, including Apple, Banana, Cherry, Grape, and Peach.
The ground truth user ratings are defined on the UW-71 color
library, an extension of the UW-58 colors. Note that, since only
the ground truth ratings are available but without the correspond-
ing example images, we collected corresponding images through
Google Image search as in [24].

Vegetable5 [19] consists of 50 images for each of 5 vegetable
concepts, including Carrot, Celery, Corn, Eggplant, and Mush-
room. The ground truth user ratings are defined on the UW-71
color library and example images were retrieved from Google
search similarly as in the previous item.

4.2 Qualitative results

Our method first colorizes each concept image to predict a pixel-wise
ab probability distribution. Then, our method extracts a color rating
from the distributions of each image and finally accumulates ratings
for all the images with the same concept in the dataset to provide the
final color-concept associations. We provide a qualitative analysis of
these three steps of the method as follows. To illustrate the results of
the colorization network, we test the learned model on unseen concept
images and obtain the colorized results by taking the annealed-mean
of the predicted distribution as in [37]. Fig. 5 shows several example
colorization results for different grayscale concept images from the
unseen test set. We see that the colorized images are perceptually quite
close to the ground truth.

Furthermore, Fig. 6 illustrates the second step of the method, where
several example estimated color ratings are extracted from different
images of the same concept. Note how the color ratings capture the dif-
ferent color distributions in the images. For example, the distributions
for apples have high probabilities for bright colors such as red, yellow,
and green, while the distributions for metals have higher probabilities
for grayscale colors.

Fig. 7 shows results of the third step of the method (in the middle
column), where we see the final color distributions produced for dif-
ferent concepts based on multiple images. Although many colors have
non-zero probabilities, the colors with the probabilities that stand out
the most clearly correspond to colors commonly associated to the given
concepts. Fig. 1 shows a few extra results with example input images.

4.3 Evaluation metric

To quantitatively evaluate our final results, that is, to compare an esti-
mated color-concept association p = { ﬁ[}?]: | to the ground truth user
rating r = {r;}_|, defined on the color library {c;}}_;, where N is the
number of colors in the library, we use several different metrics.

The first metric is the Pearson correlation coefficient (Corr) used in
the work of Rathore et al. [24], which measures the linear correlation
between two distributions. The second metric is the total variation (7'V)
used in the work of Mukherjee et al. [19], which is defined as half of
the L1-distance between two distributions:

|pi —ril. (5)

~
=
~
>
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The two metrics defined above consider two color distributions as
two vectors that are compared in a manner that is oblivious to the
association between the vector entries and specific colors. Thus, to take
the perceptual difference of the colors into consideration, we propose
to use the Earth Mover’s Distance (EMD) [25] as an evaluation metric.
EMD has been widely used to compare two probability distributions [6,
27,35] and is known to be closer to user perception than other metrics.

Let us suppose that p and r are two mass distributions. Then, EMD
measures the cost of transporting one heap of mass to another heap,

and thus computes the minimal transport effort between p and r:

H}in i X fijdi,

ij

s.L. fij = 0, ije{l,2,...,N}
YWty < pno oie{t2..Ny  ©
YN fii < ory je{1,2,...,N}
Y f = L,

where f;; is the amount of mass transported from color ¢; in p to color
c¢jin r, and d;; is the Lab color distance between c¢; and c¢;. Note
that as both p and r are normalized, the total amount of the flow is
always equal to one as shown in the last constraint above. In addition,
EMD is independent of the order in which the colors are stored in the
distributions, since the color distances are taken into consideration for
finding the optimal mass transport. Once the transportation problem is
solved to obtain the optimal flow £, the EMD is defined as the total
cost of the flow:

K
1]’

N N
EMD(p,r) =} ¥ fijdij. (7

i=1j=1
Besides the three metrics discussed above that compute differences
between distributions directly, as indicated in the work of Mukherjee
et al. [19], specificity is one of the key properties that a color-concept
association should possess, which refers to the ‘peakiness’ of the color-
concept association distribution. Specificity is quantified using the
entropy of the distribution, which captures how ‘flat’ vs. ‘peaky’ a
distribution is, regardless of how many peaks there are. Thus, we
also compute the entropy difference (ED) between two distributions
as an auxiliary metric to quantify the similarity of specificity of two

distributions:

N N
ED(p,r) = |Y_ pilogpi— Y rilogri. (8)

i=1 i=1
4.4 Comparison to the state-of-the-art method

In this section, we compare our method to the state-of-the-art supervised
method [24] on different datasets using all evaluation metrics as well
as through a user study.

The results of the supervised method are obtained by cross-validation
within each dataset. For example, for each fruit concept inside the
Fruit12 dataset, we train the model of Rathore et al. [24] with the
ground truth ratings on 11 fruit concepts and validate the model on the
remaining concept by comparing the derived color rating to the ground
truth color rating. Note that, in contrast, our method is self-supervised
and can be trained directly with the images associated to each concept
without any ground truth rating.

Comparison via evaluation metrics. Table 1 shows the compari-
son of the average evaluation scores among all the concepts for each
dataset. We see that the values of different metrics are inconsistent with
each other. The results obtained by the supervised method [24] have a
higher linear correlation with the ground truth rating, while our results
have lower EMD and ED values. The TV scores of the two methods
are comparable.

Comparison via a user study. We further conduct a user study
to compare the results based on human perception. For each concept
in our dataset, we show the ground truth user rating together with
the two estimated ratings obtained by our method and the supervised
method [24] in random order, and ask the user to select which result
they think is more similar to the ground truth user rating. The user can
select either one of the two results or a “not sure” option.

We invited 30 participants to do the study for all the concepts in
our dataset, which resulted in 840 answers in total. The vote percent-
ages for the options “ours/the supervised method [24]/not sure” are
70.5%/16.9%/12.6%. We see that our method was selected much more
frequently than the supervised method [24] as having better results,
which shows that our method provides color-concept associations that
are perceptually more similar to the ground truth user ratings.



Table 1: Comparison to the state-of-the-art supervised method [24] on all the datasets with the four different evaluation metrics introduced in
Sect. 4.3. Our self-supervised method provides overall better results according to the EMD and ED metrics, but worse results according to the

Correlation (Corr) metric. The results according to the total variation (TV) are comparable. For each metric, 1: the higher, the better; |: the
lower, the better.

Recycling6 Fruit12

Method

Fruit5 Vegetable5

Corrt TV] EMDJ] EDJ |Corrt TV{
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Supervised [24]
Our method

0.682 0.169 8.242 0.120
0.717 0.163 8.043 0.034

0.697 0.210

0.811 0.185 12.356 0.185
12.346 0.068

0.627 0.308 21.710 0.383
0.497 0.301 18.448 0.204

0.672 0.310 22.985 0.384
0.510 0.323 20.432 0.205
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Fig. 7: Results obtained by the supervised method [24] (left) and our self-supervised method (middle) compared to the ground truth ratings (right).
Each row shows one example concept from one dataset, including Metal in Recycling6, Cantaloupe in Fruitl2, Cherry in Fruit5, and Carrot in
Vegetable5. The scores of all four evaluation metrics are shown with each result and the best evaluation scores are shown in bold.

Table 2: Consistency between each metric and the user choices col-
lected in the user study.

TV
45.6%

EMD
54.2%

Corr

37.7%

Metrics ED

70.5%

Consistency

Analysis of the results. To obtain a better understanding of the
results, we show all the metrics together with the user vote percentages
for each concept in Table 3 and report the consistency between each
metric and the user choices in Table 2. More specifically, for each
metric, we consider that it is consistent with the user choice if the result
regarded to be better using this metric is selected by the user. Then,
we compute the percentages of the consistent results over all the 840
answers we collected as the final consistency score for each metric.

From the results shown in Table 2, we see that the EMD and ED
metrics are more consistent with the user choices. Especially, the
ED metric obtains the highest consistency score, which shows that
humans focus more on the peakiness when comparing two distributions.
Compared to Corr and TV, the EMD metric considers the perceptual
distance between different colors and computes the minimal ground
transport effort, which also leads to results more consistent with human
perception.

Fig. 7 shows several visual examples of the predicted color-concept

associations compared to the ground truth rating and the corresponding
values of different evaluation metrics. For the results shown in the first
three rows, the correlations of the results obtained by the supervised
method are always higher than our method, although the distributions
obtained by our method are perceptually more similar to the ground
truth distributions shown on the right. The EMD and ED metrics
better capture this difference. For the result shown on the bottom row,
our method performs consistently better than the supervised method
with respect to all the evaluation metrics, while some dominant colors
do not stand out in the relatively uniform distribution obtained by
the supervised method [24], which may be caused by the weighted
combination of distributions obtained by different features in their
method.

Note that, although our method obtains overall better results ac-
cordingly to the EMD and ED metrics, which consider the scale of
association with a given concept and are more consistent with human
perception, the supervised method [24] obtains overall better results
according to the correlation metric. Correlation assesses the relative
pattern of associations, regardless of the scale, which has been shown
as the critical factor that influences semantic discriminability of the
colors more than the absolute associations [19,29,30]. We believe that
it would be worthy to explore ways to be able to handle both relative
association and range well.



Table 3: Comparison to the state-of-the-art supervised method [24] on each concept in our dataset with the four different evaluation metrics as
well as the user study result. For each concept, the results of the supervised method [24] are the top row and our results are the bottom row. For

each metric, 1: the higher, the better; |: the lower, the better.

Metrics Metrics
Dataset | Concept Dataset Concept
Corr? | TV] | EMDJ| | EDJ | Userst Corr? | TV) | EMDJ | EDJ| | Userst
0.224 | 0.221 | 10.558 | 0.116 | 10.0% 0.935 | 0.154 | 9.867 | 0.191 | 16.7%
Trash Orange
0.487 | 0.230 | 12.836 | 0.012 | 73.3% 0.918 | 0.143 | 8.622 | 0.024 | 76.7%
0.809 | 0.185 | 10.109 | 0.148 | 26.7% 0.448 | 0.265 | 19.683 | 0.179 3.3%
Glass Raspberry
0.829 | 0.141 | 6.837 | 0.001 | 66.7% S 0.453 | 0.268 | 18.568 | 0.041 | 80.0%
0.755 | 0.156 | 7.896 | 0.110 6.7% § 0.662 | 0.242 | 11.110 | 0.174 | 13.3%
© Compost &2 Strawberry
.é“ 0.743 | 0.161 8.909 | 0.024 | 90.0% 0.589 | 0.266 | 15.016 | 0.054 | 80.0%
2 0.833 | 0.131 6.564 | 0.100 | 13.3% 0.648 | 0.241 | 10.636 | 0.190 | 43.3%
3 Paper Watermelon
22 0917 | 0.124 | 5.704 | 0.097 | 86.7% 0.398 | 0.293 | 15.344 | 0.049 | 40.0%
. 0.782 | 0.120 | 5.583 | 0.073 | 26.7% 0.690 | 0.283 | 21.838 | 0.371 | 10.0%
Plastic Apple
0.492 | 0.155 | 7.411 | 0.050 | 50.0% 0.418 | 0.314 | 21.947 | 0.220 | 70.0%
0.689 | 0.201 8.741 | 0.174 6.7% 0.875 | 0.354 | 31.448 | 0.556 3.3%
Metal Banana
0.837 | 0.165 | 6.562 | 0.019 | 90.0% 0.725 | 0.302 | 21.284 | 0.374 | 80.0%
0.760 | 0.227 | 15.369 | 0.258 | 23.3% l,., 0.624 | 0.268 | 16.172 | 0.302 6.6%
Avocado = Cherry
0.591 | 0.269 | 14.739 | 0.096 | 56.7% E 0.571 | 0.281 | 14.637 | 0.073 | 83.3%
0.844 | 0.214 | 16.878 | 0.261 | 66.7% 0.122 | 0.332 | 22.470 | 0.289 3.3%
Blueberry Grape
0.351 | 0.307 | 20.173 | 0.117 30% -0.088 | 0.416 | 25.805 | 0.198 | 46.7 %
0.940 | 0.144 | 11.673 | 0.156 | 13.3% 0.827 | 0.304 | 16.623 | 0.397 | 10.0%
Cantaloupe Peach
0.885 | 0.138 | 6.768 | 0.040 | 86.7% 0.856 | 0.191 | 8.566 | 0.154 | 90.0%
. 10838 | 0.150 | 7.063 | 0.113 | 10.0% 0.816 | 0.305 | 23.511 | 0.425 0.0%
Grapefruit Carrot
S 0.849 | 0.152 | 11.801 | 0.080 | 86.7% 0.709 | 0.276 | 22.495 | 0.152 | 83.3%
B 0.906 | 0.112 | 8.161 | 0.095 | 30.0% 0.766 | 0.402 | 34.760 | 0.614 | 33.3%
53 Honeydew Celery
0.802 | 0.168 | 8.977 | 0.083 | 60.0% 0.376 | 0.450 | 31.335 | 0.492 | 23.3%
0.919 | 0.133 | 12.309 | 0.170 3.3% k3 0.806 | 0.273 | 24.132 | 0.343 | 10.0%
Lemon < Corn
0911 | 0.140 | 7.697 | 0.071 | 93.3% ?n 0.745 | 0.242 | 15.786 | 0.165 | 73.3%
. 0.913 | 0.184 | 14.934 | 0.259 | 60.0% > 0.494 | 0.295 | 18.965 | 0.307 | 13.3%
Lime Eggplant
0.705 | 0.250 | 13.068 | 0.121 | 33.3% 0.179 | 0.388 | 22.474 | 0.150 | 63.3%
0.916 | 0.151 | 10.590 | 0.176 6.7% 0.479 | 0.277 | 13.555 | 0.232 3.3%
Mango Mushroom
0916 | 0.126 | 7.380 | 0.037 | 86.7% 0.541 | 0.261 | 10.072 | 0.066 | 93.3%

4.5 Ablation studies

To justify several key design choices of our method, we conduct ablation
studies with the following settings:

* No Fine-tuning: we use the model pre-trained on the ImageNet
dataset directly, without fine-tuning it on the concept images;

* No Pre-training: we train the colorization network directly on
the concept images, without using the network pre-trained on the
large-scale ImageNet dataset;

* No Seg-mask: we make use of all the pixels in the concept images
without masking out the ones in the background during the color

mapping;

* No Post-processing: we take the mapped distribution directly
without halving the probability of colors with both ab channels
equal to zero to reduce the effect of lighting in real images.

Table 4 shows the results of the ablation studies on all four datasets.
We see that our method with the full pipeline (“Our method” in the
table) provides consistently better results.

For the No Fine-tuning setting, the network learns information purely
from images with various concepts in ImageNet, which makes the
distribution extracted not specifically related to the concepts in our
datasets and thus leads to the worst results. For the No Pre-training
setting, the network learns associations between colors and concepts
from the specific concept images in our datasets, which leads to much
better results than the No Fine-tuning setting. This shows that our
method can obtain reasonable results with a small dataset. However,
since each dataset is quite small with only 50 images per concept,
this makes the network sometimes biased by the samples given in
the datasets and thus does not learn a more general color-concept
association. The performance becomes consistently better when the
colorization network is pre-trained on ImageNet and fine-tuned on
the concept images. Fig. 8 shows an example concept image and the
colorization and color ratings obtained under different training settings.



Table 4: Ablation studies to justify the key components of our method. Details of the different settings can be found in Sect. 4.5. For each metric,

1 the higher, the better; |: the lower, the better.

Method Recycling6 Fruitl2 Fruit5 Vegetable5
Corrt TV] EMDJ| EDJ| |Corrt TV) EMDJ EDJ| |Corrt TV), EMDJ ED| |Corrt TV, EMDJ| ED|
No Fine-tuning | 0.590 0.180 8.626 0.050|0.460 0.279 17.172 0.059|0.347 0.353 22.144 0.214]0.366 0.358 22.549 0.236
No Pre-training | 0.717 0.174 8.753 0.043]0.660 0.223 12.905 0.078 | 0.429 0.326 20.624 0.214|0.492 0.331 20.845 0.209
No Seg-mask 0.687 0.173 8.264 0.048|0.546 0.249 15.120 0.073|0.313 0.347 22.526 0.256|0.333 0.360 23.233 0.262
No Post-processing | 0.757 0.166 8.524 0.067 | 0.642 0.227 13.253 0.059 | 0.409 0.329 20.188 0.231|0.517 0.326 21.309 0.225
Our method 0.717 0.163 8.043 0.034 | 0.697 0.210 12.346 0.068 | 0.497 0.301 18.448 0.204|0.510 0.323 20.432 0.205

;

No Fine-tune

No Pre-train

Full pipeline

siludi] th._u.

Estimated image-wise color rating

Concept image GT color-concept association
Fig. 8: Comparison of colorization and corresponding color ratings
obtained under different training settings.

For the No Seg-mask setting, we find that the background can add
some random noise or bias to the color distribution. Fig. 9 shows
a comparison of several example results with and without using the
foreground segmentation mask automatically obtained by the method
of Qin et al. [22]. We can see that for the cantaloupe shown in the first
row, the rating of the white color is extremely high due to the white
background, and becomes more reasonable when the background is
masked out. For the blueberry shown in the third row with a more noisy
background, the color rating has clearer peaks after masking out the
background, even though the segmentation is not perfect.

For the No Post-processing setting, we see that the correlations of the
Recycle6 and Vegetable5 datasets are better than for our full method,
while all the other metrics are better in the full method. We find that
the main reason is that there are concepts in these two datasets where
white or grey colors dominate the images, e.g., plastic and mushroom.
Thus, decreasing the probability of colors with both ab channels equal
to zero may lead to worse results for these concepts. However, when
averaging the performance on the whole dataset among all the concepts,
post-processing generally provides better results. Fig. 10 shows several
representative concept images with significant glow and shadows, lead-
ing to the high probability of white or black colors, which is alleviated
through post-processing.

el

e
il
(I3 TP

(b) Image-wise color rating

th

Fig. 9: Example color ratings extracted from concept images with and
without foreground segmentation masks.

h
(a) Colorized image

| hM ||| ke .f.w

(a) Concept image (b) Without post-process

Loob ikl

(c) With post-process

Fig. 10: Example concept images with glow and shadows and their
corresponding color ratings with and without post-processing.

4.6 Data visualization application

To demonstrate how our method can be used for data visualization
applications, we follow the method of [15] to automatically select
semantically-resonant colors based on the color-concept associations
obtained by our method. We take the set of company brands used



(a) Concept image (b) Estimated image-wise color rating

(c) Our color-concept association

(d) GT color-concept association

Fig. 11: Failure cases due to the variety of images in the dataset. Top row: our method can capture the dominant green color in the given eggplant
image, but as there are only very few images with green eggplants in the datasets, and most of eggplants have dark colors such as purple, the final
color-concept rating that our method extracted has low probabilities for green colors compared to the ground truth user rating. Bottom row: most
of the images given in the dataset for the Plastic concept are colorful, which leads to a near-uniform distribution of the final color distribution.

Apple AT&T HomeDepot Kodak  Starbucks — Target Yahoo!
s o
owss+ [

Fig. 12: Semantically-resonant colors selected for different brands
using different methods when given different color palettes.

in [15], including Apple, AT&T, HomeDepot, Kodak, Starbucks, Target,
and Yahoo!, as the running example, to show the color selection process.
More results can be found in the supplementary materials.

We start with collecting images for each concept via search engines
as we did for the FruitS and Vegetable5 datasets. Then, the network
pre-trained on ImageNet is fine-tuned to obtain the color-concept asso-
ciation for each concept as described in Sect. 3.1. The color selection
method in [15] is finally applied to select the final color assignment
given any pre-defined color palette.

Fig. 12 shows the semantically-resonant colors selected for different
brands using different methods when given different color palettes. The
expert-chosen colors are shown in the first row and the result of [15]
selected from the Tableau20 palette is shown in the second row for
comparison. The following four rows show the colors selected based
on the color-concept associations obtained by our method but from
different color palettes, where “+E” indicates that the set of expert-
chosen colors is included in the color palettes.

We see that, due to the limited color choices provided in the
Tableau20 palette, most of the colors selected by our method are slightly
different from the expert-chosen ones. However, once we add those
expert-chosen colors into the palette for selection, all the chosen col-
ors match exactly with expert choices. When given UW-58 as the
color palette, the chosen colors are closer to expert choices than those
from the Tableau20 palette, which also shows that our method is able
to select more appropriate colors for different concepts from a larger
color library. Again, when further provided with expert-chosen colors,
most of the selected colors are improved other than the one for Yahoo!.
When checking the selection process in detail, we find that although
the expert-chosen purple color does have a higher association in our
method, the color entropy is slightly larger than the final color that our
method chooses, which leads to a slightly lower affinity score. It would
be interesting to explore other color selection methods based on our
color-concept associations instead of using the method in [15].

5 CONCLUSION

We introduced a method for extracting color-concept associations from
datasets of natural images via colorization. We showed that our method
leads to improved results over the state-of-the-art supervised method
according to evaluation metrics more consistent with human perception,
while requiring minimal data preparation, since colorization networks
can be trained in a self-supervised manner. Thus, the method can be
easily applied to extract color associations for concepts beyond the ones
tested in our work, since the main data preparation task is to gather
images of the new concepts.

Limitations and future work. Since our method is unsupervised,
our results are entirely determined by the data provided as input to the
method. As an example of this limitation, a lack of variety in the images
of the datasets can lead to failure cases, as shown in Fig. 11. Thus, it is
an interesting direction for future work to explore ways to automatically
select the set of representative images for each concept for color rating
extraction. Moreover, the simple post-processing applied by our method
can reduce the negative effect of glow and shadows caused by certain
lighting conditions to some extent, but it may lead to worse results for
some specific categories. Thus, it would be interesting to explore more
sophisticated ways to resolve this problem.

Furthermore, although our results are perceptually better, the relative
patterns of association are more effectively captured by the state-of-
the-art supervised method [24]. It would be interesting to explore ways
of handling both relative association and range well, for example, by
providing light supervision to adjust the color rating obtained by our
method to better capture the relative pattern. Last but not least, as the
colorization network is pre-trained on ImageNet, which consists of
images of real objects, when fine-tuning it using images searched for
abstract concepts without specific semantically-resonant visual repre-
sentations, the final color-concept association might be unreasonable.
We believe that this is a common limitation for unsupervised methods
relying on images only and it would also be interesting to investigate
ways of extending our method to make it work well for abstract con-
cepts. One possible solution could be the automatic selection or even
generation of representative images for each abstract concept based on
the recent CLIP model [23] that connects text and images.
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