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Abstract
Classical approaches to shape correspondence base their computation purely on the properties, in particular geo-
metric similarity, of the shapes in question. Their performance still falls far short of that of humans in challenging
cases where corresponding shape parts may differ significantly in geometry or even topology. We stipulate that
in these cases, shape correspondence by humans involves recognition of the shape parts where prior knowledge
on the parts would play a more dominant role than geometric similarity. We introduce an approach to part corre-
spondence which incorporates prior knowledge imparted by a training set of pre-segmented, labeled models and
combines the knowledge with content-driven analysis based on geometric similarity between the matched shapes.
First, the prior knowledge is learned from the training set in the form of per-label classifiers. Next, given two query
shapes to be matched, we apply the classifiers to assign a probabilistic label to each shape face. Finally, by means
of a joint labeling scheme, the probabilistic labels are used synergistically with pairwise assignments derived from
geometric similarity to provide the resulting part correspondence. We show that the incorporation of knowledge
is especially effective in dealing with shapes exhibiting large intra-class variations. We also show that combining
knowledge and content analyses outperforms approaches guided by either attribute alone.

1. Introduction

Most efforts on geometry processing in the graphics commu-
nity have relied on low-level reasoning and operated on low-
level features. Recently, there seems to be a research trend
towards higher-level geometry processing, particularly stud-
ies of shapes at a more semantic level [ARSF09,GSMCO09,
SNKS09, XWY∗09, KHS10, MYY∗10]. Shape correspon-
dence is a fundamental problem that often requires a higher-
level understanding of shapes. Applications such as attribute
transfer [SP04, BVGP09], morphing [Ale02], shape synthe-
sis [ASK∗05,XLZ∗10], and object recognition [BBM05] are
often meant to employ correspondences between shape parts
which possess the same meaning or functionality rather than
mere geometric similarity.

Classical approaches to shape correspondence are mainly
content-driven [FS06, JZvK07, ZSCO∗08, LF09, ACOT∗10,
vKZHCO10], focusing solely on the geometrical and struc-
tural similarities between the query shapes (shapes to be
matched). However, both criteria can be violated in challeng-
ing scenarios where there are large variations in the geome-
try or topology of the corresponding parts, as the examples
in Figures 1 and 2 show. Shape correspondence under these

Figure 1: Meaningful correspondence between shape parts
under significant geometric (right pair: missing mouth) and
topological (both pairs: one vs. multiple handles) discrep-
ancies is made possible by incorporating prior knowledge.
Corresponding parts are implied by matching colors.

circumstances is simply beyond pure geometry analysis and
requires a semantic analysis of the shapes. Such an analysis
necessitates the use of prior knowledge: to find a correspon-
dence between parts that may be highly dissimilar geometri-
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Figure 2: A set of man-made shapes used in our work. Note the large intra-class geometric and topological variability.

cally, we need to invoke our stored memory of similar parts
(a recognition process) that are known to correspond to each
other and use such knowledge to establish a correspondence
between the unknown parts. Incorporating recognition into
shape correspondence would result in a knowledge-driven
approach. The power of knowledge is exemplified when pure
geometry analysis simply cannot succeed (Figure 1).

In this paper, we introduce an approach to shape corre-
spondence which incorporates prior knowledge. Aiming to
mimic the human cognitive process where recognition is
known to be primarily part-based [Mar82, HR87], we com-
pute part labels (a recognition process) in conjunction with
correspondence. The result is thus a part correspondence
in contrast to correspondences between low-level feature
points, as done in most works to date [vKZHCO10]. The
prior knowledge is imparted through a training set of pre-
segmented models with semantic labels. The training set
serves as a knowledge medium allowing to find the corre-
spondence between geometrically dissimilar parts. With the
prior knowledge, we learn a probabilistic semantic label for
each face of a query shape, where the labeling is derived,
with the aid of a classifier, from the similarity of the descrip-
tors of the faces to those of a class in the training set.

Part correspondence may be established based solely on
knowledge and individual labeling of the query shapes.
However, this may lead to an unsatisfactory outcome when
the knowledge set is incomplete or produces indeterminate
recognition results. Such cases may have to rely, at least par-
tially, on a direct comparison between the query shapes. We
combine the use of knowledge with content-driven analysis,

where the latter is based on geometric similarity between
the query shapes. The final correspondence is thus obtained
through a joint labeling of the query shapes. The joint label-
ing makes use of the knowledge-driven probabilistic labels
as well as feature pairings between query shapes to extract
the actual parts that we seek to recognize and match across
the shapes. The pairing of features incorporates the direct
similarity between local regions of the query shapes.

Our contribution is two-fold. First, we show that the incor-
poration of prior knowledge to shape correspondence is ef-
fective. In particular, it leads to significant improvement over
classical approaches on query shapes exhibiting large intra-
class part variability in geometry or topology (see Figures 1
and 2). Second, we show that the joint labeling approach is
effective. Specifically, knowledge-driven and content-driven
analyses work synergistically and complement each other in
instances where using solely the knowledge or the local ge-
ometric similarity of the shapes is insufficient.

2. Related work

Shape correspondence is a fundamental and well-studied
problem in geometry processing [vKZHCO10]. The same
can also be said about the related problems of shape retrieval
and recognition [TV04,IJL∗05,ABM∗06]. Here we only dis-
cuss previous work most closely related to ours. More fo-
cus is given to automatic methods which study semantics of
shapes or those leaning towards that direction.

Content-driven approaches to shape correspondence com-
pare a pair of shapes based on geometric similarities be-
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tween matched features, an approximate isometry crite-
rion, or a combination of both [FS06, BBBK08, ZSCO∗08,
LF09, vKZHCO10]. The computational paradigm is an op-
timization or discrete search guided by these criteria. The
recent methods of Zhang et al. [ZSCO∗08] and Au et
al. [ACOT∗10] both allow large shape variations, but only
to a certain extent, as they are still confined by the premise
of geometric similarity and do not model shape semantics.

Part correspondence brings relevance to the segmentation
problem. Many approaches to meaningful shape segmen-
tation [Sha08] follow the minima rule [HR87], where cut
boundaries are defined near concave regions. Other meth-
ods identify shape parts based on their geometric charac-
teristics such as convexity and compactness [KJS07]. Clus-
tering using an intrinsic surface metric or curvature is also
common [KT03, LZ07]. Structural approaches mainly focus
on skeleton topology [ACOT∗10, SSCO08]. While satisfac-
tory individual segmentation results can be obtained, these
approaches are not designed to find a consistent segmenta-
tion between the shapes, i.e., a segmentation that divides the
models into similar parts that correspond across the shapes.

Golovinskiy and Funkhouser address the consistent seg-
mentation problem [GF09] where the connection between
matching parts is initially built by a global rigid alignment
using iterative closest point. No shape semantics are incor-
porated and their approach is not designed to handle large
intra-class geometric variations such as stretching. Recent
work of Xu et al. [XLZ∗10] handles non-homogeneous part
stretching by grouping the shapes based on their style and
then performing part correspondence. Perhaps the first work
on explicitly incorporating prior knowledge into shape seg-
mentation is that of Simari et al. [SNKS09], where a multi-
objective optimization is performed to segment and label a
given shape. However, the user is required to provide seman-
tic knowledge specific to the shape or shape parts and for-
mulate such knowledge to fit the optimization framework;
no training set or learning is used.

The ability to tag, annotate, or label a shape lies at the
heart of semantic shape analysis. Manual annotation al-
lows the user to either semantically label parts or to ap-
ply an ontology to the structure of the shapes [ARSF09].
Another group of approaches is based on correspondence
analysis guided by shape geometry. As an application
of their skeleton-driven correspondence algorithm, Au et
al. [ACOT∗10] assign semantic tags to the skeleton features
of a subject shape by fully matching it to each labeled shape
in a training set and then applying a simple majority voting
to determine the tags. Shapira et al. [SSS∗09] tag parts in a
similar manner, but rely on a part-in-whole contextual sig-
nature to retrieve the most relevant parts.

Recently, Kalogerakis et al. [KHS10] present a method to
learn the semantic labels of a shape based on training data.
This work is significant as it is the first generic learning-
based method for semantic shape segmentation. Our work

shares similarities with this method, such as the use of a
training set of pre-segmented and pre-labeled shapes and
classifiers to recognize the shape parts. However, we ap-
ply prior knowledge to solve the correspondence problem
and augment knowledge-driven analysis with content-driven
analysis via the joint labeling approach.

Recognition by correspondence is a classical paradigm in
computer vision [BJ97], as are semantic segmentation, label-
ing, and classification in images based on learning [LW06,
SCCOL06]. Such approaches are rare in shape analysis how-
ever. Images are typically feature-rich, with color and texture
cues as well as foreground and background contrasts, which
exemplify the usefulness of local feature patches. However,
for typical 3D models of the kind we consider (Figure 2),
the distinctiveness of local surface features is significantly
reduced. Also, one may be confined to a limited training
set which still contains diverse intra-class shape variations.
While image-based methods can typically benefit from the
availability of large data collections to form adequate train-
ing sets or the knowledge base, the same cannot be said
about 3D model collections. These are some of the chal-
lenges we wish to address in our work.

3. Overview

In this section, we present an overview of our approach to in-
corporate prior knowledge for part correspondence; see Fig-
ures 3 and 4 for an illustration. Full details of the algorithmic
components are covered in subsequent sections.

Problem setting. The central problem that we are address-
ing here is the computation of a meaningful correspondence
between a source shape S and a target shape T (the query
shapes). In our case, we require a correspondence that is de-
fined at the part level, i.e., it maps groups of faces on S to
groups of faces of equivalent parts on T , as opposed to a
mapping of feature points from one shape to the other.

Content-driven analysis. A straightforward way to estab-
lish the correspondence between S and T is by computing
a set of shape descriptors and matching the faces based on
these descriptors, which we refer to as the content-driven
approach. In this context, one extracts for each face a set
of descriptors that capture information about its geometric
properties and context. This analysis associates a descriptor
vector Dsi with a face si ∈ S (and Dti similarly for ti ∈ T ).
Ideally, by measuring the distance between two such vec-
tors we obtain an indication of the similarity of two faces
(or their surrounding regions). Now, a correspondence be-
tween S and T can be derived from their descriptor vectors
DS = {Ds1 ,Ds2 , . . . ,Dsn} and DT = {Dt1 ,Dt2 , . . . ,Dtm}, with
n = |S| and m = |T |. The correspondence can be computed
by any algorithm A that accepts as input two sets of vectors
and computes a correspondence C = A(DS,DT ) based on
the descriptor similarities (examples for A include bipartite
matching or quadratic optimization [vKZHCO10]).
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Figure 3: Probabilistic semantic labeling: given a query
shape (the gray vase), we first label each of its faces with
per-label classifiers. The result is a label probability vector
per face (shown as a color-blend on the surface of the bot-
tom shape). The classifiers are learned from the training set
(shown around the query with their ground-truth labeling).

Incorporation of semantic knowledge. One of our goals is
to show that a more meaningful correspondence is obtained
when semantic information is added to the solution. This is
especially effective when the shapes vary greatly in geom-
etry and part constitution. In the knowledge-driven compo-
nent of our approach, semantic information is derived from
a set of training shapes and characterized by classifiers for
part labels. The shapes in the training set are pre-segmented
and tagged with semantic labels. The labeling is defined at
the face level. Next, we compute shape descriptors for the
faces of each training shape and, based on the descriptors,
we train a classifier Kl for each label l, using the faces la-
beled l as positive examples of the label, and the remaining
faces as negative examples. The learning phase results in one
model per part type, each capturing the discriminative prop-
erties of the faces that belong to the label.

Probabilistic semantic labeling. Now, given a face si on a
query shape, we compute the same set of descriptors and es-
timate Lsi,l , the probability of si having the label l. Lsi,l is ob-
tained by applying the classifier Kl to the descriptors of face
si. By applying all the classifiers, a face receives a label prob-

ability vector Lsi composed of the probabilities for all pos-
sible labels l (Figure 3). We denote the semantic labels for
the whole shapes as LS and LT , with LS = {Ls1 ,Ls2 , . . . ,Lsn},
and LT similarly defined. In Section 4, we elaborate on the
training and probabilistic labeling procedures.

Joint labeling and part correspondence. Each face be-
longing to each of the query shapes has now an associated
probabilistic label. It would be possible to use the labels in
place of our original descriptors and obtain the correspon-
dence via a selected algorithm C =A(LS,LT ). However, we
are interested in combining knowledge and geometric shape
content, and we also require a correspondence that is de-
fined at the part level. Therefore, we find the solution with
a method that extracts parts from the shapes while simulta-
neously considering their correspondence. This step of the
algorithm is achieved with our joint labeling (Figure 4).

The joint labeling takes into simultaneous consideration
the probabilistic semantic labels of each face (based on
knowledge/training), the mesh connectivity (captured by
intra-mesh arcs between pairs of faces on the same shape),
and connections between the faces of the two query shapes
(feature pairing by inter-mesh arcs). The output of the joint
labeling is a set of parts for each shape and their corre-
spondence. The inter-mesh arcs come from candidate assign-
ments extracted from the similarity of shape descriptors. De-
tails on the joint labeling are described in Section 5.

The joint labeling has two advantages over the labeling
based only on knowledge. First, there are practical limita-
tions for the knowledge representation, such as the size and
variability of the training set and accuracy of the shape de-
scriptors. In this case, the inter-mesh edges complement the
knowledge with extra information on the direct similarity be-
tween portions of the shapes. Moreover, even if the training
set were large enough, covering an infinitude of variations,
there would still be cases where a purely knowledge-driven
approach could fail, such as when identical parts appear on
different locations of a shape, or when there exist ambigui-
ties in the functional role of the parts. The addition of content
analysis contributes to the disambiguation of such cases.

4. Prior knowledge and probabilistic semantic labeling

Training set. The first step towards the development of our
correspondence approach is to create a knowledge base from
a dataset of training shapes. This dataset contains manu-
ally segmented shapes and the semantic labeling of each
part (e.g., labels such as “leg” and “seat” for chairs). Thus,
each mesh face is associated to a semantic label. An example
dataset, used in part of our experiments, is shown in Figure 2.

Shape descriptors. Next, we compute a collection of de-
scriptors for each face of all the training shapes. These de-
scriptors should capture different properties of the faces,
such as the local geometry of the shape around the face and
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Figure 4: Joint labeling: given a pair of shapes (to the left),
we obtain their optimized labeling by making use of their
probabilistic labels (Figure 3), intra-mesh arcs (blue lines)
coming from the shapes’ connectivity, and feature pairings
given by the inter-mesh arcs (red lines) added between faces
with similar descriptors. The result (to the right) is a seg-
mentation of the shapes and correspondence at the segment
level (indicated by matching colors). The probability vectors
and the final deterministic labels are shown for two pairs of
faces (before and after the joint labeling). The classes are:
Handle (Hd), Neck (Ne), Body (Bd), and Base (Bs).

its context in relation to the whole shape. The purpose of us-
ing a collection of descriptors is that their union should be
rich enough to distinguish the faces of different classes. We
extract descriptors similar to those that appear in the learn-
ing approach of Kalogerakis et al. [KHS10], more specifi-
cally, the ones based on principal component and curvature
analysis in the neighborhood of a face, the shape diameter
function [SSCO08], average of geodesic distances, and the
binning of face areas into geodesic shape contexts.

Classifier training. Finally, we group the faces from the
training set according to their labels. Suppose that for each
label l, we are given nl training faces coming from different
shapes and grouped into the set Fl = { f1,l , f2,l , . . . , fnl ,l}. We
compute the descriptors for each face fi,l , denoted as D fi,l ,
and the full collection of descriptors for label l is given by
Dl = {D f1,l ,D f2,l , . . . ,D fnl ,l

}. Then, for each label l, we train
a classifier Kl with the descriptors Dl as positive examples
of the label, and with the descriptors Dl̄ = ∪Dl′ , with l′ 6= l,
as negative examples. Notice that instead of training a set of
per-label classifiers, a single multi-class classifier could also
be used to take advantage of shared decision rules.

To train a classifier, we use the “gentleboost” algorithm,
which has several advantages in relation to other choices,
such as performing automatic feature selection, being a time-
efficient training algorithm, and attaching confidence values
to each classification decision [KHS10]. By adjusting the
importance weight given to each training sample, it is also

possible to account for unbalanced datasets. Details on this
algorithm can be found in [FHT00]. The unnormalized con-
fidence values returned by each classifier can be transformed
into probabilities with the softmax activation function (a
generalization of the logistic function to multiple variables).

Probabilistic semantic labeling. Now, given an unknown
face si on a query shape S, we compute its associated set
of descriptors Dsi and provide them as input to the classi-
fier Kl . The classifier estimates the probability Lsi,l that face
si should belong to class l. The probabilities for all possi-
ble labels are grouped into the vector Lsi . The probabilistic
labeling is performed for all faces of the two query shapes
S and T . One of our key contributions here is to show that
computing a correspondence based on the semantic labeling
LS provides superior results when compared to those com-
puted directly from the descriptors DS (see Section 6).

5. Part correspondence via joint labeling

After obtaining the probabilistic labeling of the faces on
the query shapes, we utilize this information in a joint la-
beling scheme (i.e. labeling both query shapes simultane-
ously) to obtain the final result. By posing the correspon-
dence problem as that of label optimization, we are able
to simultaneously incorporate both the semantic informa-
tion and local similarity of the two query shapes into the
computation, while also extracting as a result semantic parts
from the query shapes and their correspondence. This pro-
cess is inspired by methods for consistent segmentation and
labeling [GF09,XLZ∗10,NAH10], although we deviate from
their scheme and do not make use of rigid alignment.

Joint labeling. The label optimization problem is defined as
the assignment of deterministic labels to the nodes of a graph
such that a given energy is minimized [NAH10, SSS∗09,
KHS10]. The set of assigned labels is the same one used
in the definition of the semantic information. Given a query
shape S, we define a graph GS = {VS,ES}, where the nodes
VS are the faces of the mesh and the arcs in ES connect two
faces if they are adjacent on the mesh. A similar graph can
be defined for a shape T . We perform the joint labeling on a
graph G = {V,E}, where V = VS ∪VT and the connectivity
of the graph is given by two types of arcs, E = Eintra∪Einter.
The intra-mesh arcs are simply given by Eintra = ES ∪ET .
The inter-mesh arcs Einter connect faces in S to faces in T .

Feature pairing. We select a set of pairwise assignments
from the faces on S to the faces on T , based on the simi-
larity of shape descriptors, to constitute the inter-mesh arcs.
However, to increase the quality of the assignments, we also
incorporate a learning procedure into this step. We learn
which shape descriptors are most discriminative in distin-
guishing correct from incorrect assignments. The learning
is performed on assignments derived from the training set.
Since a large collection of descriptors is available, a learning
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procedure also has the advantage of properly weighting the
influence of each descriptor in the similarity computation.

First, we derive a set of training assignments T from the
dataset of training shapes. For each individual shape descrip-
tor, we compute its similarity for all possible pairs of faces in
S×T . Next, for each face in S, we select the k first pairwise
assignments with the highest similarity and add them to the
set T . The similarity is given by the inverse of the Euclidean
distance between the descriptors of the two faces, while k is
set to 10 throughout our experiments By choosing a small k,
we select the assignments that are most likely to capture the
correct relation between the different shape descriptors and
the correspondence. Each assignment in T is either labeled
as true, if it maps two faces with the same label, or false, if
the labels are different. Next, we train a classifier based on
a set of vectors derived from T , also using the “gentleboost’
algorithm. Each vector is associated to an assignment in T
and has an entry for the similarity of each descriptor.

The outcome of the training is a classifier that allows us to
label a candidate assignment with true or false, based on the
vector of similarities obtained by considering multiple shape
descriptors, while also assigning a confidence to this deci-
sion. Finally, given a pair of query shapes, we select candi-
date assignments with the same procedure used for the train-
ing data. We apply the classifier and select the top 20% as-
signments with the most confidence of having the label true,
to obtain a small yet reliable set of inter-mesh arcs.

Labeling energy. The energy to be minimized by the label-
ing is composed of two types of terms: unary and binary.
The unary term takes into consideration how likely it is that
a given node has a specific label. This is encoded by a la-
beling cost assigned to each face. The binary terms consider
the connectivity between faces (intra- and inter-mesh) and
quantify how likely it is that two neighboring nodes have a
specific pair of labels, according to a pairwise cost. We de-
fine the energy of the labeling l as

E(l) = ∑
i∈V

U(i, li) + ∑
i j∈Eintra

Bintra(i, j, li, l j) +

∑
i j∈Einter

Binter(i, j, li, l j),
(1)

where li and l j are the labels of nodes i and j, respectively,
and U and Bintra, Binter are the unary and binary terms.

The unary term is given by

U(i, li) =−ai logP(li|xi), (2)

where P(li|xi) is the probability of node i having label li,
based on the classifiers applied to the face descriptors xi,
and ai is the area of the face corresponding to node i. The
weight ai ensures that the cost is given in terms of labeling
the total shape area.

The intra-mesh binary term is defined as

Bintra(i, j, li, l j) = L(li, l j)[λαi j + µ`i j], (3)

where we take into account the compatibility L(li, l j) be-
tween two labels, as well as the edge length `i j and di-
hedral angle αi j between faces i and j, similarly as done
in [SSS∗09] and [KHS10]. The label compatibility term L
is derived from the training data in the form of statistics that
quantify how likely it is that two labels appear neighboring
each other. L(l, l) = 0 if two faces share the same label l.
The parameters λ and µ regulate how much the angle and
edge length contribute to the total energy.

Finally, the inter-mesh term is given by

Binter(i, j, li, l j) = L(li, l j)[νσi j], (4)

where σi j is the confidence that the assignment between
faces i and j is correct, and ν regulates the influence of the
inter-mesh term to the total energy. Thus, the higher the con-
fidence value attached to the assignment, the more the cost
is increased if the labels are different.

Graph-cut optimization. We use multi-label graph-cuts to
assign labels to the nodes in an optimal manner. More specif-
ically, the α-β swap algorithm is utilized [BVZ01], since the
pairwise costs L do not define a metric. By minimizing the
given energy, we obtain the most likely label for each face
while also avoiding the creation of small disconnected seg-
ments. The optimal parameters λ, µ, and ν are obtained by
performing a grid search on training data separated for this
purpose. This procedure is explained in Section 6.

6. Experimental results

In this section, we present a set of experiments aimed at eval-
uating our approach for shape correspondence. We also con-
trast our results to other state-of-the-art methods.

Datasets. We utilize two datasets in our experiments. All
the shapes are pre-segmented and labeled, implying that the
ground-truth label for each mesh face is known. We de-
signed the first dataset, shown in Figure 2, composed of
four classes of man-made shapes with large geometric and
topological variability. Notice that the presence of some of
the semantic parts is optional, and certain parts can appear
more than once on each shape. The second dataset consists
of a selected subset of classes from the mesh segmentation
benchmark [CGF09]. The selected classes are listed in Ta-
ble 1 and examples appear in Figure 5 (a)-(e). We utilize
the segmentations and labelings created for these shapes by
Kalogerakis et al. [KHS10]. We selected classes that possess
shapes in different poses (e.g., Human or Hand) and shapes
with considerable structural and geometric variability (e.g.,
FourLeg), as opposed to models with a predictable structure.
Also note that the segmentations for the first dataset were
created by a single user with a pre-defined goal, while the
second dataset is given by the average segmentation for each
class. With this setting, we demonstrate that our method is
robust against variations in the dataset design process.
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Figure 5: Part correspondence results via joint labeling. Aside from the failure cases in (j), (t), and (y), our method succeeded
even under significant geometric and topological variations between the matched parts, while purely content-driven methods
would fail (see Figure 7 for a comparison). Corresponding segments between a pair of shapes are shown with the same color.

Correspondence results. Figure 5 shows a set of visual re-
sults. To generate these correspondences, we selected for
each class a random subset of 60% of the shapes as the train-
ing set, and delegated the remaining shapes to be test cases.
A random subset of 3/4 of the training shapes was used to
learn the classifiers, while the remaining 1/4 of shapes was
used to select the best parameters for the joint labeling. We
perform a two-level grid search on the three parameters λ,
µ, and ν and select those that result in the best labeling of
the selected 1/4 of the training data, according to the ground
truth. Next, we compute the joint labeling for all the pairs of
test shapes. Some of these test pairs are shown in Figure 5.

Firstly, we see in Figure 5 (a)-(e) that our method is able
to establish meaningful correspondences for queries that are
also handled by content-driven methods. In addition to that,
and more importantly, we also observe that the prior knowl-
edge is effective in matching shapes whose parts differ by

significant geometric changes. Examples include matching
different types of candle holders in (f)-(j), different torches
and bases in (k)-(o), variations in the recipients and bases in
(p)-(t), and seat rests with different railings in (u)-(x). Our
method is also able to handle topological variations, as the
different lamp supports in (k)-(m), and variations in chair
legs as in (u) and (y). Finally, our method is also successful
in matching shapes with different numbers of parts, such as
the multiple wax candles in (h)-(j), and the different num-
bers of handles in (r) and (s). Notice that the presence of
additional parts, such as the handles in (p) and (q), do not
affect the accuracy of the results. Figure 5 also shows cases
where our method did not provide the most accurate corre-
spondence, mainly due to the lack of sufficient prior knowl-
edge and limitations in the shape descriptors. Examples are
the missed candle flame in (j), the extra handle added to the
top of the vase in (t), and the rest and arms of the chair in (y)
that were not properly separated from the seat.
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Figure 6: Joint labeling improves upon the use of prior
knowledge alone. (a) and (c): correspondences obtained us-
ing probabilistic labels only, without content analysis. (b)
and (d): results from joint labeling. The latter is effective
in implying the correct correspondence for mislabeled parts
when there is sufficient part-to-part similarity.

In cases of insufficient knowledge, an accurate correspon-
dence can still be obtained via joint labeling when there
is enough similarity between parts of the shapes. Such ex-
amples can be seen in Figure 6. In (a), the correspondence
is computed based purely on the knowledge, i.e., only the
unary and intra-mesh terms enter the labeling. Part of the
support of the candle on the right is mistakenly labeled as
a handle and, therefore, does not have a corresponding part
on the shape on the left. However, when the content of the
shapes is also taken into consideration (i.e., the inter-mesh
term is added), we obtain the more accurate correspondence
in (b), since the descriptors of the thin structures on both
shapes are similar. We observe an analogous situation in (c),
where the seat of the chair is mistakenly labeled as a back-
rest, due to the geometric distortion present in the model. In
(d), the joint labeling is also able to obtain the correct part
correspondence, guided by the similarity of the seats. We
point out that both knowledge and content are essential for
finding the correct correspondence in these cases.

In Table 1, we show a statistical evaluation of the cor-
respondence results we obtained. For each shape class, we
performed 5 experiments in the same manner as described
before (60% training shapes and 40% test shapes). We av-
erage the accuracy over all the pairs of test shapes in each
experiment. The accuracy for a single pair of shapes S and T
is calculated with a function that measures the quality of the
correspondence between the two shapes. It is given by

Accuracy(l) =
∑i∈S ∑ j∈T ai a j |δ(li = l j)+δ(ti = t j)−1|

∑i∈S ∑ j∈T ai a j
,

(5)

where ai is the area of face i, l is the labeling of the shapes
returned by our method, t is the ground-truth labeling, and
δ(x = y) is 1 only if x = y. This quantity measures how many
of the faces that have the same label in the ground-truth
are also found in corresponding segments, independently of
which label was assigned to the faces. It also captures the no-
tion that two faces that do not possess the same label in the
ground-truth should not be assigned to corresponding seg-
ments. The weighting is chosen so that the correspondence
accuracy is given in terms of the total shape area.

We can see that the average accuracy for the first dataset
(classes of man-made shapes with significant variability) is
90%, while for the second dataset (organic shapes), it is
89%. We attribute the failure cases to a few factors. Firstly,
shapes that have parts with no counterparts in the prior
knowledge can occur in the test set. An example is the chair
shown before in Figure 5 (y), contrasted to the other shapes
in the dataset (Figure 2). Secondly, the descriptors may not
be sufficient to distinguish certain parts of the shapes, such
as the different fingers in the hands. Finally, a small fraction
of the errors is also due to imperfections in the labeling, such
as dislocated borders which happen when the inter-mesh and
intra-mesh terms compete in the optimization. Such cases
can be adjusted, for example, with post-processing that dis-
places the borders to concave regions of the shapes [Sha08].

When comparing the statistical results of the approach us-
ing only prior knowledge (unary and intra-mesh terms) to
that of the joint labeling (incorporating the inter-mesh term),
we find that both approaches are comparable, with a de-
viation of ±5% in the accuracies. The joint labeling does
not lead to a significant increase in the accuracies since the
inter-mesh term is primarily designed to handle cases such
as those in Figure 6, where the content aids in improving the
correspondence for certain portions of the shapes that do not
appear in the knowledge. Such cases are not very frequent in
the datasets, but could be prevalent in certain situations (e.g.,
a collection of shapes modeled by reusing existing parts).

Comparison to classical approach. We compare our ap-
proach with two state-of-the-art content-driven methods that
are considered to be comparatively competitive at handling
general deformation between models. In Figure 7, we show a
comparison with the deformation-driven approach of Zhang
et al. [ZSCO∗08], which finds a matching between sparse
sets of feature points. As we can see, when the correspond-
ing parts differ sufficiently in their scales or geometric prop-
erties, this method fails as it is still formulated on matching
the geometry of the shapes. Our method on the other hand
finds a correspondence between two shapes by using knowl-
edge as the medium; it succeeds since the resulting corre-
spondences have sufficient support from the training set. We
also compared our method to that of Shapira et al. [SSS∗09].
However, when presented with the query examples shown in
Figure 7, the partitioning of the shapes obtained with this
method differed significantly from one shape to the other,
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Figure 7: Comparison to content-driven correspondence on geometrically dissimilar models. (a) and (c): results from the
deformation-driven method of Zhang et al. [ZSCO∗08], including the induced deformation and the matching feature points. (b)
and (d): results from our joint labeling method.

preventing the method from establishing a meaningful cor-
respondence. Other recent works on content-driven shape
correspondence, e.g., [LF09,ACOT∗10], are not expected to
succeed on these examples either as they are also based on
geometric similarities between matched features, an approx-
imate isometry criterion, or a combination of both.

Timing. The most expensive procedure in the knowledge-
driven framework is classifier learning. For a training set
ranging from 20 to 30 models with average size of 30K trian-
gles, this step can take 10 hours in an AMD Opteron 1GHz
processor. Then, applying the classifiers on two queries and
performing the joint labeling runs in the order of minutes.

7. Conclusions and future work

The main message of our work presented in this paper
is that challenging cases of 3D shape correspondence can
be solved effectively by incorporating prior knowledge. At
the same time, direct geometric comparison between the
query shapes is still merited particularly when the knowl-
edge base is incomplete or leads to indeterminate recogni-
tion results. An effective approach via joint labeling, com-
bining knowledge-driven probabilistic semantic labeling and
content-driven analysis via local geometric similarity be-
tween query shapes, is thus introduced. We demonstrate sig-
nificant improvement on shape correspondence results over
classical approaches, particularly when the query shapes ex-
hibit large geometric or even topological variations.

Limitations. While the idea of joint labeling is quite gen-
eral, the content analysis component of our approach is still
fairly primitive in terms of the feature similarity employed.
There still remain failure cases as shown in Figure 5. We
believe that this can be attributed to our current reliance of
low-level shape descriptors in the content-driven analysis as
well as in the recognition step, where a query shape is com-
pared to shapes in the training set. More advanced geometric
analysis tools incorporating criteria such as shape symme-
try [GPF07] or style-content separation [XLZ∗10] may lead
to improvement in this regard.

Table 1: Statistical evaluation of the correspondence results.

Class Corr.
Candle 88%
Chair 87%
Lamp 97%
Vase 86%

Class Corr.
Airplane 92%
Ant 96%
Bird 86%
Fish 92%

Class Corr.
FourLeg 82%
Hand 80%
Human 90%
Octopus 96%

Future work. In addition to improving the quality of the
shape descriptors, we also plan to explore additional mea-
sures such as structural similarities for joint labeling. We
would also like to explore the possibility of avoiding the
need to pre-classify the training shapes. Either we integrate
the recognition of the training parts with their correspon-
dences, or avoid it altogether by developing generic labels
and classifiers that capture the general notion of handle and
base, rather than a cup handle or a lamp base, for example.
In hindsight, what ultimately makes the correspondence ap-
proach effective under challenging circumstances, particu-
larly for many classes of man-made shapes, is the ability to
learn the functionality of the parts. Recognizing functional-
ity is clearly a difficult problem. It calls for intermediate-
level descriptors that are able to capture properties such
as flatness, concavity, symmetry, and fuzziness that are re-
quired in order to achieve a certain functionality. Learning
functionalities of parts for shape analysis is certainly an in-
teresting direction for future work.
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