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A B S T R A C T

We present a novel approach for 3D shape synthesis from a collection of existing mo-
dels. The main idea of our approach is to synthesize shapes by recombining fine-grained
parts extracted from the existing models based purely on the objects’ geometry. Thus,
unlike most previous works, a key advantage of our method is that it does not require
a semantic segmentation, nor part correspondences between the shapes of the input set.
Our method uses a template shape to guide the synthesis. After extracting a set of
fine-grained segments from the input dataset, we compute the similarity among the seg-
ments in the collection and segments of the template using shape descriptors. Next, we
use the similarity estimates to select, from the set of fine-grained segments, compatible
replacements for each part of the template. By sampling different segments for each
part of the template, and by using different templates, our method can synthesize many
distinct shapes that have a variety of local fine details. Additionally, we maintain the
plausibility of the objects by preserving the general structure of the template. We show
with several experiments performed on different datasets that our algorithm can be used
for synthesizing a wide variety of man-made objects.

c© 2018 Elsevier B.V. All rights reserved.

1. Introduction

There is an ongoing need for digital content in the form of
3D models in fields such as entertainment and product design.
However, the manual creation of 3D models is often a difficult
and time-consuming task. Hence, facilitating the creation of 3D
models is a fundamental problem in computer graphics.

A popular approach for the automatic creation of novel 3D
objects is to reuse parts from existing shapes. Several works
on shape synthesis propose to extract and recombine parts from
a dataset of existing objects [1–6]. Most of these techniques
make two important assumptions about the input models and
their parts. First, the input objects should be segmented into
coarse semantic parts, that is, parts with a meaningful seman-
tic meaning, and possibly a specific functionality. Second, a

∗Corresponding author:
e-mail: oliver.vankaick@carleton.ca (Oliver van Kaick)

Fig. 1. Scene created with shapes synthesized by our method. Note how the
three shapes exhibit a variety of fine details and a coherent structure.

correspondence or consistent labeling should exist among the
different parts of the input shapes.

One shortcoming of these synthesis methods is that the gene-
rated shapes may display a limited range of variations in their
fine geometrical details, since semantic parts are often large,
coarse and exchanged as a whole [7, 8]. Furthermore, although
much progress has been made to obtain semantic segmentations
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of 3D shapes [9, 10], computing highly accurate and consistent
segmentations and part correspondences for large collections of
shapes is still a challenging problem [11, 12].

In our work, we propose to synthesize shapes by exchanging
fine-grained parts among a set of input shapes. As shown in
Figure 1, the use of fine-grained parts allows us to generate
shapes with large variation in fine geometric details, which is
not achievable with methods that exchange semantic parts as
a whole. Figure 2 shows a comparison between a typical se-
mantic segmentation of a table, and the fine-grained segments
that we use for synthesis. The recombination of fine-grained
segments is guided by the geometric similarity of the segments,
enabling us to exchange segments that have the same overall
geometry but which can possess variations in their fine details.
The recombination guided by geometry allows us to even ex-
change segments between models from different families.

Moreover, we do not require a semantic segmentation nor a
part correspondence as input, since the fine-grained parts can be
obtained by analyzing the local geometry of the shapes, as done
by traditional geometry-based segmentation methods [9]. Our
main requirement on the segmentation is that the shape seg-
ments should possess roughly the same size. However, one
problem arising from the elimination of part semantics is that
we require an alternative mechanism to guide and constrain the
synthesis of a new shape. Thus, we propose to use for guidance
an input template, which can be a simple configuration of ge-
ometric proxies or an example shape. The template constrains
the topology of the synthesized shape, which helps to ensure a
certain level of plausibility in the generated shapes, and provi-
des a domain for formulating the synthesis of a shape as a graph
assignment problem, as we discuss in Sections 3 and 5.

In summary, we present a pipeline for synthesizing 3D
shapes using fine-grained segments extracted from an input set
of shapes. Our method does not require a segmentation of the
input models into semantic parts, nor a part correspondence, but
mainly a guiding template and a segmentation of a collection
where the segments are consistent in size, which is easier to
obtain with automatic or semi-automatic methods. Specifically,
for the results shown in this paper, we employ a semi-automatic
segmentation method. Moreover, we demonstrate the effective-
ness of our approach by presenting and analyzing a variety of
results synthesized with our method. In addition, we explore
variations of our pipeline that enable us to control different as-
pects of the shape generation.

Fig. 2. Comparison of two segmentations for the table model shown in the
inset. Left: typical semantic segmentation. Right: segmentation into fine-
grained segments used in our work.

2. Related work

In this section, we discuss the previous work most related to
our method, i.e., shape synthesis and segmentation approaches.

Shape synthesis. Earlier approaches for synthesis employed
statistical shape models to generate shapes, according to the
variability learned from a collection. For example, Blanz and
Vetter [13] developed a deformable model of 3D faces, while
Allen et al. [14] introduced a statistical model of human bodies.
These methods are quite general as they are applicable to any
type of shape (biological, man-made), but require a compatible
mesh with correspondences across the entire collection.

The seminal work by Funkhouser et al. [1] proposed a system
that allows the user to browse a library of 3D models and com-
pose new shapes by assembling together parts of the existing
3D objects. This part reuse framework is widely applicable to
objects that can be decomposed into parts in a meaningful man-
ner, such as man-made objects. Thus, much of the subsequent
work on shape synthesis has been based on this idea.

One line of work has proposed interfaces that facilitate the
extraction and reuse of shape parts. For example, Kraevoy et
al. [15] use compatible segmentations of objects to enable part
exchange, while Sharf et al. [16] and Takayama et al. [17] in-
troduce interfaces that facilitate the selection of part or regions
to be exchanged between shapes. Chaudhuri et al. [18] incorpo-
rate semantics into this framework with a learning approach, to
suggest suitable part replacements while building a shape from
existing parts. Recently, Jaiswal et al. [19] and Sung et al. [20]
also developed suggestion mechanisms based on learning ap-
proaches which however do not require labeled parts.

Another line of work proposes methods that automatically
synthesize shapes while requiring little to no user input. A few
works are based on the idea of blending existing shapes together
as a whole, such as the methods of Jain et al. [3] and Alhashim
et al. [7]. Blending is advantageous in that it can generate a va-
riety of objects from two input shapes, however, these methods
require a semantic segmentation of the input models.

Moreover, much of the recent work on automatic shape synt-
hesis focuses on learning statistics of part co-occurrence based
on a semantic segmentation of the objects in a collection, and
using this information to automatically generate objects. Kalo-
gerakis et al. [4] and Huang et al. [2] introduce approaches that
select parts to compose a shape based on the co-occurrence of
semantic labels. Zheng et al. [21] exchange specific arrange-
ments of parts to synthesize objects that satisfy certain functi-
onalities, while Huang et al. [22] extend this approach to non-
symmetric arrangements. Su et al. [8] exchange more complex
substructures among shapes. Moreover, Xu et al. [6] use an
evolution-based approach to synthesize shapes.

A few methods also focus on the specific problem of genera-
ting valid configurations of shape parts, i.e., defining the relative
positioning and orientation of the parts that compose the shapes.
Fish et al. [23] and Yumer and Kara [24] learn models from a
collection of shapes that capture the probability of part configu-
rations. Averkiou et al. [25] represent the shapes of a dataset as
box-like templates which can be used for exploration of the set
but also for synthesizing new objects via part deformation.
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The main requirement of all of these blending and automa-
tic synthesis methods is a semantic segmentation of the objects
in the analyzed collections. Often, a semantic labeling of the
segments is also required. Although there has been significant
work in recent years for obtaining such segmentations auto-
matically [10], obtaining and accurate segmentation of a large
collection is still a challenging problem with much room for
improvement to the segmentation accuracy [12]. In contrast,
the objective of our method is to synthesize shapes by exchan-
ging parts obtained with a less demanding type of segmentation,
which can be computed mainly from geometric constraints wit-
hout involving semantics. Moreover, the use of fine-grained
segments in our work enables to exchange fine details between
objects and increase the variability in the synthesized shapes,
which is not possible when using semantic segments, as these
are often larger and more coarse in relation to the entire shape.

Finally, a few methods also aim to extract parts that can be
suitable for exchange, in a sense, treating the segmentation and
part exchange problems together. Bokeloh et al. [26], and later
Kalojanov et al. [27], discover a shape grammar that can be used
to generate the input shape and, subsequently, novel objects.
Liu et al. [5] combine the discovery of shape grammars with
the analysis of substructures for shape synthesis. Although the
parts extracted by these methods are not semantic in nature, the
discovered parts tend to be large as the goal of these methods
is to discover the smallest set of elementary parts. Thus, the
exchange of finer details is also difficult to achieve.

Shape segmentation. There has been a significant amount of
work in shape segmentation, where the goal is to decompose an
input object into meaningful parts. Much of earlier work em-
ployed geometric criteria combined with clustering or region
growing heuristics to partition a single input object into parts,
as surveyed by Shamir [9] and more recently by Theologou et
al. [10]. More contemporary approaches make use of learning
to incorporate prior knowledge about the desired segmentation,
typically given in the form of example segmented shapes. Nota-
ble works in this area include the learning segmentation method
of Kalogerakis et al. [28] and recent works that perform the le-
arning with deep networks [11], also targeting a hierarchical
segmentation [12]. Although most of the literature has focused
on the extraction of semantic segments, the existing approaches
can also be leveraged to decompose shapes into segments with
application-specific requirements [9], as we discuss in Section 4
for the segmentation required by our method.

3. Overview

Our approach is summarized in the overview shown in Fi-
gure 3. The input to our synthesis pipeline is a set of trian-
gular meshes. We start by obtaining a point cloud for each
mesh by sampling points from the triangles of the mesh. Simi-
larly to recent shape analysis methods [29–31], we opt to work
with point cloud representations to alleviate problems in our
analysis that can be caused by the presence of non-uniformly
sampled geometry and non-manifold shape structures. Next,
we segment each point cloud into fine-grained segments with a
semi-automatic method, generating a pool of parts that can be

used for synthesis. Then, we compute a set of descriptors to
represent each segment, and we use these descriptors to define
a similarity metric for the comparison of segments.

To synthesize a shape, we take as input a geometric template
representing the general structure and topology of the target
shape. In practice, the template is a shape segmented in the
same manner as the collection. We define a graph based on
the part structure of the template, and pose the synthesis as a
probabilistic sampling of segments. Our goal is to assign seg-
ments from the pool of parts to the nodes of the graph, in order
to maximize a shape energy. This energy takes into account
the similarity between the template and sampled segments, in
the form of a unary term, as well as the consistency between
neighboring segments, captured by a pairwise term.

Finally, after sampling the segments that constitute the shape,
we perform a series of geometric operations to align the seg-
ments and ensure that we obtain a plausible shape as output. At
the end of this process, we obtain a shape that respects the topo-
logy of the template and possesses a consistent structure, while
containing local geometric variations. Since our method can
consider a large set of fine-grained segments, we can generate
different variations for the same template by sampling multiple
shapes according to the shape energy.

Note that the set of descriptors used for sampling the seg-
ments capture the overall geometric properties of the segments,
but they are relatively insensitive to differences in the fine de-
tails of the parts. Hence, the segments sampled by our method
preserve the general form of the template while leading to vari-
ations in the geometry of the synthesized shape.

4. Extraction of fine-grained segments

In this section, we explain how we pre-process and segment
the input collections of shapes used for synthesis, while we des-
cribe our synthesis approach in detail in Section 5.

Pre-processing. The input to our method is a set of triangular
meshes, where we orient all the meshes consistently. After the
alignment, the +Y axis corresponds to the upward direction of
the objects, and the +X axis to the frontal direction. We perform
the alignment manually, although it would be possible to incor-
porate automatic alignment methods [32] into our pipeline. In
addition, we normalize our shapes in scale, so that the axis-
aligned bounding box of each shape is a cube centered at the
origin where all point dimensions are in the range [-1, 1].

Point sampling. We transform each input mesh into a point
cloud, using the sampling algorithm described by Osada et
al. [33], which samples points from the triangles of the mesh
without biasing the sampling by the shape of the triangles. For
all the experiments that we discuss in this work, we sampled
N = 15, 000 points from each mesh. During the sampling, we
also compute the normal of each face, and associate this nor-
mal with each point sampled from the given face. We use the
normals associated to each point to compute some of our des-
criptors, as we describe in Section 5.
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Fig. 3. Overview of our 3D shape synthesis approach.

4.1. Fine-grained segmentation

From each point cloud computed from the input meshes, we
perform a segmentation that generates a set Ω of fine-grained
segments that we use in our synthesis process. Our fine-grained
segmentation has two main goals: (i) to provide segments that
capture fine geometrical details of the shapes, such as orna-
ments and salient features, which can then be transferred to the
synthesized shapes; and (ii) to provide segments that are con-
sistent in size across all the shapes of the input set, so that they
can be easily reused for the generation of novel shapes.

Although the segmentation of 3D shapes is a fundamental
component for applications in diverse areas such as geometric
modeling and shape analysis, obtaining a meaningful segmenta-
tion of a 3D shape is still a challenging task [10, 11], especially
when a consistent segmentation of different 3D objects of the
same class is required. Moreover, most works about shape seg-
mentation presented in the literature are tailored for computing
semantic segments for 3D meshes, while our method employs
fine-grained segments extracted from a point cloud.

Thus, to obtain a segmentation that satisfies our require-
ments, we currently segment the input shapes with a semi-
automatic method, based on an interactive program for segmen-
tation of point clouds. Figure 4 shows the interface of our pro-
gram and an example of a fine-grained segmentation obtained
with the program. Our program provides a set of high-level
tools that the user can employ to easily extract fine-grained seg-
ments. The user can select a set of points from a point cloud
using a simple selection box drawn directly on the screen, and
assign all the points that project onto the box to a segment.

In addition, our segmentation interface provides an option
for merging two or more segments, as well as an option for
splitting an existing segment into smaller segments of a given
size. Finally, our system can take as input point clouds that have
already been pre-segmented into coarse semantic parts with an
external tool. In our study, we pre-segmented a portion of the
meshes with the point cloud segmentation method of van Kaick
et al. [34], which partitions models into approximately convex
segments. By combining all of these tools together, the user can
segment the shapes into segments of consistent size.

In this paper, we focus on how to use the set Ω of fine-grained
parts to synthesize a variety of man-made shapes. Thus, we le-
ave the study of computing consistent fine-grained segmentati-
ons in a fully automatic manner for future work. Nonetheless,
we note that a segmentation into fine-grained segments poses
less demands on the development of the segmentation method,

Fig. 4. Our interactive tool for point cloud segmentation and an example of
a fine-grained segmentation obtained with the tool.

as the generated parts do not need to satisfy semantic require-
ments, but only match an expected type of geometric boundary
and size. Thus, the development of such a segmentation met-
hod is expected to be an easier task in comparison to a fully
semantic segmentation. We discuss alternatives for the automa-
tic extraction of our fine-grained segments in Section 7.

Furthermore, our program also allows the user to mark pairs
of segments having reflectional symmetry [35]. These annotati-
ons let us determine the symmetry relations of our input shapes,
and generate novel shapes where these relations are preserved.
Similarly, the user can employ our segmentation system to cre-
ate annotations about the principal axis of orientation of each
fine-grained part. We employ the annotations about the princi-
pal axis of each part to compute a rotation between each seg-
ment of the template and the corresponding segment selected
to generate a new 3D shape in a consistent manner, as we will
describe in the following section.

5. Synthesis based on fine-grained parts

In this section, we explain the details of how we employ the
set Ω of fine-grained segments to generate man-made shapes.

5.1. Shape descriptors and similarity metric
We use a set of shape descriptors to estimate the similarity

between two fine-grained segments. The similarity is used to
guide the shape synthesis, as we describe in Section 5.3. Our
descriptors encode several characteristics of the overall geome-
try of each segment, while at the same time being insensitive to
the fine details of the parts. We classify our descriptors into two
types: point-level descriptors and segment-level descriptors.
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Point-level descriptors. We capture the distribution of the va-
lues of each point-level descriptor using histograms. We em-
ploy four point-level descriptors: (i) The Point Feature Histo-
gram (PFH) [36], which captures the overall variation in the
orientation of the segment’s surface by using the normals that
we associated to each sampled point; (ii) The mass distribution
of the segment, given by the distribution of the points in 3D
space [37]; (iii) The volume of the segment obtained using the
Shape Diameter Function (SDF) [38], where we adopt the met-
hod of van Kaick et al. [34] to compute the SDF for a point
cloud; (iv) The surface variation, which captures the curvature
of points in the segment in a robust manner [39].

Segment-level descriptors. We make use of three segment-level
descriptors: (i) The overall geometry (G), which allows us to es-
timate how linear, spherical, or planar is the shape of each seg-
ment [30, 40]; (ii) The relative position (P) of the segment with
respect to its containing shape [37]; and (iii) The minimum and
maximum coordinate along each dimension for all the points in
a segment, which captures the axis-aligned bounding box of the
segment relative to its source shape (B).

5.1.1. Similarity measure between segments
We compute the similarity (more precisely, a distance) bet-

ween any two segments using the set of descriptors. Given two
segments i and j, we define their distance D as:

D(i, j) =

√
Dp(i, j) + Ds(i, j), where:

Dp(i, j) =

4∑
d=1

EMD2(hd
i , h

d
j ), and

Ds(i, j) = ‖Gi − G j‖
2 + ‖Pi − P j‖

2 + ‖Bi − B j‖
2,

(1)

where Dp(i, j) denotes the distance measure for the point-level
descriptors, hd

i denotes the histogram for the segment i and
point-level descriptor d, and EMD is the Earth-Mover’s Dis-
tance, which allows to measure the similarity between two pro-
bability distributions given in the form of histograms [40]. Si-
milarly, Ds(i, j) is the distance for the segment-level descrip-
tors, denoted according to the acronyms defined above.

Our similarity metric allows us to find segments that are simi-
lar in their overall geometry, while preventing fine detail from
influencing the similarity too much, which enables us to synt-
hesize shapes with variations in their details.

5.2. Adjacency graphs of the shapes
For each shape S in our input set, we create a graph GS that

allows us to capture the neighborhood information of each seg-
ment in S . We also use this information during the synthesis.
The graph has a node for each segment of the shape, and an edge
between each pair of segments that are neighbors in the shape.
To determine if a pair of segments i and j of S are neighbors, we
adapt the method employed by Jaiswal et al. [19]. Specifically,
we say that the segments i and j are neighbors if we can find a
pair of points p ∈ i and q ∈ j such that: ||p − q|| ≤ 0.035 3

√
V ,

where V is the volume of the bounding box of S . Figure 3 pre-
sents an example of the adjacency graph of one of the shapes of
our input set of chairs.

5.3. Shape synthesis via sampling
Template selection. To obtain synthesized objects with a plau-
sible structure, we select one shape from our input set as a tem-
plate. This template T guides the synthesis process, determi-
ning the global structure and topology of the generated shape.
Note that, as part of the procedure explained in Section 5.2, we
have also computed the adjacency graph for the template T ,
which we will denote as GT .

For synthesizing a new 3D shape, we select a specific subset
of segments from the set Ω to compose the shape, according to
the similarity metric and the selected template.

5.3.1. Shape energy
To synthesize a 3D shape with variations in its local geometry

while maintaining a plausible structure, we sample segments
from our pool of parts Ω that can replace each segment i of the
template T while forming an adequate shape. We formulate
this goal as the maximization of a shape energy of the form:

E(m) =
∑
i∈T

E(i,m), with: (2)

E(i,m) = Pi(m(i)) + PPW
i (m), (3)

where T is the set of segments that form the template T , m is
a mapping that encodes the assignment of segments in Ω to the
segments of T , and the two terms of Eq. (3), Pi and PPW

i are
defined below.

The energy defined in Eq. (2) estimates whether the segments
selected to compose a new shape contribute to create a plausi-
ble object. The estimation involves the two terms of Eq. (3).
The first term, Pi, is a unary energy that measures the overall
similarity between segments i of the template and their replace-
ments m(i). The second term of Eq. (3) is a pairwise energy that
measures the similarity between the context of each segment in
the synthesized shape compared to the context of the original
segment.

5.3.2. Sampling of segments for shape synthesis
To synthesize a plausible shape, we construct the mapping m

so that the energy E(m) given by Eq. (3) is maximized. Since
directly optimizing Eq. (3) is only possible for certain convex
energies [41], we employ a heuristic sampling approach instead.
To perform the sampling of the segments that will compose a
shape, we transform the distances between the segment i ∈ T
and all the segments in the set Ω into a discretized Probability
Density Function (PDF) by means of the following expression:

Pi(r) =
exp(−D(i, r))∑

j∈Ω exp(−D(i, j))
, (4)

where Pi(r) is the probability of segment r ∈ Ω being a suitable
replacement for the segment i ∈ T , according to the similarity
given by Eq. (1). In our heuristic algorithm, we randomly sam-
ple a segment with a probability higher than a threshold τ, to
obtain a segment with high similarity in comparison to the seg-
ment i ∈ T . Specifically, for the experiments that we performed
for this paper, we sampled segments with a probability higher
than τ = 0.75. In addition, we also consider the following filte-
ring conditions to compute the final mapping m:
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• We compute the ratios between the length of each pair of
sides of the bounding box of each segment, and we find the
difference between the maximum of these ratios for every
pair of segments in the set Ω. Then, we discard as possible
replacement for the segment i ∈ T any segment for which
such difference is larger than a threshold η = 1.8, which
was determined experimentally.

• Additionally, we filter out segments based on an adjacency
score defined for a segment i ∈ T as:

Hi =
∑
j∈Ni

D(i, j), (5)

where D is the distance defined in Eq. 1, and Ni is the set
of segments that are neighbors of i ∈ T . We normalize
the score Hi by the mean and standard deviation of the
entire shape T , yielding a normalized score Ĥi. Similarly,
we compute the score Ĥr for the segment r sampled from
the PDF, and we calculate the difference ĥ between the
score of i ∈ T and the score of r, i.e.: ĥ = |Ĥi − Ĥr |. We
then filter out segments where ĥ is larger than a threshold.
In practice, we use a threshold of 2, which allows us to
discard segments with very dissimilar contexts.

In general, we also filter out segments coming from the tem-
plate shape, to obtain synthesized shapes with more variety in
their fine details in comparison to the original template. Nonet-
heless, our method can also preserve selected segments of the
template during synthesis, as we show in Section 6.4.

Furthermore, to obtain a shape that preserves the main sym-
metry relations of the template, we use the list of symmetric
pairs created during the segmentation, which determines if a
segment i ∈ T has a symmetric segment j ∈ T . For such sym-
metric pairs, we compare the probability computed by Eq. (3)
for each corresponding replacement segment r = m(i) and
s = m( j), and we keep in our synthesized shape the segment ha-
ving the highest probability. During our shape post-processing
step, we reflect this segment through the corresponding sym-
metry plane of the shape [35].

Next, we employ the probability associated with the segment
r sampled from the unary PDF as the value of the first term of
the energy function of Eq. (3). To compute the second term of
Eq. (3), we compute a pairwise PDF given by:

PPW
i (m) = exp

−∑
j∈Ni

|D(i, j) − D(m(i),m( j)|

 , (6)

where, as before, D is the distance defined in Eq. 1, and Ni is
the set of segments that are adjacent to i according to the adja-
cency graph of the template. After normalizing Eq. (6) by the
total number of segments of Ω, we compute the cumulative sum
for the values of this pairwise distribution, and we use this cu-
mulative sum to extract the probability that represents the value
of the second term of Eq. (3).

By sampling different segments from the unary PDF com-
puted for each segment i, we can generate several new shapes
from the same template, as we will see in Section 6.2. Finally,
after sampling each segment that will compose a new shape, we
compute the shape energy according to Eq. (2).

5.4. Shape post-processing

Given the segments selected to synthesize a new shape, we
finalize the creation of a 3D object with a two-stage procedure
that we describe next.

5.4.1. Segment placement for point cloud synthesis
To generate a point cloud from the mapping m, we compute,

for each replacement segment, a transformation composed of
a rotation, a non-uniform scaling, and a translation, that allow
us to find the optimal placement of the segment in the synthe-
sized shape, with respect to the corresponding size, scale and
orientation of the original segment of the template.

First, given a replacement segment r, we compute a rotation
so that the orientation of r matches the orientation of the seg-
ment i of T . To obtain this rotation, we extract the oriented
bounding box (OBB) of the segments r and i using the method
of Fish et al. [23]. To obtain the principal axis of orientation of
each fine-grained segment, we initially used the principal com-
ponents given by PCA, as proposed in previous works [37]. Ho-
wever, we found that this approach did not provide consistent
results in many cases. Thus, we resort to the user-given annota-
tions on the principal axis of each segment, which are specified
during the segmentation process.

Afterwards, we compute a non-uniform scaling to make the
proportions of the bounding box of the segment r match as best
as possible the size of the bounding box of i. In addition, we
obtain a translation from the position of the replacement seg-
ment r towards the position of i by calculating the difference
between the centroid of the segment i and the centroid of r.

It is important to note that the method that defines the map-
ping m selects the same replacement r for symmetric segments
of the template. Therefore, in practice, we only compute the
transformations described above for one of the symmetric seg-
ments of the template T , and we reflect the transformed segment
through the main symmetry plane of T , generating, thus, a new
shape that respects the symmetry properties of the template.

Moreover, due to the differences in the geometrical featu-
res between the parts of the template and the parts of the synt-
hesized shape, after applying the alignment described above,
the synthesized shape can have disconnections and misalign-
ments between its adjacent segments. Thus, similarly to previ-
ous works [4, 21], we refine the placement of the parts of the
new shape by aligning a set of contact points on the segments.

More precisely, we obtain a set of four matching contacts
for each segment boundary that will be aligned. Suppose first
that we would like to align two adjacent segments r and s. To
acquire the set of contact points, we use the OBBs for the seg-
ments r and s, and we find the face on the OBB of r that is
closest to the points of the segment s. We denote such face by
fr. Likewise, we find the face on the OBB of s that is closest
to the segment r, denoted fs. Then, we compute the area of the
faces fr and fs. We assign as the first set of contacts the corners
of the face with the smallest area. Let us suppose, w.l.o.g., that
fr is the face with the smallest area. Then, we assign as the four
contact points for the segment r the corners of the face fr. To
find the contact points for the other segment (s in this case), we
project the contact points of the segment r towards the plane



Preprint accepted for publication / Computers & Graphics (2018) 7

Fig. 5. Synthesized point cloud before the alignment between adjacent com-
ponents, showing two neighboring segments and their contact points.

given by the face fs and we assign as contacts for the segment s
the four points of the segment that are closest to each point that
was projected on the face fs. Figure 5 shows an example of the
synthesized point cloud of a chair before the alignment, where
we zoom in two adjacent segments, denoted as r and s, and we
show the contact points of each segment, illustrating each pair
of matching contact points with corresponding matching colors.

Using the set of four pairs of contacts, we compute the alig-
nment between adjacent segments in a similar manner to pre-
vious works [4, 5, 21]. The local alignment between neighbor
segments is composed of a translation and a non-uniform sca-
ling that optimize the alignment between the contact points in a
least-squares sense [21]. Specifically, we find an optimal trans-
lation computing the difference between the centroid of the con-
tact points of r, and the centroid of the contact points of its
neighbor segment s. To compute the scaling for the segment r,
we calculate the average of the scalings required to align each
contact point of r to its matching contact points on s.

Furthermore, to perform the alignment for all pairs of seg-
ments in the synthesized shape, we traverse the graph of the
template GT by means of a breadth-first search algorithm [42],
aligning neighboring segments during the traversal. This pro-
cedure allows us to align the segments of the shape in an incre-
mental manner, avoiding the need to realign segments that were
already aligned in earlier stages of the process.

Specifically, we select one the segments of T that has the lar-
gest number of neighbors in the template to start the traversal
of the graph GT . Let r be the segment on the synthesized shape
corresponding to this initial segment of T . We align first each
neighbor of r based on their respective contact points. Next, we
continue the traversal with one of the neighbors of r, say s, and
we compute the alignment between s and each one of its re-
spective neighbors in the new shape, before moving to the next
neighbor of r. Finally, we store the full set of transformations
computed for each segment. We use these transformations for
mesh synthesis, as we describe next.

5.4.2. Mesh synthesis
To create a shape with a well-defined surface, we directly

transfer parts of the input 3D meshes to compose the new mesh.
However, since the fine-grained segments are extracted from the
sampled point clouds, there are many cases where the bounda-
ries of the segments do not match the edges of the triangles on
the meshes. Hence, to alleviate this problem, we first compute
a subdivision of the input meshes.

Mesh subdivision. We compute the subdivision of each input
mesh using the Loop scheme, which iteratively splits all the
faces having edges longer than a threshold into four triangles.
We employ a threshold ξ = 5% of the length of the longest edge
of the input meshM. The result is a subdivided mesh M̂ where
all the faces have a length smaller or equal than the threshold ξ.
Note that, differently from the original Loop scheme, we do not
interpolate newly-created vertices to smooth the meshes, since
our goal is mainly to increase the resolution of the meshes.

Extraction of mesh segments. Next, we extract from the subdi-
vided meshes a set of mesh segments that approximately corre-
spond to each fine-grained segment in our set Ω. However, the
mesh segments obtained directly from the subdivided meshes
can contain faces with edges that lie slightly outside or slightly
inside the boundaries of the bounding box of the segment, yiel-
ding mesh segments with jagged boundaries. To correct this
problem, we find the vertices closest to the boundaries of each
mesh segment that do not match exactly with the boundary of
the bounding box of the corresponding fine-grained segment.
Then, we project these vertices towards the plane given by the
corresponding closest face of the bounding box of the segment.

Placement of mesh segments. In this step, we first transform
the vertices of each mesh segment employing the transforma-
tion that was stored during the process of point cloud synthesis.
Next, we optimize the alignment between the adjacent mesh
segments on the synthesized shape by means of a local align-
ment analogous to the process that we employ during the synt-
hesis of point clouds. Hence, we find a set of vertices on each
adjacent mesh segment that we use as contact points to compute
the alignment. To find these contacts, we employ the same pro-
cedure that we described for the case of the adjacent segments
of a point cloud. Additionally, we also compute the alignment
of the adjacent mesh segments of the synthesized mesh by tra-
versing the nodes of the graph GT in a breadth-first manner, as
we did for the generation of a new point cloud.

6. Experimental results

In this section, we present the results of diverse experiments
performed to validate our synthesis method.

Input datasets. In our work, we focus on man-made objects,
which often exhibit rich local geometrical details and multiple
symmetric parts, which can be captured well by fine-grained
segments. Specifically, we applied our method on three data-
sets: a family of 30 chairs, a family of 15 tables, and a hy-
brid set that combines all the table models with a subset of 15
chair models. We collected our input shapes from three diffe-
rent sources: the dataset of furniture models of diverse styles of
Hu et al. [31], and two public online repositories, ShapeNet [43]
and 3D Warehouse [44].

6.1. Shapes synthesized from different templates
Figure 6 shows a set of shapes created with our method using

the input set of tables, while Figure 7 shows several shapes synt-
hesized using the set of chairs. Each shape displayed in Figu-
res 6 and 7 was created using a different input template. Note
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Fig. 6. Shapes synthesized using different templates from our input set of tables. For each group of results, we show the template shape (top-left, in gray),
the fine-grained segmentation of the template (bottom-left), the synthesized mesh (center), and the synthesized point cloud (right).

Fig. 7. Shapes synthesized using different templates from our input set of chairs. For each group of results, we show the template shape (top-left, in gray),
the fine-grained segmentation of the template (bottom-left), the synthesized mesh (center), and the synthesized point cloud (right).

that all the synthesized shapes that we present in this and the
following two sections do not contain any of the original seg-
ments of the input template.

Following the symmetry annotations that are made for each
shape during the segmentation, our method employs the same
segment to replace each part that was identified as symmetric
in the template. Thus, all the synthesized point clouds that we
present in this work show the same color for all the symmetric
parts. As we can see in Figures 6 and 7, using the same seg-
ment for all the symmetric parts allows us to better preserve the
structure of the template in the synthesized models.

Moreover, the sampling process used to synthesize a shape
finds segments that have an overall geometry that is quite si-
milar to the geometry of the original segments of the template.
Hence, our method can generate shapes that keep a plausible
structure while using templates that have diverse forms and
topologies. For example, in Figure 6(a), (b), and (f) and Fi-
gure 7(a), (b), and (c), we can see that the synthesized shapes

maintain the general form of the corresponding templates. We
analyze in more detail the process of sampling the segments for
the synthesis process in Section 6.5.

6.2. Shapes generated from the same template

Figure 8 presents three shapes synthesized from a single
template selected from the set of chairs, and the correspon-
ding value of the shape energy computed using Eq. 2 for each
shape. We observe that our approach generates three shapes
that are distinct from each other and from the template, pos-
sessing many local variations in their geometry. This can be
seen especially in the backs of each synthesized chair. Additio-
nally, all the shapes maintain the general form of the template,
although the synthesized shape in Figure 8(a), which has the
highest shape energy, presents a form that resembles more clo-
sely the structure of the template, in comparison to the shapes
shown in (b) and (c). As we explained in Section 5, the va-
lue of the shape energy defined by Eq. 2 captures the general
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Fig. 8. Models generated from a single template chair. Top row: segmented
point cloud for the template and synthesized point clouds; middle row:
input and synthesized meshes; bottom row: shape energy for each shape.

Fig. 9. Shapes synthesized from a single template table. Top row: segmen-
ted point cloud for the template and synthesized point clouds; middle row:
input and synthesized meshes; bottom row: shape energies.

similarity of the individual segments, as well as the similarity
between the contexts of each segment of the synthesized shapes
in comparison to the corresponding segments of the template.

Furthermore, all the table models that we present in Figure 9
present several fine detail variations in their legs and, at the
same time, they all preserve the general structure of the tem-
plate. Correspondingly, the values of the shape energy for
the three synthesized shapes are similar, which shows that our
shape energy captures in an appropriate manner the similarities
between the segments of the template and the fine-grained parts
sampled for the synthesized shapes. Nonetheless, the form of
the segments of the shape of Figure 9(a) presents some diffe-
rences with respect to the original segments of the template and
this is captured in a correct manner by our shape energy, since
the lowest energy value shown in Figure 9 corresponds to the
shape shown in (a), which is most dissimilar to the template.

6.3. Shapes synthesized from a hybrid set
Since our synthesis approach is based on the geometric pro-

perties of the segments used for synthesis and not on their se-
mantic labeling, our method can be employed in a straightfor-
ward manner on a hybrid set containing shapes of different clas-
ses. In this way, we can introduce additional variations into our

synthesized shapes. In Figure 10, we show various shapes ge-
nerated with our method using the hybrid dataset. In each synt-
hesized model, we highlight a segment that was extracted from
a family that is different from the family of the template shape.

Our approach can combine the fine-grained segments of the
two families of the hybrid set generating models that are plau-
sible variations of the original template shape. In particular,
the chairs in Figure 10(a) and (e) contain in their backs several
segments that have been extracted from shapes of the family of
tables. Meanwhile, for the table shown in Figure 10(c), only
its top segments were taken from another input table, while all
the other segments, including the fine details on the sides of the
table, come from segments extracted from chair models.

In addition, the synthesized tables that we show in Fi-
gure 10(b) and (f) employ several segments from the chairs
family. For instance, we can observe that the seat of a chair
has been used in a feasible manner to replace the top of the
input table template in both (b) and (f). Moreover, we see in
Figure 10(d) a chair model created from a template with a com-
plex structure, which also contains various details in the legs
and the back.

6.4. Shapes synthesized preserving parts of the template

Using our method, we can also select specific segments of
the template shape that must be preserved in the synthesized
shapes, yielding additional variations in our results. Figure 11
shows several shapes that we have synthesized maintaining dif-
ferent parts of a given template. For each synthesized shape, we
highlight the segments of the template that were preserved.

As we can observe, our method can place and align in an ap-
propriate manner the segments of the original template together
with the segments that were sampled from other shapes, pro-
ducing a cohesive and plausible shape. We can select several
adjacent segments from the template to be preserved in the no-
vel shapes, as we show in the example of Figure 11(a). Addi-
tionally, we can also preserve in the synthesized shape smaller
portions of the template, as illustrated in Figure 11(b).

6.5. Analysis of the method

Shape energy. By means of our shape energy function, which
incorporates the similarities of each individual segment, and the
similarities between the segments that are adjacent in the 3D
shapes, our method can find suitable parts to replace the seg-
ments of the input templates. We show in Figure 12 the sources
of some of the segments that were used by our method to ge-
nerate the shape of Figure 7(b). We see in this example that
the segments that belong to the legs of other shapes are the seg-
ments most commonly selected by our approach for the legs of
the generated shape, and the same occurs with other parts.

In addition, Figure 13 shows an example of the individual
energy values computed with Eq. 3 for two segments of three
shapes generated from a single input template. In particular,
the segment denoted as C1 has the highest energy, and we ob-
serve that this segment is the most similar with respect to the
corresponding segments T1 of the template, since the segment
C1 has a curved form that is similar to the form of segment T1,
while segments A1 and B1 do not exhibit such curved form.
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Fig. 10. Shapes synthesized with the hybrid set. For each group of results, we show the original template shape (gray) and its fine-grained segmentation.
We highlight with a red circle a segment that was extracted from a shape (blue) that belongs to a family that is different from the template’s family.

Fig. 11. Shapes synthesized using different input datasets, and preserving specific parts of the template shape. The preserved parts are circled in red.

Fig. 12. Example of some of the fine-grained segments selected by our met-
hod for synthesizing the chair shown in the center. The mesh synthesized
from this point cloud is shown in Figure 7(b).

Likewise, the lower energy values of the segments B2 and C2
capture the differences in geometry and context between these
two segments and the segment T2 of the template.

Fig. 13. Energy values computed for pairs of segments sampled to synthe-
size three chair models (brown) from a single template (gray).

Timing statistics. Segmenting an input set with our interactive
program requires considerable time, especially for shapes with
complex geometries. Segmenting a shape with our program re-
quires on average 1.8 hours for the set of chairs, and 1.3 hours
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for the tables dataset. On the other hand, for shape synthesis,
on a PC with a 3.4Ghz Intel Core i7 6700 and 16Gb of RAM,
the generation of a new point cloud with our unoptimized Mat-
lab implementation requires an average time of 14.98s for the
set of tables that contains 415 segments; 13.92s for the set of
chairs (1,627 segments); and 16.21s for our hybrid set (1,229
segments). Generating a new mesh only requires a fraction of
a second in all cases. However, file I/O takes considerable time
for the subdivided meshes, and thus the total time for synthesi-
zing a mesh and writing its file is on average 10.20s.

7. Conclusions, limitations, and future work

In this paper, we presented a pipeline for 3D synthesis of
man-made shapes based on recombining fine-grained segments
extracted from an input set of shapes. The results of diverse ex-
periments performed with different datasets, including a hybrid
set that contains shapes of different classes, show that our met-
hod can generate 3D models that have a wide range of fine de-
tails. In addition, we showed that our method can be employed
to preserve certain portions of the original input template, allo-
wing us to constrain the synthesis.

We showed that we can generate a plausible shape preser-
ving the structure and topology of a template by maximizing an
energy function that captures in an appropriate manner the over-
all similarities between the parts of the template and the parts
selected to synthesize the shape. Although we showed with a
qualitative analysis that the use of our selected descriptors and
the maximization of the shape energy lead to the synthesis of
meaningful shapes, as future work, we would like to perform a
more thorough analysis of our shape energy and possibly a user
study to evaluate our results in a quantitative manner. Specifi-
cally, we could ask users to evaluate the plausibility and quality
of the shapes generated by our method. Moreover, to the best
of our knowledge, our method is the first to synthesize shapes
from more granular parts. Thus, a comparison to existing shape
synthesis approaches is difficult, as our objective and the type
of segmentation that we use are different in nature from those of
previous methods. Nevertheless, a user study would also allow
us to compare our shapes with the ones produced by previous
methods, e.g. [4, 6], in terms of quality and also variability.

Additionally, our method does not require a semantic seg-
mentation, nor part correspondences between the shapes of the
input dataset, unlike most previous approaches. However, we
currently employ an interactive tool to obtain our fine-grained
segments with consistency in size across all the shapes of our
dataset. Moreover, our pre-processing stage requires considera-
ble manual effort, as implied by the large average times required
to segment a shape with our interactive program. Several al-
ternatives can be explored to obtain our fine-grained segments
automatically. First, we could combine the tool for regular par-
titioning of segments that is part of our interactive segmenta-
tion program with automatic approaches for shape segmenta-
tion that are based only on the geometric information of the
shapes [9], which would yield a segmentation with meaningful
boundaries and parts of consistent size. Also, we could improve
the consistency of the segments by training a model to perform

our fine-grained segmentation, by means of traditional learning
methods [28] or recent deep-learning techniques [11]. Such a
method would need to learn how to partition parts into consis-
tent sizes and following natural boundaries, but would not need
to account for all possible semantics (part labels) of the shapes.

On the other hand, we observed in some of our results that the
alignment process does not prevent intersections or other types
of visual defects from happening between adjacent segments,
as shown in Figure 14(a). In addition, when there are signifi-
cant differences in the geometry of the boundaries of adjacent
segments, the alignment process can connect only a small por-
tion of the boundaries of the segments, as shown in the inset
of Figure 14(b). To solve this problem, instead of computing
an alignment, we could deform the boundaries of the segments
so that they match to each other. This could be achieved, for
instance, with a deformation approach based on transformation
propagation [45], where we would allow the parts to deform
more near the boundaries.

In some cases, conflicts could occur in the alignment process
while traversing the adjacency graph of the template. Specifi-
cally, a segment that should be aligned with some of its neig-
hbors, could have been aligned previously with respect to anot-
her neighbor. To avoid disconnecting pairs of segments that
were aligned in previous stages of the process, we “freeze” the
segments that have already been aligned, even though this could
leave gaps between some adjacent segments in the generated
shapes. However, we note that traversing the adjacency graph
of the template shape using a breadth-first approach, and star-
ting the traversal from one of the segments that has the largest
number of neighbors, allows us to avoid this issue in most cases.

Another possibility for improving the segment alignment and
connectivity consists in obtaining a mesh from the synthesized
point cloud with a surface reconstruction approach, instead of
extracting the mesh segments from the original input shapes. In
particular, we could employ methods like Poisson surface re-
construction [46], where we could constrain the reconstruction
to preserve the internal parts of the segments while smoothing
the boundary regions, avoiding the loss of the fine details that
we seek to maintain in our shapes. This would prevent some
segmentation artifacts in our synthesized meshes, which can ap-
pear in some of our results as small black patches, as shown in
one of the segments of the legs of the shape in Figure 14(b).

Fig. 14. (a) Example of a case where the alignment process produced inter-
sections between segments; (b) Synthesized shape where we show limitati-
ons of the process of alignment between adjacent segments, and segmenta-
tion artifacts.
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Finally, another interesting direction for future work could
involve the use of different options to constrain the synthesis
process. For instance, by using not just one input template, but
by combining parts coming from different templates, we could
introduce additional variability, such as topological changes, to
our synthesized shapes.
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