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Abstract

We formulate contour correspondence as a Quadratic

Assignment Problem (QAP), incorporating proximity in-

formation. By maintaining the neighborhood relation be-

tween points this way, we show that better matching results

are obtained in practice. We propose the first Ant Colony

Optimization (ACO) algorithm specifically aimed at solv-

ing the QAP-based shape correspondence problem. Our

ACO framework is flexible in the sense that it can han-

dle general point correspondence, but also allows exten-

sions, such as order preservation, for the more specialized

contour matching problem. Various experiments are pre-

sented which demonstrate that this approach yields high-

quality correspondence results and is computationally effi-

cient when compared to other methods.

1. Introduction

Finding a meaningful matching between shapes is a fun-

damental problem in geometry processing, with many ap-

plications in computer graphics, vision, and medical imag-

ing. In this paper, we focus on 2D contour correspondence,

a classical problem in computer vision for object track-

ing, recognition, and retrieval [1, 11, 24, 25], among other

tasks. In medical computing, establishing point correspon-

dence allows for statistical shape modeling and analysis of

anatomical structures [7]. Contour matching is also the first

step towards planar shape morphing [16], which finds appli-

cations in animation and shape analysis. Even in 3D shape

modeling, the matching of contours is often an integral sub-

problem. For instance, surface reconstruction from CT or

MRI data, or from data collected via the lofting technique,

requires correspondence between contours from adjacent

slices [19]. Also, reducing the 3D object matching prob-

lem to the matching of a set of projected object outlines [5]

was shown to be effective for 3D shape retrieval [29].
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One of the main approaches to contour correspondence

is to compute a shape descriptor for each selected feature

point to be matched. A matching can then be extracted from

the descriptors in a variety of ways, e.g., via the simple

greedy best matching [12], solved as a bipartite matching

problem using the Hungarian method [21], relying on vari-

ants of the iterative closest point (ICP) scheme [3], which is

based on descriptor distances and shape alignment via rigid

or non-rigid deformations [1, 6], or computed by dynamic

programming under point ordering [16, 24].

However, a drawback of all these optimization schemes,

along with most other contour correspondence algorithms

proposed so far, is that they treat the shape descriptors inde-

pendently and do not consider proximity information mea-

sured between feature points on the same shape. For ex-

ample, such information may be used to ensure that a fea-

ture pair which is close-by on one shape gets mapped to

points that are also close on the other shape. Compared to

approaches based purely on shape descriptors, the use of

proximity information, e.g., by incorporating a regulariza-

tion term in the cost function, can provide a better handling

of shapes with missing parts or a lack of salient features.

Incorporating proximity into an optimization framework,

we can formulate point correspondence via the Quadratic

Assignment Problem (QAP) [22]. It is well known that QAP

is one of the most difficult optimization problems to solve,

yet a simple heuristic which mimics the behavior of ants

has led to a great deal of success [31]. In this paper, we

adopt ant colony optimization (ACO) [8], which we review

in Section 3, to solve the contour correspondence problem

and make the following contributions.

• We formulate the general point correspondence prob-
lem in terms of QAP (Section 4.1), incorporating prox-

imity information, and propose the first ACO algo-

rithm to compute the matching (Section 4.2). Note that

this basic ACO framework is applicable to the match-

ing of unorganized 2D point sets.

• Specific to contour matching, we extend our basic
framework to enforce order preservation (Section 4.3).

• We show that the consideration of proximity has a dif-
ferent effect on contour matching compared to merely
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Figure 1. Example of a matching computed
by preserving order, in (a), compared to one

preserving proximity and order, in (b).

enforcing order preservation, as done previously via

dynamic programming [16, 24]. An advantage of the

former is shown in Figure 1; further demonstration of

the feasibility and effectiveness of our ACO approach

is given through numerous experiments (Section 5).

Note that while order preservation can be strictly en-

forced for contour correspondence [16, 24], none of the pro-

posed solutions are applicable to the matching of surfaces

due to the lack of a canonical ordering among points resid-

ing on a 2-manifold. However, our basic QAP and ACO

framework can still be extended to the surface setting by

replacing proximities measured along a contour to proxim-

ities measured over a surface, e.g., using geodesic distance.

We shall leave this topic for future studies but will offer

some discussions on its potential in Section 6.

2. Related work on correspondence

While the problem of 3D shape matching and retrieval

is receiving much attention lately [34], research on 2D

shape matching [35] has remained active due to the prob-

lem’s inherent difficulty and wide-ranging applications.

Motivated by problems from image analysis, many algo-

rithms are designed to match unorganized sparse point sets,

e.g., [1, 3, 6, 17]. Although these point matching techniques

can often be directly applied to the contour correspon-

dence problem, contours define explicit ordering between

the points, which may be taken advantage of to improve

performance [16, 24, 25]. In this section, we briefly survey

existing contour matching paradigms and other point corre-

spondence schemes that are applicable to contour matching.

An overview of ACO, our adopted framework for contour

correspondence, is given in the next section.

Many contour matching algorithms rely on local shape

descriptors: a descriptor at a point p along a contour typi-

cally encodes the position or other geometric properties at

the point itself (e.g., local curvature) or properties of the

remaining contour points, from the perspective of p. A re-

cent survey and performance evaluation of local descriptors

is given by Mikolajczyk and Schmid [20]. The focus of our

work is on establishing correspondence regardless of the lo-

cal descriptor used. However, in this paper, we mainly use

shape context [1] as the local shape descriptor. Shape con-

text records a histogram of uniformly placed point samples

along a contour, parameterized by distance and angular ex-

tent with respect to the point described.

With a shape descriptor recorded at each point, a corre-

spondence can be computed by examining the similarity be-

tween points from two input shapes. The similarities are of-

ten defined by a distancemetric, forming an n1×n2 distance
matrix, where n1 and n2 are the number of points on the two

input shapes. The simplest way to arrive at a correspon-

dence is the O(n1n2) best matching, which greedily maps
a point from one shape to a point on the other shape that

has the most similar shape descriptor. Computing an opti-

mal one-to-one correspondence which minimizes the total

distance between matched shape descriptors is the bipar-

tite matching problem and can be solved using the O(n3)
Hungarian algorithm [21], where n = max(n1,n2). These
schemes can both be enhanced by a combination with iter-

ative alignment, e.g., using thin-plate splines [1, 6].

Other optimization-based approaches also exist. Maciel

and Costeira [17] formulate the matching problem via inte-

ger constrained minimization and solve a relaxed version of

it using concave programming. Gold et al. [10] incorporate

deformation parameters into their optimization criteria and

find good suboptimal solutions via soft assign. Recently,

Zheng and Doermann [36] improve upon initial correspon-

dence computed from shape contexts by trying to maximize

the preservation of binary neighborhood information. Most

closely related to our work is the approach of Berg et al. [2],

which also uses the QAP formulation but solves it using a

two-step method. The last two algorithms [2, 36] both settle

for gradient descent and converge to local minima.

The techniques mentioned so far are all applicable to

point set correspondence. The more specialized contour

matching problem can benefit greatly, quality-wise, under

point ordering. Order-preserving contour matching typi-

cally involves expensive optimizations, but the reliance on

a high-quality local shape descriptor is diminished. Liu et

al. [16] resort to dynamic programming, which allows for

feature skipping as well, and report excellent matching re-

sults. Scott and Nowak [24] also enforce point ordering and

their dynamic programming algorithm is more efficient, but

at the expense of a higher memory cost.

Instead of performing contourmatching in the spatial do-

main, transform-based techniques have also gained some

popularity, most notably spectral correspondence [13, 27]

or modal matching [23]. In the resulting spectral domain,

conventional methods can be applied to compute a corre-

spondence. The transforms used tend to reveal more global

shape structures and can also obtain bending-invariant cor-



respondences [4, 13]. Point correspondence without defin-

ing local shape descriptors is also possible. For example,

Sederberg and Greenwood [26] present a physically based

approach for correspondence of 2D polygons which tries

to fit one polygon over another by optimizing some energy

functional. Tal and Elber [33] propose to match patterns

in the normal or Gaussian map of two shapes, which has

the effect of establishing a correspondence between their

features. Sebastian et al. [25] introduce the notion of an

alignment curve and use a deformation-based symmetric

edit distance to define contour similarity. Skeletal [32] and

shock graphs [30] have also been proposed for 2D or 3D

shape representations, where subsequent point correspon-

dence can be computed via graph matching.

Finally, another class of techniques is based on the mini-

mum description length (MDL) principle. Here the favored

point correspondence between a group of shapes is that

which maximizes compactness (in an information theoretic

sense) of the statistical shape model obtained using PCA

on the corresponding points. MDL is not ideal for matching

only a pair of contours (the focus of this paper) and does not

explicitly include penalty when correspondence violates the

proximity constraints.

3. Review of ant colony optimization

Ant colony optimization is a metaheuristic used to find

good solutions to NP-hard optimization problems, e.g.,

those related to routing, assignment (including QAP), and

scheduling. A thorough introduction to ACO is given in the

book of Dorigo [8], who pioneered this field.

3.1. Overview of the ACO framework

The inspiration for ACO comes from the ability of natu-

ral ant colonies to solve difficult problems, despite the sim-

ple behavior of each individual member of the colony. This

ability is reflected by the way ants search for food and com-

municate with each other. Initially, ants explore the sur-

roundings of their nest in a randommanner, a characteristic

of their foraging behavior. Whenever an ant finds a source

of food, it returns to the nest leaving a trail of a chemical

called pheromone on the ground. The purpose of this trail

is to guide other ants to the food sources.

The ACO metaheuristic replicates some aspects of this

behavior. An artificial ant colony is seen as a system of dis-

tributed agents searching for the solution of an optimization

problem. The problem is usually modeled with a graph and

the solution search involves ants traversing this graph. Each

traversal by an ant corresponds to a feasible solution, which

is evaluated using an objective function of the problem at

hand. The quality of the solution dictates pheromone de-

position, whose accumulation on the traversed graph edges

i1

i2

i3

j1

j2

j3

Figure 2. Example of an ant traversal over a

(3,3) bipartite graph modeling a correspon-
dence problem. The path is (i2 → j1 → i3 →
j3 → i1 → j2) and the corresponding assign-
ment π is: π(i1) = j2, π(i2) = j1, π(i3) = j3.

serves as the means for communication.

In this work, we model the correspondence problem

over a complete bipartite graph on the two point sets to be

matched. As an ant traverses the graph, a path is formed.

We define the obtained correspondence by those edges di-

rected from one designated point set to the other and eval-

uate it using a criterion from the QAP formulation. Fig-

ure 2 shows a possible ant traversal and the correspondence

formed. The details of our algorithm are given in Section 4.

3.2. ACO metaheuristics

As an ant traverses the graph, its decision on where to

go next is influenced by heuristic information and current

pheromone deposition. For correspondence, the heuristic

information will take into account both local shape descrip-

tors and proximity (Section 4.2.4). After a number of ants

have traversed the graph, known as one iteration of ACO,

a certain amount of pheromone is also evaporated from

all edges. Pheromone evaporation occurs in nature and in

ACO, it can help the ants escape from bad local minima.

When examining the ACO algorithm, we see that, at

first, ants will tend to freely explore the whole solution

space, leading to many different solutions. However, over

time, pheromones will accumulate only on edges that are

part of those traversals favored by the objective function;

this causes the ants to gradually follow only a limited

number of traversals. Moreover, heuristic information and

pheromones have to be combined to guide an ant. The for-

mer is necessary to bias the ants to construct good traversals

at the start, when the pheromones are set to random initial

values. On the other hand, the pheromones are necessary

for later iterations of the algorithm, when they reinforce the

traversal of the graph edges that lead to good solutions.

4. ACO for shape correspondence

This section formulates the correspondence problem and

describes how the ACO metaheuristic is applied.



4.1. Problem formulation using QAP

Given two point sets I and J, the shape correspondence

problem can be stated as finding a meaningful mapping

from points of I to points of J which minimizes a given

objective function. That is, we seek π∗ such that

π∗ = argminπ(OBJ(π , I,J)),

where OBJ is the objective or cost function which evaluates

the matching π in relation to the shapes characterized by I
and J, and π is a mapping such that ∀i∈ I,∃ j ∈ J : π(i) = j.
We also assume without loss of generality that |I| ≤ |J|.

The assignment problem (AP): A common approach to

shape correspondence is to extract a set of features for each

point, referred to as the shape descriptors. Examples of

shape descriptors include shape contexts [1], among many

others [20]. Next, a distance measure between two shape

descriptors has to be defined. The assignment problem or

AP [24] seeks a correspondence which minimizes the sum

of the distances between descriptors of points on one set and

the descriptors of the corresponding points on the other set:

AP(π ,R, I,J) = ∑
i∈I

DR(Ri,Rπ(i)),

where Ri denotes the descriptor at point i, and DR is the

shape descriptor distance measure. Here, the matching is

constrained to be one-to-one (not necessarily onto). The

optimal matching for this cost measure can be computed in

cubic time with the Hungarian algorithm [21].

Order preservation for contour matching: Note that

shape descriptors might not be the only factor one should

take into account when evaluating a correspondence. One

possible element pertaining to contour matching is order

preservation [16, 24, 25], which follows from the observa-

tion that the vertices defining a contour are ordered. For ex-

ample, the COPAP algorithm [24] solves the cyclic-order-

preserving assignment problem via dynamic programming.

It has been shown that order-preserving contour matching

significantly improves the correspondence results [16, 24,

25]. However, it is unclear how it can be extended to other

domains, e.g., for points residing on a 3D shape, for which

a canonical point ordering is not available.

Incorporating proximity information: Another ele-

ment for evaluating a correspondence between continu-

ous shapes, e.g., contours or surfaces, is the preserva-

tion of quantitative neighborhood or proximity information.

Namely, if point i from shape I and point j from shape J

are matched, then a close-by neighbor i′ of i on I should

be matched with a point j′ on J that is close to j. Berg et

al. [2] refer to this as the minimization of distortions in a

correspondence. This differs from the case of order preser-

vation in that besides point ordering, we are also concerned

with distances between point pairs on the same shape.

QAP formulation: When augmenting the shape descriptor

R with proximity information, we obtain the general objec-

tive function of QAP,

QAP(π ,R, I,J) = (1−ν)S (π ,R, I,J)+ νX (π , I,J), (1)

where the free parameter 0 ≤ ν ≤ 1 weighs between the
shape descriptor distance or similarity term S (·) and the
proximity termX (·). In our implementation, we define

S (π ,R, I,J) = 1−
1

|I|
·∑
i∈I

e

−DR(Ri ,Rπ(i))
2

σR ,

where the use of the Gaussian is for normalization purposes,

so that 0≤S (π ,R, I,J)≤ 1. Note that other filter functions
that are monotonically decreasing away from zero can also

be used in place of the Gaussian. The proximity term

X (π , I,J) =

∑
i∈I

∑
i′ 6=i∈I

e
−DI(i,i

′)2

σI

∣

∣DI(i, i
′)−DJ(π(i),π(i′))

∣

∣

|I|(|I|−1)/2

also lies in [0,1], whereDI andDJ are distances, normalized

to [0,1], between two points from I and J, respectively. For
matching contours, these distances are geodesic distances

normalized with respect to contour length. If the point sets

are unorganized, we can resort to Euclidean distances nor-

malized against the maximal pairwise distance in each set.

Moreover, proximity preservation is emphasized more in

the local neighborhood of a given vertex and it diminishes

for points that are far away from each other. Our way to

accentuate proximity is to apply Gaussian weights to the

proximities in theX (·) term. The Gaussian widths σR and
σI applied to the descriptor distances and proximities are
free parameters set by the user.

Finally, note that a great advantage of our QAP formula-

tion is that it can be extended to any domain where distances

between points can be computed; this includes the case of

points residing on a 2-manifold, where DI and DJ will be

geodesic distances over the manifold. However, finding an

optimal solution to QAP is NP-hard. Therefore, heuristic

algorithms are necessary to obtain approximate solutions.

4.2. Correspondence algorithm using ACO

Although the ACO metaheuristic does not guarantee

convergence to a global optimum, it has been experimen-

tally shown that ACO is one of the most successful ap-

proaches for solving structured real-life instances of the

QAP [8]. Moreover, when incorporating proximity infor-

mation, solving the correspondence problem can be viewed

as solving a QAP, as we have shown in the last section.

In this section, we describe a novel extension of the ACO

framework, which has been used for solving assignment

problems [18], to deal with the specific shape correspon-

dence problem.



4.2.1 Graph model and correspondence extraction

We define the graph G = {V,E} that is to be traversed by
the ants as a complete, directed bipartite graph. The set of

vertices of this graph is composed of the two point sets to

be matched, i.e., V = I∪J. The directed edges E fully con-
nect the two point sets. The path that is determined by the

traversal of an ant on G corresponds to a possible solution

to the assignment (correspondence) problem. During such

a traversal, two conceptually distinct tasks are performed.

When an ant traverses a directed edge that connects a vertex

in I to a vertex in J, an assignment from I to J is determined.

On the other hand, when an ant traverses an edge from J to

I, the order in which the vertices are assigned is determined.

An ant starts the graph traversal from a randomly se-

lected vertex. It traverses edges until an assignment of each

vertex in I is determined (recall that |I| ≤ |J|). The final
assignment π is given by the edges from I to J chosen by
the ant. Note that a correspondence obtained in this way

is not necessarily one-to-one, as opposed to the AP or CO-

PAP matching formulations. In Section 4.3, we show how

ACO is a flexible framework which allows other types of

matching.

4.2.2 Path construction and evaluation

When traversing from a vertex i ∈ I to a vertex in J, the
probability pki j of an ant k choosing the edge that connects

to vertex j ∈ J is given by

Edge probability: pki j =
ατi j+(1−α)ηi j

∑l∈Ni [ατil +(1−α)ηil]
(2)

where τi j quantifies the pheromones accumulated on edge
(i, j), ηi j indicates the desirability (or probability) of
traversing (i, j) based on heuristic information (defined in
Section 4.2.4), and Ni = {l ∈ J : (i, l) ∈ E} is the imme-
diate neighborhood of vertex i. The parameter 0 ≤ α ≤ 1
regulates the influence of pheromones over heuristic infor-

mation. We can see that the choice of the traversed edge

is stochastic, where the sum of probabilities ∑ j∈Ni p
k
i j = 1.

Moreover, when traversing back from J to I, an edge point-

ing to any vertex in I that has not been visited yet can be

chosen. Each edge from j to I has the same probability of

being selected, and no pheromones or heuristic information

are considered. This choice is certainly not unique and our

framework is quite flexible in allowing for other variants, as

we shall describe later in Section 4.3.

After m ≥ 1 ants have traversed the graph, completing
an ACO iteration, the corresponding solutions are evaluated

and the pheromones are accordingly updated. The cost of

each solution, a correspondence π extracted from a path
traversed by an ant, is given by Equation (1), where the

distances between two shape descriptors and the geodesic

distances between vertices on each contour are combined.

4.2.3 Pheromone updates

Pheromones are updated at the end of an ACO iteration.

First, pheromones are evaporated at a constant pheromone

evaporation rate ρ , 0≤ ρ ≤ 1,

Pheromone evaporation: τi j ← (1−ρ)τi j, (3)

for all edges (i, j). Next, new pheromone is deposited only
on edges that were traversed by the ants,

Pheromone deposition: τi j ← τi j+
m

∑
k=1

∆τki j, (4)

where ∆τki j is the amount of pheromone that ant k has
deposited on edge (i, j). It is given as a constant δ (a
free parameter) divided by the correspondence cost defined

above: the larger the cost, the less the amount of deposited

pheromones. In addition, a minimum level of pheromones

τmin is maintained on all edges to avoid completely elimi-
nating certain traversals during the ants’ exploration.

4.2.4 Heuristic information for ant traversal

What remains to be determined now is how to compute the

desirability (or probability) based on the heuristic informa-

tion ηi j in (2). Naturally, our proposed heuristic is a com-
bination of descriptor distance (between vertices on the two

shapes) and the geodesic distance (between vertices on the

same shape), in a manner similar to the QAP cost in (1).

Specifically,

ηi j =

(

e
−DR(Ri,Rj )

2

σR

)

×

(

1− e
−DI(i,i

′)2

σI
∣

∣DI(i, i
′)−DJ( j,π(i′))

∣

∣

)

×

(

1− e
−DI(i,i

′′)2

σI
∣

∣DI(i, i
′′)−DJ( j,π(i′′))

∣

∣

)

where i′ and i′′ are respectively the last and second last ver-

tices visited in I, and π is already defined for all the pre-
viously visited vertices. The possible distance values DR

(for shape descriptor R), DI , and DJ are all normalized to

[0,1], as before. Therefore, the heuristic information has the
maximum value of 1 when all the distances are very small

(zero), and lower values when all the distances are large.

In this way, assignments which relate points with similar

descriptors and encourage preservation of proximity infor-

mation are favored by the heuristic.

Note that we can consider more than two last visited ver-

tices in the heuristic. However, since the previous assign-

ments also take into consideration of proximity, information

from the last two vertices appears to be sufficient to main-

tain the proximity between the assigned vertices.



ACO Parameters Symbol Value

Number of ants m 1

Number of iterations T 1000

Influence of pheromones α 0.3

Pheromone evaporation rate ρ 0.1

Pheromone deposition constant δ 0.01

Initial pheromone levels τ0 1

Minimum pheromone levels τmin 0.1 · 1|I|
Influence of proximity ν 0.7

Gaussian width inX σI 0.1 · Imax
Gaussian width inS σR 0.1 ·Rmax

Table 1. Parameters used in our ACO algo-
rithm and their chosen values.

4.2.5 List of ACO parameters and values

In Table 1, we list all the parameters used in our ACO shape

matching algorithm and the respective values that are cho-

sen in our experiments. Note that the auxiliary parameters

Imax and Rmax are data dependent and they are respectively

set to be the maximum proximity (in I) and the maximum

descriptor distance. Although appropriate tuning of the pa-

rameters is necessary for a good performance of the algo-

rithm, it will be shown that the ACO approach is sufficiently

robust to work on a wide range of contours from different

classes using the same set of parameter values.

4.3. ACO framework extensions

Order preservation: It is quite straightforward to mod-

ify our basic ACO algorithm described so far so that only

correspondences that preserve the ordering of the contour

vertices are constructed. Basically, when the algorithm is

computing the probability of matching a vertex i ∈ I to a
certain vertex j ∈ J, j is only assigned a non-zero proba-
bility if it lies in a valid interval of vertices that preserve

the ordering of the matching. This interval is computed as

follows. Firstly, vertices il and ir are found on the first con-

tour, which are respectively the left and right neighbors of

vertex i that already have defined matchings π(il) = jl and
π(ir) = jr. Next, j lies in the valid interval if it is contained
between jl and jr, taking into consideration the cyclicity

of the contour; see Figure 3. It is assumed that both con-

tours are consistently ordered along the same direction; if

this were not the case, we could always reverse the vertex

ordering of one contour and perform a second matching.

Open curves: These are trivial to handle by ACO: the only

distinction from contour matching is related to the determi-

nation of the valid vertex range for order preservation. With

open curves, their end points serve as hard boundaries.

Flexible matching paradigm: While AP and COPAP en-

i

i
l

ri jj
r l

(a) Contour I. (b) Contour J.

Figure 3. Valid range of vertices for order-

preserving contour matching. If the matching

π has been partially constructed with π(il) =
jl and π(ir) = jr. Then the set of vertices on
contour J (b) that are in the valid range for

matching i on contour I (a) are marked in red.

force one-to-one correspondence, our ACO framework can

be easily tuned to allow for one-to-one, one-to-many,many-

to-one, or many-to-many matchings. All that is needed is

to place hard constraints or assign appropriate probabilities

to allow/disallow or encourage/discourage certain edges to

be traversed by an ant. For example, we allow many-to-

one matching by assigning non-zero probabilities to edges

pointing from J towards already assigned vertices in I.

4.4. Pseudocode for ACO correspondence

Figures 4, 5, 6, and 7 present the pseudocode for our

ACO-based shape matching algorithm described in the pre-

vious sections, where order preservation is enforced to em-

phasize our focus on contour correspondence. The main

function is ACO-ShapeMatching, given in Figure 4, and it

calls several helper functions given in subsequent figures.

1: ACO-ShapeMatching(I,J):
2: G← initGraph(I,J)
3: BestMatching← /0
4: BestCost← ∞

5: for i← 1 to T do
6: Matchings← /0
7: for j← 1 to m do
8: M← constructMatching(G)
9: C← Cost of matching M according to Equation (1)
10: Matchings←Matchings∪{M,C}
11: ifC < BestCost then
12: BestMatching←M
13: BestCost←C
14: end if

15: end for

16: updatePheromones(G,Matchings)
17: end for

18: return {BestMatching,BestCost}

Figure 4. The main function for our ACO-
based shape correspondence algorithm.



1: initGraph(I,J)
2: G← A complete, directed, bipartite graph between I and J
3: for each edge e in {I→ J} ⊂ E(G) do
4: epher← τ0
5: end for

6: for each edge e in {J→ I} ⊂ E(G) do
7: epher← 0
8: end for

9: return G

Figure 5. Graph model initialization.

1: constructMatching(G)

2: M← /0
3: i← Randomly chosen from the vertices in I
4: while there are unmatched vertices in I do

5: for each vertex j in J do

6: /* for order preservation */

7: if j is in the set of valid J vertices then

8: P[ j]←
ατi j+(1−α)ηi j

∑l∈N ατil+(1−α)ηil
9: else

10: P[ j]← 0
11: end if

12: end for

13: jchoice← Probabilistically chosen vertex in J
according to probabilities P

14: M←M∪{i, jchoice}
15: i← Randomly chosen from the set of available

vertices in I

16: end while

17: return M

Figure 6. Matching construction function.

1: updatePheromones(G, Matchings)

2: /* Evaporate pheromone */

3: for each edge e in {I→ J} ⊂ E(G) do
4: epher← (1−ρ)epher
5: end for

6: /* Add new pheromone */

7: for each {M,C} in Matchings do
8: ∆pher← δ/C
9: for each edge e in {I→ J} in matching M do
10: epher← epher+∆pher
11: end for

12: end for

13: /* To ensure minimum pheromone level */

14: for each edge e in {I→ J} ⊂ E(G) do
15: if epher < τmin then
16: epher← τmin
17: end if

18: end for

Figure 7. Pheromone update function.

5. Experimental results

To demonstrate the capabilities of our method, a set of

experiments were performed on the Brown dataset [28] and
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(a) t = 200. (b) t = 300. (c) t = 1,000.

Figure 8. Pheromone deposit during an exe-

cution of our ACO-based correspondence al-
gorithm after t = 200,300, and 1,000 iterations.

the results are presented here. The Brown dataset is fre-

quently used in the computer vision community as test data

for shape analysis algorithms. It consists of the silhouette

images of objects such as hands, humans, fish, airplanes,

etc., some of which were captured under occlusion. We are

using the collection from this dataset that is composed of 9

object classes with 11 images per class. In our experiments,

a contour of 70 vertices is extracted for each image.

The original (rotation-variant) shape context [1] is used

as the descriptor in all experiments, unless stated other-

wise. The similarity between two shape context histograms

is given by the χ2-distance. We primarily compare the re-
sults that we obtain with those of COPAP [24], which is

a recent and one of the most successful contour matching

algorithms.

ACO pheromone deposition: Firstly, the proposedmethod

is examined from the view of the ACO metaheuristic.

Figure 8 presents several 70× 70 matrices representing
pheromone deposition during one execution of the algo-

rithm, when the correspondence for two similar contours

is computed. Each pixel at position (i, j) represents the
pheromone deposited at edge (i, j), where lighter colors in-
dicate larger numbers. It can be seen that all edges possess

similar levels of pheromone at the beginning of the com-

putation. However, as the iterations advance, pheromone

concentrates on certain edges, leading to a configuration

where only a few traversals are favored during the compu-

tation. These edges represent the assignments that heuristi-

cally provide the top correspondences.

Order preservation (OP) vs. proximity consideration:

Next, the quality of the computed correspondences is ad-

dressed. In order to verify that the incorporation of proxim-

ity information has a significant contribution in the quality

of the matchings, Figures 1 and 9 present two cases where

the matchings are computed with and without the addition

of proximity consideration. Additionally, Figure 9 presents

a case where proximity information is used, but no order

preservation is imposed. The descriptor used in these two

examples is the angle at each vertex. The results indicate



(a) Contours to match. (b) OP via COPAP [24].

(c) ACO (Proximity only). (d) ACO (Proximity + OP).

Figure 9. Effect of incorporating proximity in-

formation when matching two contours (a)

with the same features but under stretching.
(b) Results from order preservation (OP) only.

(c) ACO with proximity information but with-

out OP. (d) ACO with proximity and OP.

that the incorporation of proximity information provides

matchings that tend to be more intuitive than those com-

puted when only order preservation is imposed, especially

for cases where there is a lack of salient features (Figure 1)

or when nonuniform stretching occurs (Figure 9).

Handling of occlusion or missing parts: Figure 10 shows

the correspondences computed for models that have miss-

ing or occluded parts. The first three cases were compared

before by Sebastian et al. [25], whose approach failed in

case (c). To avoid cluttering in the figures, we only present

the matching of relevant feature points as marked. It can

be seen that our algorithm computes the correct matchings

for all the model pairs, not being significantly affected by

changes in the structure of the shapes, such as the missing

part happening from (b) to (c) or the occlusion in case (d).

Handling of open contours: The correct correspondence

for two open contours is computed by our ACO algorithm

and is presented in Figure 11(b). The two left-ventricular

contours were extracted from an echocardiography image

sequence, with one frame shown in Figure 11(a).

Evaluation against ground-truth correspondence: In Ta-

ble 2, we present differences between the correspondences

obtained by our algorithm and the ground truth, collected

over the whole Brown dataset. The ground truth is pro-

vided by a human user for a selected set of feature points

along the contours. Note that this is done for all the shape
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Figure 10. Matchings computed by ACO for

contours with occlusion or structure change.
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Figure 11. Matching computed by ACO for an
open contour of a left ventricle.

classes in the database except for the “fgen” shapes for

which the ground truth has been hard to establish. Next, the

geodesic distances along the contour between the ground-

truth matching points and the matchings returned by the al-

gorithm are summed up; such a scoring scheme has been

proposed by Karlsson and Ericsson [14]. Obviously, the

smaller the distance measure obtained, the closer the com-

puted matching is to the ground truth.

Each number in Table 2 is a sum of the distances col-

lected for all contour pairs from a particular class. Our

algorithm is compared to the COPAP algorithm [24], and

to AP, which is computed by the Hungarian algorithm. It

can be inferred from the results that our algorithm generally

provides matchings that are closer to the ground truth when

compared to both algorithms; this is more so for the air-

plane, human, and tool classes. It is worth noting that since

the local shape descriptor we use is not rotationally invari-

ant, the correspondence tests are conducted after the shapes



Shape class Hungarian COPAP ACO

Airplanes 223.16 32.55 13.02

Fish 56.85 21.67 22.80

Four-legged 235.57 32.58 25.48

Hands 375.94 94.86 121.95

Humans 482.27 53.75 20.95

Rabbits 190.01 80.01 53.44

Stingrays 30.55 5.88 5.16

Tools 204.36 35.29 22.48

Table 2. Deviation from ground truth.

have been pre-aligned. Basically, all the shapes of the same

category were manually rotated so that their corresponding

features point roughly in the same direction.

Shape retrieval: We conduct a retrieval experiment on a

collection of 25 images chosen from the Brown dataset [24];

this has been a fairly standard test performed by several oth-

ers. Each shape is matched to all the others in the collection,

and the matching cost is used as a measure of similarity be-

tween the contours for retrieval. Next, the three most simi-

lar contours are obtained. The number of first, second, and

third matches that belong to the same class are counted. The

result obtained for COPAP is, respectively, 21, 19, and 17.

For our algorithm, we obtained 21, 20, and 17. It should be

noted that these two tests were conducted using the origi-

nal shape context as the descriptor, while the better scores

reported in [24] used a rotationally invariant version of it.

Test on unorganized point sets: The same shape retrieval

experiment described above has also been performed on

the 25-image Brown dataset where the models are now re-

garded as general (unorganized) point sets and not consid-

ering the ordering of the contours. In this case, the prox-

imity term of the QAP formulation utilizes the Euclidean

distances between the shape points. The results obtained

were 21, 19, and 18, reinforcing that just the incorporation

of proximity information can provide high quality results.

Parameters: It is important to be aware that all the re-

sults presented here for our algorithm were obtained with

the same set of parameters (shown in Table 1), which con-

firms the robustness of our ACO approach.

Timing: Figure 12 plots the execution time required by our

algorithm (1,000 ACO iterations), in comparison to COPAP

and Hungarian, when contour sizes increase. Although our

algorithm is comparable to the other two for small contours,

it clearly scales better as vertex counts grow. The memory

requirements for COPAP also increase significantly with the

contour size, while those of ACO increase linearly.

0 50 100 150 200 250 300 350 400 450
0

500

1000

1500

2000

2500

3000

Number of vertices in contour

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

 

 

COPAP

Hungarian

ACO

Figure 12. Execution time comparison be-

tween Hungarian, COPAP, and ACO.

6. Conclusions and Future Work

We formulate shape correspondence as a Quadratic As-

signment Problem (QAP), incorporating proximity infor-

mation into the point matching objective function. We also

propose the first Ant Colony Optimization (ACO) algo-

rithm directly aimed at solving the point and contour cor-

respondence problems, which are difficult problems when

the QAP formulation is adopted. The advantage of incor-

porating proximity and the effectiveness of the proposed

method have been verified with a set of experiments. Qual-

itative and quantitative results show that the correspon-

dences obtained by our ACO algorithm are at least com-

parable to those obtained by the best alternative methods,

e.g., [24, 25]. In several cases, we have demonstrated clear

advantages offered by our approach. In addition, our algo-

rithm also has the advantage that its resource requirements

scale moderately for contours of increasing size.

Although the descriptor used in our experiments did not

allow to compute matchings for planar shapes with artic-

ulated deformations, the original shape context can be ex-

tended using geodesic neighborhood information [12]; this

can be incorporated into our ACO framework easily, as well

as any shape descriptor that allows to compute the similarity

between vertices on two shapes.

Moreover, the proposed QAP-based ACO framework is

quite flexible in several aspects: (1) Hard constraints can

be incorporated by simply restricting the ant traversals to a

reduced set of edges, as is done for enforcing order preser-

vation; (2) Soft constraints can also be added by assigning

different probabilities to different edges. For example, order

preservation can be favored rather than enforced through

assigning non-zero and non-unit probabilities to different

edges. The classical order preservation constraint can then

be thought of as a special case of this new formulation; (3) It



can be extended to surface matching by replacing proxim-

ities measured along a contour with proximities measured

over a surface (e.g., using geodesic distance), and by ex-

tracting surface shape descriptors for the vertices (e.g. 3D

shape context [15] or local surface curvature [9]); (4) It can

be applied to point clouds rather than ordered vertices on

contours or meshes by also modifying the proximity com-

putation (e.g., using Euclidean distance).

Our future work includes the aforementioned extensions

to the matching of 3D meshes and point clouds. Moreover,

experiments with other shape descriptors and comparisons

with alternative techniques are also planned in order to fur-

ther confirm the effectiveness of our ACO algorithm.
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